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Introduction.  

The article covers the issues of 
developing a methodology for solving the 
problem of the dynamic deflected mode of 
cylindrical pipe under the influence of a seismic 
wave. This problem is theoretically solved by 
elasticity summation theorem, when a seismic 
wave falls perpendicular to the axis of a long 
pipe laid in a high embankment and filled with 
an ideal compressible fluid. Let us consider the 
problem of the dynamic theory of elasticity 
summation when a seismic wave falls 
perpendicular to the axis of a long pipe laid in a 
high embankment and filled with an ideal 
compressible fluid. The design diagram is 
shown in Fig. 1. 

Equation of motion in vector form known 
from the dynamic theory of elasticity for an 
isotropic body is: [1.2] 
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where  is the density of the medium, and 
all other designations have the same meaning 
as in the equation of the static theory of 
elasticity [8]. Let us make a standard 

transformation of the equation as follows. We 
show the displacement vector in the form: [4.5] 
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Substituting (3.1.2) into (3.1.1) and 
considering that the motion of the particle has 
a steady character, as well as neglecting the 
body forces, i.e. =01 since in accordance with 
the principle of superposition, they can be 
considered separately when solving a static 
problem, we obtain in the case of a plane 
deformation the following system of Helmholtz 
wave equations for potentials: [6.7] 
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where  and  are wave numbers The 
method is based on the summation theorem. 
The summation theorem for cylindrical wave 
functions was derived in [5]. 

Let there be two (rg,g) and (rk,k) 
different polar coordinate systems (Fig. 4.9), 
whose polar axes are equally directed. The pole 
coordinate k in the q system will be Rkq, kq, so 
that the following equality is fulfilled  
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Then the summation theorem has the 
form: 
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 (2.) 
Formulas (2) allow transforming the 

solution of the wave equation (1) from one 
coordinate system to another. 

Let us consider the calculation of an 
extended underground multi-line pipeline for 
seismic action in the framework of a plane 
problem of the dynamic theory of elasticity. In 
this case, we study the case of stationary 
diffraction of plane waves on a number of 
periodically located cavities supported by rings 
with an ideal compressible fluid inside. 

We can solve this problem by the method 
of potentials in the same way as it is done in 
other authors. The boundary conditions have 
the form of a system of linear equations carried 
out by the Gauss method with the selection of 
the main element. The form of the incident 
potential will not change either. 

The potentials of the waves reflected 
from the pipes after applying the addition 
theorem and, taking into account the 
periodicity of the problem, according to [22] 
will have the form 
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where: =kcos,  is the distance 

between the pipe centers. 
The potentials of refracted waves in pipes 

are written in the form 

      
2

1
1

2
2

0

= +
− −

=



e E C H r D H r ei m w
n n n n n

in

n

( ) ( ) ( ) ( )( ) ( ) ,

 

      
2 1

2
2

0

= +
− −

=



e E E H r F H r ei m w
n n n n n

in

n

( ) (1) ( ) ( )( ) ( ) ,

 (4.) 
and the potential of speed in the ideal 

form of a compressible fluid is 
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    (5.) 
Unknown coefficients An-Gn are 

determined from the boundary conditions. As a 
result, an infinite system of linear equations is 
obtained, which is solved by an approximate 
reduction method, provided that the relation is 
not satisfied 

k n  ( cos )1 2 =   

  (6.) 
The incidence of P, SV or SH-waves on 

multi-line pipes is taken into account in the 
same way as it was done in paragraph 4.1 and 
4.2. 

The general characteristic of the program 
is intended for multi-strand pipes in an 
embankment for the case of seismic wave’s 
incident perpendicular to the axis passing 
through the centers of the pipes. 
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Fig. 1. Design diagram. 
 
The program is written in FORTRAN 

language and has a modular structure. This 
allows further expanding it by adding new 
modules. 

The input information for calculating the 
deflected mode is the elastic characteristics (Е 
и ) of the soil of the embankment and pipes, 
the density of the soil, the pipe and the liquid 
that fills it, the inner and outer radii of the 
pipes, the prevailing period of oscillation of the 
soil particles, the coordinates of the point at 
which the deflected mode is searched, and 
seismicity coefficient. With the help of a special 
mark, it is possible to calculate both pipes filled 
with ideal compressible liquid and empty ones. 

