

Designing the initial processes in opening a mine and determining the productivity of the mine

Bayramova Minevar Axmet qizi

Student of Nukus Mining Institute

ABSTRACT

In this article, the periodical processes of the mine that should be implemented in the implementation of the mining processes after the design of the mine are mentioned. Open pit mining is a concept focused on improving mine productivity. Taking into account the structure of the mine, the parameters of the mine, we can determine the daily productivity. One of the main problems of open-pit mining is the efficient use of freight traffic and the transport fleet. For maximum efficiency and minimum cost, we need to transport the minerals as close as possible to the mining enterprise's border area after extracting them. Shovels and trucks are widely used loading and hauling equipment in open pit mining around the world. The problem is difficult because truck and shovel systems are complicated by the uncertainties and many parameters associated with truck and shovel operations, and as a result, interactions related to the problem must be considered. This paper develops and implements a stochastic discrete-event simulation model to design and analyze the behavior of a truck and shovel handling system.

Keywords:

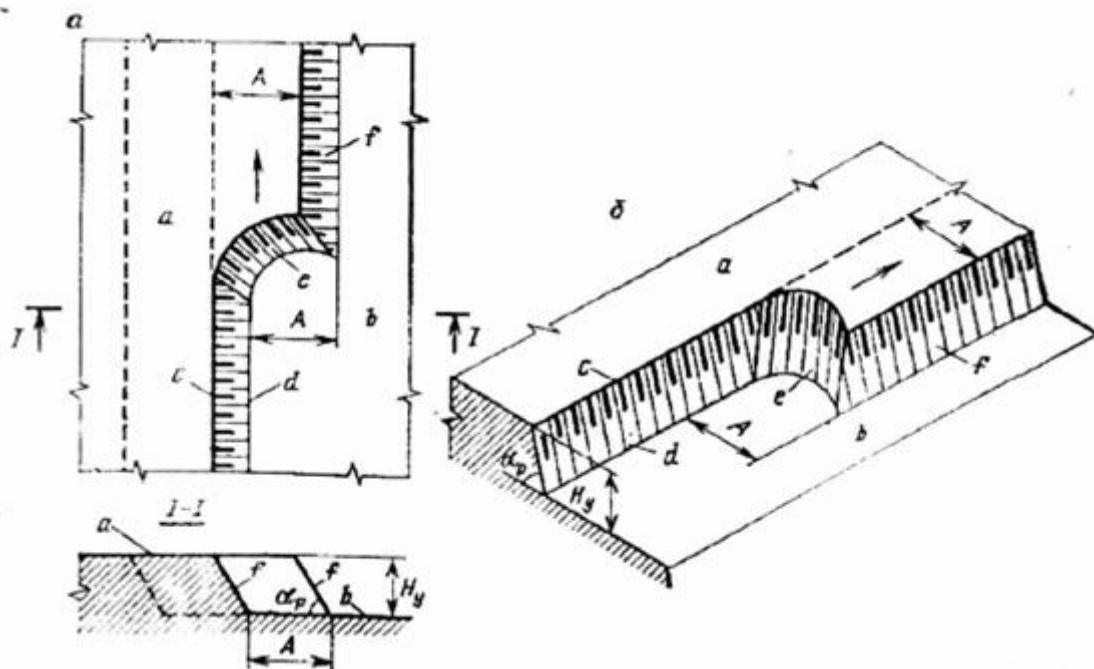
Opening of the mine, periodic processes in the mine, open pit mining, rocks, mine structure, technological parameters in the mine.

Introduction

Often the inner track is right at the same time. spiral and spit includes parts. So complicated conditions for opening separate horizons when building highways, quarry the efficiency of transport work and the development of a rational system application improves. The inner track is a direct continuation of the outer track. Such mixed track is usually used for opening in deep quarries: several outer horizons are opened using the outer track. and to the lower horizons of the quarry, an internal track is carried out. The deepening of the internal capital trenches route is his. It is determined by the average size of the curve and the actual length. The quarry is very deep and noticeable on the normal track in the development of mines with length, and mining

condition- length in the relatively small size of the mines, especially the quarry on a large slope, the dimensions of which are not large along the length is used. Opening the ring track with internal trenches they create. if a motor vehicle is used and the probability in railway transport. Spiral track agar ring or the ore location of the dead-end tracks, the boards transportation required transport feature, career transport if it is not possible due to the conditions of the effectiveness of his work, or build a rational society. Rebuild the railways on the spiral track. It is very difficult to build and therefore it is stationary in this case need Periodic resurfacing of highways in automobile transport construction is possible. In general, the entire complex of open-pit mining works is

connected to each other the following main stages of production related includes:


