

Application Of Functional Analysis Methods To Find Solutions Of Non-Linear Equations

Turakulov Kh. Sh.

PhD

Kokan State Pedagogical Institute

ABSTRACT

The different expressions of nonlinearity require a separate approach to the analysis of each nonlinear problem, the application of methods for finding its solution, and the practical interpretation of the obtained results.

Keywords:

Quasi-linear, differential equation, boundary and initial conditions, Green's function, nonlinear integral equation, function space, compressive reflection principle, sufficiency condition.

Linear functional problems have been studied for a long time, and now it can be said that the theoretical and practical foundations of their analysis and finding solutions are almost completely created. Equations and inequalities involving an unknown function or its derivative are nonlinear in many cases, providing an opportunity to adequately represent the models of the process and objects being studied [1-8].

$\{x_1, x_2, \dots, x_n, \dots\} = \{x_i\}_{i=1}^{\infty} \subset X$ fundamental, that is $\lim_{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \|x_n - x_m\|_X = 0$ there is a sequence that satisfies

the condition when approaching an element, such a normalized space is called a fully normalized space or Banach space [9].

Consider the following linear ordinary differential equation

$$Lu = a_0(x) \frac{d^n u}{dx^n} + a_1(x) \frac{d^{n-1} u}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{du}{dx} + a_n(x)u(x) = f(x), \quad (1)$$

here $a_i(x), i = 1, \dots, n$ representing the coefficients and the right-hand side of the equation $f(x)$ function $D \subset R$ is continuous in the field. This equation

$$Lu = a_0(x) \frac{d^n u}{dx^n} + a_1(x) \frac{d^{n-1} u}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{du}{dx} + a_n(x)u(x) = 0 \quad (2)$$

is called a homogeneous equation corresponding to the given equation (1).

In most cases, the particular solution of equation (1) is the Green's function $G(x, \xi)$ through

$$u(x) = \int_a^b G(x, \xi) f(\xi) d\xi, \quad (5)$$

and the general solution

$$u(x) = \int_a^b G(x, \xi) f(\xi) d\xi + A_1 u_1(x) + A_2 u_2(x) + \dots + A_n u_n(x), \quad (6)$$

is represented here $u_1(x), u_2(x), \dots, u_n(x)$ functions (2) are linearly independent solutions of the equation, $A_k, (k=1,2,\dots,n)$; the constant coefficients are found from the initial or boundary conditions.

Green's function (2) is not linearly related to Eq can be represented by solutions

$$G(x, \xi) = \frac{1}{f(\xi)} [c_1(x)u_1(x) + c_2(x)u_2(x) + \dots + c_n(x)u_n(x)]U(x - \xi),$$

Had $c_k(x), (k=1,2,\dots,n)$; (4) solution of the system of equations, function $U(x - \xi)$ this

$$U(x - \xi) = \begin{cases} 0, \text{ a gap } x < \xi \text{ бўлса}; \\ 1, \text{ a gap } x > \xi \text{ бўлса}. \end{cases}$$

satisfies the condition.

If according to the initial or boundary conditions in expression (6). $A_k, (k=1,2,\dots,n)$; if the coefficients are equal to zero, then the general solution of the equation (1) is expressed in the form (5) [1,10]. This conclusion is used in the analysis of problems

For example:

$$L_{n,0}u = a_0(x) \frac{d^n u}{dx^n} + a_1(x) \frac{d^{n-1} u}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{du}{dx} = f_1(x, u(x)); \quad (7)$$

$$L_{n,m}u = a_0(x) \frac{d^n u}{dx^n} + a_1(x) \frac{d^{n-1} u}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{d^{n-m-1} u}{dx^{n-m-1}} = f_2(x, u(x), u^{(1)}(x), u^{(2)}(x), \dots, u^{(m)}(x)); \quad (8)$$

1) equations are examples of quasi-linear differential equations of practical importance.

2) If the homogeneous equations obtained by setting the linear parts of these equations to zero do not have non-zero solutions that satisfy the initial and boundary conditions, then finding their solutions can be reduced to finding solutions of nonlinear integral and integro-differential equations using appropriate Green's functions [10,11]:

3) 1) From equation (7) above

$$u(x) = \int_a^b G_{n,0}(x, \xi) f_1(\xi, u(\xi)) d\xi; \quad (9)$$

4) Next from equation (8).

related to the solution of quasi-linear differential equations. Differential equations that are linear with respect to their higher-order derivative or derivatives are called quasilinear [1].

5)

$$u(x) = \int_a^b G_{n,m}(x, \xi) f_2(\xi, u(\xi), u^{(1)}(\xi), u^{(2)}(\xi), \dots, u^{(m)}(\xi)) d\xi; \quad (10)$$

it is possible to pass to the corresponding integro-differential equations such as

This

$$u(x) = Au(x) \quad (11)$$

satisfying Eq $[a, b] = D \subset R$ unknown identified in the field $u(x) \in X$ be required to find a function, where the space of functions is related to the problem statement $u(x)$ determined based on the properties of the function.