The cylindrical Bessel and Hankel 
functions are calculated according to the well-
known formulas [5, 16]. The solution of the 
system of linear equations is carried out by the 
Gauss method with the selection of the main 
element [68]. 

The output information contains the 
deflected mode along the pipe contour 
(contact), in the pipe wall, and in the lintel 
between the pipes. The counting time on a PC 
does not exceed 10-15 minutes. 

The program for calculating parallel 
pipelines is easy to use and is designed for use 

in design organizations. It allows determining 
the dynamic pressure of the soil both on empty 
multi-line pipes equidistant from each other 
and on pipes filled with an ideal compressible 
fluid. 

With the help of the DIFR program, the 
influence of the following factors on the 
distribution of the dynamic soil pressure of the 
embankment around the round reinforced 
concrete pipes under seismic impact was 
studied: distance between the pipes; type of 
impact (P-, SV or SH-wave); the length of the 
seismic wave incident in the ground (or its 
speed); pipe concrete class (Е и ) and its wall 
thickness; the influence of the liquid filling the 
pipe (Fig. 4, 10). 

Impact of distance between pipes. Table 1 
shows the values of the coefficient 

2

maxmax )2/((  += rr
 of 

the maximum radial pressure of the soil on the 
pipes at different clear distance d between 
them in the case of a falling P-wave. In this 
case, the wave number of P-wave r=1.0 was 
taken: the inner and outer radius of the pipes 
R0=018 m and R=1.0 m: the prevailing period 
of oscillations of soil particles T=0.12 sec. 
Embankment soil characteristics: Lame 
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constants 1=8.9-MPa; 1`=4.34MPa; density 
1=1.74 kn sec/m4, characteristics of the pipe 
material 2=86.90МPa; 2=12.930MPa; 2=2.55 
kn sec/m4. 

 
Table 1. 

The value of the coefficient of dynamic 
concentration at different distances between 
the pipes for the case of P-waves falling 

D/d  015  1.0  2.0  4.0 

ma

x 
 1.6

8 
 1.7

6 
 1.61  1.60 

 
It follows from Table 1 that at first, with 

an increase in the distance between the pipes 
015d/D1.0, the coefficient max slightly 
increases (by 5%), and with a further increase 
in d/D>1.0, it decreases more sharply (by 
10%). At d/D>2.0, the value of max stabilizes, 
i.e. practically does not change, at l4.0 it is 
close to the value of max for a single pipe 
according to calculations. 

Therefore, the mutual influence of 
reinforced concrete pipes of multi-strand 
laying takes place at a clear distance between 
them of d4.0D and leads to an increase in the 
maximum dynamic soil pressure on them 
compared to a single pipe. This effect of 
increasing the coefficient max is associated 
with the superposition of waves reflected by 
several surfaces of multifilament pipes, and is 
called “local resonance” in [13]. In this case, the 
nonmonotonic increase in the coefficient max 
with a decrease in the distance between the 
pipes d/D is connected, in our opinion, with the 
phenomenon of interference of waves 
superimposed after reflection. 

This phenomenon is extremely important 
for the practice of designing seismic 
underground multi-line pipelines, since allows 
choosing the optimal distance between the 
pipes, at which the dynamic pressure during 
seismic action is minimal. For example in Table 
1 such distance is d=015D. 

It is known to note for comparison that in 
the case of a static impact, the opposite picture 
is observed: the soil pressure on multi-strand 
pipes is less than on a single one. 

In addition to the above, when analyzing 
the influence of the distance between pipes on 
their deflected mode, it is necessary to consider 
the relation (6), (the so-called “slip points”), at 
which there is a significant increase in dynamic 
stresses approximately the pipe - resonance. 
This phenomenon is known from optics under 
the name anomaly. 

From the point of view of design practice, 
it is necessary to know at what distance pipes 
can be laid so that the dangerous phenomenon 
of resonance does not occur. 

Relation (6) gives the answer to this 
question. Let us analyze this ratio for the case 
of the impact of P- and SV- seismic waves on an 
underground pipeline. Table 2 shows the 
dependence of the maximum distance in the 
light between the centers of the pipes dmax, at 
which resonance does not occur, on the angle 
of incidence of seismic waves . 

Table 2 
Dependence of the distance Dmax on the 

angle of incidence . 