- 1) the quarry is intended for mining capital works preparation of the part;
- 2) drying of the mine and possible coming from the surface barrier from waters;
- 3) mining - capital works;
- 4) mining operations;
- 5) reclamation after the completion of mining operations

The part of the mine where mining capital works are carried out when preparing - to create conditions for carrying out mining capital works, i.e. deforestation, dredging of ponds, rivers and tributaries moving away from the quarry area, draining swamps, building and demolition of structures, highways and railways, etc grounding, as well as power lines and telephone connections security works are carried out. Safe work in the open pit mining area. In order to create conditions, drying works are carried out in the mine. There are the following types of drying:

- drying of the surface of the quarry area;
- protection of the mine from surface water;
- preliminary drying of the mine;
- current drying of the mine.

The surface part of the mine. i.e. drying and top of mine remove water from the part. usually a drying drainage canvas (ditch) is carried out with the help of . In order to protect the quarry (mine) from surface water (rainwater, snowmelt water and adjacent water waters coming from reservoirs) where mining works are carried out drainage ditches are laid outside the area contour. Preliminary drying of the mine - before the start of mining operations will be held. For this purpose, underground drainage ditches are laid in the mine or wells that lower the water level are drilled in the mine. Current or operational drying - with mining which is carried out at the same time and water from the mined area consists of exclusion. Loss of water coming to the quarry in a combined method, that is, using open and underground water removal is done. In the first case, water to the water collector collected and

pumped to the surface. in the second case while. through special wells is collected in underground drainage basins and drainage rises to the surface along the mine shaft. Mining capital works. The main purpose of mining-capital works is mining is to open and consists of capital and cutting trenches. Mining - vehicles during the construction of the quarry is to ensure that it reaches the mineral. Capital Moat is a working horizon opening service open pit slope. ground vehicles ensures that it reaches the mine from the surface of the earth. A cutting trench is a horizontal open pit mine that is useful creating a working face to mine a mineral or overburden will give. Mining operations - minerals should ensure extraction with minimum costs. The majority in most cases during the extraction of minerals. The scope of work corresponds to the opening work and it is an open pit mine it is the most important aspect of their activity. Mining - mineral coating and flour separation of mixed rocks, as well as their displacement and including placement in tumors. Mining works - in the specified volume. with the required quality and includes mining and transportation operations with minimal loss takes. Mining includes the following steps: useful excavation-loading, transporting, stacking or unloading of fossils. Open pit mining and mining, covering and describes a specific procedure for moving mixed genders. Planned development of rocks and rational use of devices. Often a quarry area for separate layers divided into horizontal layers. Rock layers consecutively from top to bottom, regardless of the direction of plasticization they do. The probable number of layers is the depth of the quarry in the plan and depending on the size. The strength of the layers according to the depth of the quarry may be different. When layers are processed simultaneously belts are formed. The number of arches according to the bed in the profile of the quarry area load carrying capacity, its angle of descent, development of rocks complexity, means of pickup and drop-off used depends.

Picture 1. A parametric scheme for determining mine design and mining productivity

They work with a single belt with a very small power bearing; where the vertical force is $mv < 2 \cdot K3$ m, and the horizontal bearing is the same. development with bucket excavators is not efficient, horizontal and fresh in sloping and large beds with capacity $mg < 20^40$ Cutting the belt is not only the mineral lying above complete extraction from the horizon, but also by mixed rocks due to additional displacement. The mineral has a small capacity ($mv=4 \cdot K20$ m) from horizontal beds of normal height it is made with a belt and inclined and large beds ($mg = 20 ^ 40$ m) the section of the next belt lies above it becomes possible after taking a bearing on the horizon. Medium the carrying capacity of the quarry ($mv= 15 \cdot 40$ m. $mg = 5CH-120$ m) One profile can be developed simultaneously with two belts. Power bearing ($mv>2(K40$ m. $mg>80-450$ m) three and more develop with more arches or smaller arches. Sometimes the rocks are developed on slopes and slopes depending on the layer, the slope has different strength (depending on the strength of the layers). carried with layers (belts). Separate the layers in a row designed in advance. It rarely works from the center of the quarry site to its boundaries they do with large (more than $25-30^\circ$) layers. It is located in solid arrays under the given conditions providing