According to the principle of compression reflection \exists normalized full space self-reflection

$A: X \rightarrow X$ to be $\forall u_1, u_2 \in X$ for functions $0 < \alpha < 1$ the following relation satisfying the condition

$$\|Au_1(x) - Au_2(x)\|_X < \alpha \|u_1(x) - u_2(x)\|_X$$

if appropriate, equation (11) is unique $u_0(x) = Au_0(x)$ will have a solution. This solution is also called a fixed point of reflection [9].

Since the generated equation (9) is actually derived from equation (7) and the corresponding initial and boundary conditions, the function space to which the unknown function in this integral equation belongs is determined by the conditions associated with equation (7). Thus, the unknown function in equation (7).

$u(x) \in C^{(n-1)}[a, b] \subset C[a, b] \subset L_p[a, b]$ being this $\|L_p[a, b]\| \leq \|\cdot\|_{C[a, b]} \leq \|\cdot\|_{C^{(n-1)}[a, b]}$ attitude is appropriate.

In the derived equation (9).

$$B(\cdot) = \int_a^b G_{n,0}(x, \xi)(\cdot) d\xi$$

$$\text{ва } F_1(\cdot) = f_1(\xi, \cdot) \quad (12)$$

it can be expressed in operator form by making notations

$$u = BF_1u,$$

(13)

where B linear integral operator, F_1 – without a line. Then this is a superposition of operators A – by specifying the operator

$$u = BF_1u = Au \text{ ёки } u = Au$$

(14)

equalities are obtained. If $u(x) \in L_p[a, b]$ is a non-linear operator

$F_1: L_p[a, b] \rightarrow L_q[a, b]$ and the linear operator $B: L_q[a, b] \rightarrow L_p[a, b]$ is an operator consisting of their superposition $A: L_p[a, b] \rightarrow L_p[a, b]$ will be. After that, the condition that the operator has compressive reflection property is found.

References

1. Dzhamalov, Sirojiddin Z., M. Aliyev, and Khamidullo Sh Turakulov. "On a linear inverse problem for the three-

dimensional Tricomi equation with nonlocal boundary conditions of periodic type in a prismatic unbounded domain." *Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics* 42 (2022): 1-12.

2. Dzhamalov, S. Z., R. R. Ashurov, and Kh Sh Turakulov. "On the semi-nonlocal boundary value problem for three-dimensional equation of Tricomi in unbounded prismatic domain." *Bull. KRASES: Phys. Math. Sci* 35.2 (2021): 8-16.
3. Dzhamalov, Sirojiddin, Khamidullo Turakulov, and Ravshan Kenjaev. "On a semi-periodic boundary value problem for the three-dimensional Tricomi equation in an unbounded parallelepiped." *AIP Conference Proceedings*. Vol. 2781. No. 1. AIP Publishing, 2023.
4. Dzhamalov, S. Z., R. R. Ashurov, and Kh Sh Turakulov. "The linear inverse problem for the three-dimensional tricomi equation in a prismatic unbounded domain." *Lobachevskii Journal of Mathematics* 42.15 (2021): 3606-3615.
5. Safarov, T. S., et al. "Efficiency medical information systems in diagnostics." *ISI Theoretical & Applied Science*, 11 (79) (2019): 301-305.
6. Джамалов, Сирохиддин Зухриддинович, Равшан Раджабович Ашурев, and Хамидулло Шамсиддинович Туракулов. "Об одной полунелокальной краевой задаче для трехмерного уравнения Трикоми неограниченной призматической области." *Вестник КРАУНЦ. Физико-математические науки* 35.2 (2021): 8-16.
7. Safarov, T. S., et al. "Эффективность медицинские информационные системы в диагностике." *Theoretical & Applied Science* 11 (2019): 301-305.
8. Dzhamalov, S. Z., Kh Sh Turakulov, and M. A. Sultanov. "On a Nonlocal Boundary Value Problem for a Three-dimensional Tricomi Equation in a Prismatic

Unbounded Domain." *Lobachevskii Journal of Mathematics* 43.11 (2022): 3104-3111.

9. Акбаров, Д. Е., and Х. Ш. Туракулов. "Приложение принципа сжимающего отображения для исследования решения нелинейных функциональных уравнений в банаховых пространствах." *Вісник КПІ. Серія Приладобудування: збірник наукових праць*, 2020, *Bun.* 59 (1) (2020).

10. Dzhamalov, Sirojiddin, Khamidullo Turakulov, and Ravshan Kenjaev. "On a semi-periodic boundary value problem for the three-dimensional Tricomi equation in an unbounded parallelepiped." *AIP Conference Proceedings*. Vol. 2781. No. 1. AIP Publishing, 2023.

11. Джамалов, С. З., and Х. Ш. Туракулов. "ОБ ОДНОЙ ПОЛУНЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ МОДЕЛЬНОГО УРАВНЕНИЯ ТРИКОМИ В ПРИЗМАТИЧЕСКОЙ НЕОГРАНИЧЕННОЙ ОБЛАСТИ." *ИННОВАЦИИ В НЕФТАГАЗОВОЙ ОТРАСЛИ* 2.2 (2021).

