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Introduction 

Nonlinear coupled partial differential 
equations are very important in a variety of 
scientific fields, especially in fluid mechanics, 
solid-state physics, plasma physics, plasma 
waves, capillary-gravity waves, and chemical 
physics. Unfortunately, the explicit solution of 
these equations in an analytical form is 
possible only in special simple cases, and, as a 
result, the possibility of analyzing 
mathematical models built based on 
differential equations is provided using 
approximate numerical solution methods. The 
numerical method is an algorithm for 
calculating the approximate values of the 
desired solution at the points of a finite set of 
arguments. 

In many branches of mathematical 
physics, when modeling nonlinear evolutionary 
processes use the Kuramoto-Sivashinsky 
equation or its natural modifications cations 

and generalizations. Usually, this equation is 
considered together with the natural ones for 
the boundary conditions, in most papers the 
boundary conditions were chosen as periodic 
boundary conditions. The Kuramoto–
Sivashinsky equation describes one of the 
simplest nonlinear systems that exhibit 
turbulence Kuramoto [1]. It has been used to 
study various reaction-diffusion problems and, 
in particular, it is used to model the thermal 
mechanism of flame propagation or 
combustion waves G. I. Sivashinsky [2].  
Another version of the Kuramoto – Sivashinsky 
equation is used as a model of the formation 
process reliefs of various configurations on the 
surface of semiconductors under the influence 
of flow ions. This physical and technological 
process has found wide application in modern 
nanoelectronics Bradley, Harper[3]. In 
addition, the Kuramoto-Sivashinsky equation 
has found wide application in the theory of 
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surface self-organization during ion irradiation, 
electrochemical etching of semiconductors and 
metals, as well as wave fluid, flows, diffusion 
chaos, long waves at the interface between two 
viscous liquids. The problem of numerical 
solution of partial differential equations is an 
area of intensive research. 

To develop an understanding associated 
with a nonlinear phenomenon with the 
Kuramoto-Sivashinsky equation, either an 
exact or numerical solution is required. Since 
an exact solution to the equation is rarely 
possible due to its non-linearity, numerical 
methods play an essential role in its equations. 
Therefore, the development of an efficient and 
accurate numerical method is of practical 
importance and attracts the attention of many 
researchers. For example, the Kuramoto-
Sivashinsky equation was studied numerically 
in [3]. 

Since the exact solution to the equation 
is rarely possible due to its non-linearity, 
numerical methods play an essential role in the 
solution of the problem. Many powerful 
methods have been created and successfully 
developed to find the exact solution to the 
Kuramoto-Sivashinsky equation. One of such 
methods to resolve the problem is the 
exponential time difference (ETD) scheme was 
introduced in [7] and modified by the authors 
of the work [8]. The basics of the  ETD scheme 
are exactly integrating the linear parts of a 
differential equation and approximating the 
non-linear terms by a polynomial, which is then 
exactly integrated [9-14]. 

We use Runge-Kutta's fourth-order 
exponential time difference (ETDRK4) method 
to obtain an efficient numerical solution for the 
Kuramoto-Sivashinsky. We solve the diagonal 
problem of the Kuramoto-Sivashinsky equation 
using the Runge-Kutta 4 ETD method and 
present the results using the Matlab program. 

 
Methodology 
Our 1D problem can be written as [8] 

t x xx xxxxu uu u u , x [0,32 ].= − − −  

              (1) 
The last equation contains both second and 
fourth-order derivatives, which means it’s a 
complex behavior. The second-order term acts 
as an energy source and has a destabilizing 
effect, and the nonlinear term transfers energy 
from low to high wavenumbers, whereas the 
fourth-order term has a stabilizing effect. We 
use the initial condition 
 

x x
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(2) 
 

As the equation is periodic, we 
discretize the spatial part using a Fourier 
spectral method. Transforming to Fourier 
space gives, 

2 2 4

t

ik
u u (k k )u,

2
= − + −                                            

(4) 
and, in the standard form, we have 
 

2 4(Lu)(k) (k k )u(k),= −  

2

ik 1
N(u, t) N(u) F

2 F(u)

  
 = = −     

                                

(5) 
 
where F denotes the discrete Fourier transform 
[8, 10]. We solve the problem in Fourier space 
and use ETDRK4 time-stepping for t=100 to t = 
200. The time evolution for the Kuramoto-
Sivashinsky equation is presented in Figures 1 
and 2. 
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The obtained numerical results show 
that using Runge-Kutta's fourth-order 
exponential time difference (ETDRK4) method 
for a nonlinear term with spectral 
discretization for time integration one can have 
better results for large time steps. 

 
Conclusion 

We have applied Runge-Kutta's fourth-
order exponential time difference (ETDRK4) 
method to the Kuramoto-Sivashinsky equation. 
For the simulation tests, we chose periodic 
initial conditions and applied Fourier spectral 
approximation for the spatial discretization. It 
was shown that this method is preferable since 
it requires less iteration for its implementation 
and has a low error. To implement the 
computational procedure, the Matlab computer 
algebra system was used. Analysis of the 
obtained results confirmed the effectiveness of 
the method. 
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Fig. 1. Time evolution for the Kuramoto-Sivashinsky equation for t=125and 150. 
 

Fig. 2. Time evolution for the Kuramoto-Sivashinsky equation for t=175and 200. 
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