working slopes of much larger quarry boards and allows to reduce the volumes of purchase works. However opening horizons and transportation of ore mass in such a mine becomes much more difficult. The strip is one of the most important elements of open welding. The height of the arch is reasonable if: mining safety, construction at a high level release the minimum amount of productive work. Reception and opening works the annual amount to be paid and the minimum expenses for them. Belt height directly affects overall career performance indicates: the quality of the mined mineral; forward displacement speed; mine the pace of work deepening and, accordingly, career development output capacity: duration of quarry construction; mining capital works volume: previous works. total length of roads inside the quarry; worker and the slope angle of the free-standing planks. The reasonable height of the arches depends on some factors irreplaceable; from the factors listed above based on the combined effect of certain natural conditions and the worker should be chosen taking into account the possibility of opening horizons. Analytical methods for determining the belt height of these factors does not take into account everything. Mining operations safety is the

main requirement. In the development of horizontal and inclined beds, bed and the strength of cover rocks is usually the height and number of arches predetermines. Horizontal and inclined plates alternate. The height of the arch is determined by the individual plates and the strength between them depending on the underlying loose rocks. mineral quality determined taking into account the statute. The strength of the slope is crucial important. In such rocks, according to safety rules, a belt height does not exceed the maximum height of the excavator need. Often stone and on steep and large slopes with semi-rocky rocks. The height of the tape is mainly an indicator of technological processes and is useful loss of minerals, necessary development of the quarry determined by the possibilities and conditions of opening work horizons. Preparation of stone and blasted rock. The cost of transportation increases the height of the belt reduced by excavating blasted rocks the minimum costs correspond to the height of the arch up to 15 - 20 m. At the same time, according to the rules of technical use (TFQ) arch height, overturning height in rock and semi-rock rocks provided that the following. excavator max should not be more than 1.5 times the excavation height: mining in two-row blasting - maximum excavation of the excavator height. and in multi-row blasting - one and a half digging equal to the maximum height. A blast from such overturners prevent the formation of "tails" during the excavation process additional measures should be taken. Simple and in increased VV consumption and oblique drilling of pits. I and II cracks when the erupted rocks are scattered with the permission of Davkontekhnazort bodies in category rocks roof height $Nu > 1.5 Nch.max$ is allowed. The speed of the trench is equal to the height of the belt inversely proportional. This is the rate of mining depending on the tempo. The greater the height of the belt, the greater the career This is the potential of the mineral's production capacity. This rule is especially important in the first period of career important. At the same time, the required size of the opening work is the working belts reduce the number of working boards of the

quarry and increase the slope angle. As a result, the height of the belt decreases. In this too the required drift rate and the length of the receiving front are reduced. Quarry in the open exploitation of mineral deposits during the entire period of construction and use prevent deformation and durability of belts provision is very important. Among the many factors that determine the strength of the slope. A group of geological factors is decisive content.

Conclusion

Mine structure and properties of rocks. They are deformations of the array conditions. selection of slope stability calculation schemes. the nature of anti-deformation measures and calculation parameters defines the dimensions. Mining geological coordination composition from the group of hydrogeological factors (carbonate cracks igneous rocks. as a result of swelling of clay rocks, etc.) and the influence of underground water, which changes its state of strength is the main one; under the influence of hydrostatic and hydrodynamic forces filtration failure on slopes may occur (leakage and suffocation). Contact zone and structural fault hydration deformation. The third group consists of technological factors. Indicators of opening of solders. Mining to the career plan geological condition and serviceability of the array intensity of flow development and ventilation of cotton gins. determines the development of deformation processes (cutting and breaking contacts \ etc.). Open mining Deformation and geological work is carried out at high shear rates. There is no time to develop stages. to the slope of these working belts. This allows you to reach a very large angle. Quarry boards are convex, convex and flat in plan can have boMaxes of the form Other things being equal. Slopes with a curved shape in plan are more than flat strength improves. Blasting is the origin of the seismic effect, the slope of the belt don't crack the front line and put it on low power, and the belt itself was not strong leads to the formation and development of the surface.

References

1. Karamov, Alisher, et al. "IN MINING ENTERPRISES RESEARCH ON THE STUDY OF

GEOTECHNOLOGICAL PROCESSES." International Bulletin of Engineering and Technology 3.5 (2023): 120-124.

2. Jumabayeva, G., B. Allanazarov, and A. Joldasbayeva. "STAGES OF OPEN PIT MINING. MINING METHODS AND THEIR PROCESSES." Science and innovation 2.A1 (2023): 236-240.

3. Allanazarov, Bayrambay. "GEODETIC DIMENSIONING STUDIES AND POINT-DIMENSION LOCATION COORDINATE SCHEME CREATION PROCESSES." Евразийский журнал академических исследований 3.4 Part 2 (2023): 21-25.

4. Yeshmuratova, A., et al. "MINE BLASTING PROCESSES OPTIMIZATION STAGES OF DIGITAL TECHNOLOGY OF DETONATORS." Scienceweb academic papers collection.-2023 (2023).