, 
degre
e  

0 30 45 60 70 80 90 

Dmax, 
m 

5.
0 

5.3
6 

5.8
6 

6.6
6 

7.4
5 

8.5
2 

101
0 

 
From Table 2 it follows that the smaller 

the angle of incidence of a seismic wave on the 
pipeline, the closer to each other it is necessary 
to lay the pipes. Thus, the occurrence of 
resonance in multi-strand pipes can be avoided 
by choosing an appropriate distance between 
them and, thereby, ensure the seismic 
resistance of the pipeline. Influence of the type 
of seismic action (P-, SV- or SH-wave). Table 3 
shows the values max of the maximum radial 
pressure of the soil on the pipes in the case of 
falling P- and SV - seismic waves at different 
distances d in the light between the pipes. In 
this case, r=2 was taken. 

Analysis of the data in Table 4.3.3 shows 
that at d/D<4.0, the values of the coefficient 
max for the P- and SV-waves are, as it were, in 
antiphase, i.e. at l/D=1.0, the maximum seismic 
impact of the P-wave is 27% higher than that of 
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the SV-wave, at d/D=2.0 it is 7% lower, and at 
d/D=4.0 it is again higher, but only by 1 %. 

At the same time, with an increase in the 
distance between the pipes, the difference in 
these effects decreases and at d/D=4.0 it 
practically disappears altogether. In addition, 
we note that when exposed to the SV - wave, 
the values of max at different distances 
between the pipes have a 2.5 times greater 
spread (up to 25%) than when exposed to the P 
- wave (up to 10%). Therefore, the 
phenomenon of “local resonance” manifests 
itself more strongly for seismic action in the 
form of an SV-wave 

 
Table 3 

The value of the coefficient max under 
seismic effects in the form of P - and SV - 

waves at various distances d between pipes 

 d/D max 

 P – wave SV – 
wave 

1.0 1.76 1.29 

2.0 1.61 1.72 

4.0 1.60 1.51 

 
Influence of liquid filling pipes. Table 4 
shows the values of the coefficient max in the 
case of the incidence of the P-wave on empty 
and water-filled pipes at various distances d in 
the light between the pipes. The liquid density 
was assumed to be 3=01102 kn sec/m4. 

 From Table 4 it follows that the presence 
of water in the pipes increases the seismic 
effects on them compared to empty pipes. 
Obviously, this is due to an increase in the mass 
of the pipeline. The maximum dynamic soil 
pressure on the pipes is increased. For 
example, at d/D=1.0 the difference in the 
values of the coefficient d/D=2.0-10%, at 
d/D=4.0-19%. 

Table 4 
The value of the coefficient max for the case 

of falling P - waves on empty and water-
filled pipes 

 d/D max 

 P – wave SV – 
wave 

1.0 1.76 1.89 

2.0 1.61 1.78 

4.0 1.60 1.90 

  
Moreover, we note that the spread in the 

values of the coefficient max at different 
distances d for pipes filled with water is less 
(7%) than for empty pipes (10%). 

Influence of the length of the incident 
seismic wave. Table 4 shows the values of the 
coefficient max of various lengths l0/l0-2/, р 
is the wave incident on empty pipes located at 
a distance l=1.0D from each other. 

Table 5 
Coefficient max values for different lengths 

l0 of P -wave 

l0/D 3.0 5.0 1010 

max 1.76 1.52 1.20 

  
From Table 5 it follows that the greater 

the length of the incident seismic wave, i.e. the 
denser the soil of the embankment, the lower 
the coefficient max. For reference, we note that 
the ratio l0/D=5.0 refers to not bulk sandy, 
sandy loamy and loamy soils; l0/D=10 refers to 
clay soils. 

Thus, the type of soil, and especially its 
density, has a significant impact on its dynamic 
pressure on pipes during seismic action. 

It follows that when building an 
embankment above the pipes, it is necessary to 
compact the bulk soil. It is interesting to note 
that good soil compaction also reduces its static 
pressure on pipes. In addition, calculations 
show that for l0>1010D the dynamic problem is 
reduced to a quasi-static one, which greatly 
simplifies its solution. This leads to an 
important conclusion that the quasi-static 
approach is not applicable to the calculation of 
the seismic action of pipes under 
embankments. 
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