12. Джамалов, С. З., Р. Р. Ашурев, and Х. Ш. Туракулов. "Об одной обратной задаче для трехмерного уравнения Трикоми с нелокальными краевыми условиями периодического типа в неограниченной призматической области." *Дифференциальные уравнения, математическое моделирование и вычислительные алгоритмы*. 2021.

13. Dzhamalov, S. Z., R. R. Ashurov, and Kh Sh Turakulov. "On one linear inverse problem for a mixed type equation of the first kind in a unbounded prismatic domain." *Марчуковские научные чтения* 1 (2021): 136.

14. Джамалов, С. З., and Х. Ш. Туракулов. "ОБ ОДНОЙ НЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ ТРЕХМЕРНОГО УРАВНЕНИЯ ЧАПЛЫГИНА В ПРИЗМАТИЧЕСКОЙ НЕОГРАНИЧЕННОЙ

ОБЛАСТИ." УФИМСКАЯ ОСЕННЯЯ МАТЕМАТИЧЕСКАЯ ШКОЛА-2021. 2021.

15. Sobirkhonovna, Mahmudova Madinakhon. "Professional Training Of Future Speakers In The Period Of Independent Study." *Archive of Conferences*. Vol. 10. No. 1. 2020.

16. Maxmudova, Madinaxon, and Babayeva Azizabonu. "Ruhiy Rivojlanishi Sustlashgan Bolalar Lug'atining Psixik Rivojlanish Bilan Bog'lqliqligi." *Conference Zone*. 2022.

17. Sobirkhonovna, Mahmudova Madina. "THE IMPORTANCE OF THE USE OF PROJECT TECHNOLOGY IN THE DEVELOPMENT OF PROFESSIONAL COMPETENCIES OF STUDENTS IN THE PROCESS OF INDEPENDENT LEARNING." *EURASIAN EDUCATION, SCIENCE AND INNOVATION* 29 (2020).

18. Sobirkhanovna, Makhmudova Madinakhan, and Vakhobova Munirakhan Sadirdinovna. "PECULIARITIES OF SPEECH OF CHILDREN WITH MOTOR ALALIA SPEECH DISORDER." *Open Access Repository* 4.3 (2023): 851-858.

19. Sobirkhanovna, Makhmudova Madinakhan, and Akhmedova Vazirakhan. "EFFECTIVE ORGANIZATION OF CORRECTIONAL-LOGOPEDIC WORK IN CHILDREN WITH CEREBRAL PALSY." *Open Access Repository* 4.3 (2023): 134-141.

20. Sobirkhanovna, Makhmudova Madinakhon. "SOCIO-PEDAGOGICAL FOUNDATIONS OF INCREASING THE EFFECTIVENESS OF INDEPENDENT EDUCATION OF STUDENTS IN HIGHER EDUCATION." *International Journal of Early Childhood Special Education* 14.6 (2022).

21. Dildora, Madinahan Makhmudova Musayeva. "THEORETICAL SIGNIFICANCE OF THE DEVELOPMENT OF PROFESSIONAL COMPETENCE OF THE EDUCATOR OF A SPECIAL EDUCATIONAL INSTITUTION ON THE BASIS OF NATIONAL

VALUES." *Confrencea* 4.04 (2023): 170-178.

22. Махмудова, Мадинахон Махмудов Хуршид. "Мактабгача тарбия ёшидаги болаларни ёзиш ва ўқиш кўникмаларини эгаллашга тайёрлаш." *Confrencea* 4.04 (2023): 187-192.

23. Махмудова, Мадинахон Махмудов Хуршид. "Нутқи тўлиқ ривожланмаган мактабгача ёшдаги болаларни ёзма нутққа тайёргарлигини шакллантириш муаммолари." *Confrencea* 4.04 (2023): 179-186.

24. Sobirkhonovna, Makhmudova Madinakhan, and Goyipova Nodira. "Theoretical aspects of the development of academic mobility of future speech therapists in dual education." *Asian Journal of Multidimensional Research* 11.12 (2022): 148-154.

25. Sobirxonovna, Maxmudova Madinaxon. "GENEALOGY OF SCHOLARS AFTER THE 15TH CENTURY IN THE STUDY OF SPEECH DEFICIT." *Confrencea* 3.03 (2023): 21-25.

26. Sobirxonovna, Maxmudova Madinaxon. "The genealogy of thoughts of the manifestations of ancient antiquity in the study of the speech deficit of dislaliya." *Confrencea* 3.03 (2023): 17-20.

27. Feruza, Teshabaeva, Mahmudova Madina, and Yuldasheva Dilbar. "The essence of inclusive education in developed countries." *European Journal of Research and Reflection in Educational Sciences* Vol 8.1 (2020).

28. Sobirkhonovna, Mahmudova Madina. "DEVELOPMENT OF PROFESSIONAL COMPETENCIES OF FUTURE SPEECH THERAPISTS IN THE PROCESS OF STUDYING INDEPENDENTLY." *European Journal of Research and Reflection in Educational Sciences* 8.8 (2020): 155-158.

29. Maxmudova, M., and O. Zikirova. "Speech therapist and family collaboration in overcoming severe speech deficits." *European Scholar Journal* 2.10 (2021): 72-73.