5. Yeshmuratova, A., and N. Amanbaev. "Ensuring Computer Data and Management System Security." International Bulletin of Applied Science and Technology 3.4 (2023): 282-287.

6. Yeshmuratova, Amangul. "TECHNOLOGICAL METHODS OF ENSURING INFORMATION SECURITY IN TECHNICAL SYSTEMS." Евразийский журнал академических исследований 3.4 (2023): 188-192.

7. Джаксымуратов, К. М., et al. "ИСПОЛЬЗОВАНИЕ ПРЕСНЫХ ПОДЗЕМНЫХ ВОД МЕСТОРОЖДЕНИЯ КЕГЕЙЛИ." Экономика и социум 12-1 (91) (2021): 975-980.

8. Matjanov, Aman. "SCIENTIFIC RESEARCH OF THE LIFESTYLE OF THE PEOPLE EVACUATED IN KARAKALPAKSTAN." Modern Science and Research 2.10 (2023): 771-775.

9. Aman, Matjanov. "Traditional Transport among the Peoples of the Aral Region (1800-1873)." Res Militaris 13.1 (2023): 2985-2988.

10. Матжанов, Аман Жарылкапович. "Транспортные проблемы Каракалпакстана в 1920-1930 годы." Бюллентень науки и практики 7.6 (2021): 509-517.

11. Хайруллоев, Шахзод, and Мухаммедали Сметуллаев. "ПЕРЕРАБОТКА КВАРЦЕВОЙ ПЫЛИ ДЛЯ УМЕНЬШЕНИЕ КОНЦЕНТРАЦИИ ПЫЛИ ПРИ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ ОТКРЫТЫМ СПОСОБОМ." Interpretation and researches (2024).

12. Суйунов, Аброр Салохиддинович, and Учкунжон Мардонович Мирзаев. "ОСОБЕННОСТИ ВЛИЯНИЕ НА ОКРУЖАЮЩУЮ СРЕДУ ОТКРЫТЫХ ГОРНЫХ РАБОТ FEATURES ENVIRONMENTAL IMPACT OF OPEN-PIT MINING." Scientific Impulse 1.8 (2023): 9-12.

13. Мислибаев, Илхом Туйчибаевич, et al. "Уменьшение пылегазового загрязнения атмосферы при производстве массовых взрывов на карьерах." Известия вузов. Горный журнал 2 (2017): 39-43.

14. Заиров, Шерзод Шарипович, and Муборак Жабборовна Норматова. "Разработка конструкции и параметров скважинных зарядов взрывчатых веществ при контурном взрывании для получения устойчивых откосов уступов." Ўзбекистонда 102868.

15. Заиров, Ш. Ш., М. Ж. Норматова, and З. С. Шарипов. "Расчет параметров пылегазового загрязнения атмосферы при производстве массовых взрывов на карьерах." Горный вестник Узбекистана 1 (2017): 33-35.

16. Заиров, Ш. Ш., et al. "Исследование влияния забойки скважинного заряда на эффективность разрушения и пылеподавления." ТОШКЕНТ-2021 (2016): 59.

17. Сайдова, Л. Ш., М. Норматова, and М. Равшанова. "АНАЛИЗ УПРАВЛЕНИЯ ТРАНСПОРТНЫМИ ПОТОКАМИ В РАЗЛИЧНЫХ ГОРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЯХ." Ўзбекистонда ОЛИМЛАР АХБОРОТНОМАСИ.

18. Норматова, Муборак Жабборовна, and Самандар Шодмонович Абруйев. "КАРЬЕРЛАРДА ОММАВИЙ ПОРТЛАТИШЛАРДА ЧАНГ-ГАЗ ҲОСИЛ БҮЛИШИНИ КАМАЙТИРИШ." Innovative Development in Educational Activities 2.8 (2023): 425-428.

19. Заиров, Ш. Ш., et al. "КАРЬЕРЛАРДА ПОРТЛАТИШ ИШЛАРИНИ ОЛИБ БОРИШДА ЧАНГ-ГАЗ АЖРАЛИБ ЧИҚИШИНИ ПАСАЙТИРИШ УСУЛИНИ ИШЛАБ ЧИҚИШ." Journal of Advances in Engineering Technology 2 (2022): 22-25.

20. Заиров, Ш. Ш., М. Ж. Норматова, and Ш. З. Худойназаров. "ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЫЛЕПОДАВЛЕНИЯ ПРИ МАССОВЫХ ВЗРЫВАХ НА КАРЬЕРАХ." Экономика и социум 3-1 (82) (2021): 556-559.