Volume 24| September, 2023

ISSN: 2795-7365

Eurasian
Scientific

Herald Numerical Algorithm for A

Computational Experiment for An
- Applied Optimization Problem in
Systems with Distributed

Parameters

Suvonov 0. O.

Associate professor of navoi state pedagogical institute, candidate
of technical sciences. Uzbekistan Navoi. olimsuvonov54@umail.uz

—
@)
<
@
-
(9p]
m
<

The paper considers the optimization problem that takes place in the optimal control of
oil production, where the state of the system is described by equations of the elliptic
type. A two-stage algorithm for solving the problem with the proof of theorems on
qualitative estimates of iterative processes is presented.
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Introduction

The problem statement of the modern theory
of control of systems with distributed
parameters has great potential and is
associated with a real physical basis, and the
role of mathematical modeling is very large in
this [1,2].

The practical application of the problems of
analysis and synthesis of systems with
distributed parameters is directly related to the
applied problems of development and
additional development of mineral deposits (in
particular, oil and gas fields). At the
development stage of these fields, the problems
of analysis and synthesis are solved in order to
determine the qualitative and quantitative
indicators of development associated with
hydrostatic and hydrodynamic processes. At
the same time, the proposed mathematical
model and the created numerical algorithm for
the computational experiment are a useful
mathematical research tool [3].

Oil (gas) reservoirs and wells located in it
(production and injection) in a single
hydrodynamic connection is a multi-connected
system with distributed parameters. The
conditions of the productive formation and the
wells located in it are constantly changing in
time, as an object of control. Thus, the
“reservoir-well” system can be represented as
a technical control system.

The state of the system under consideration is
described by a partial differential equation, and
the parameters change in space and time.

The considered problem of optimal control of
systems with distributed parameters is
described by equations of elliptic type, and
linear restrictions are placed on the state
functions.

Formulation of the problem. Let Q bounded
connected area n- dimensional (n=2,3) space

R with border I, x=(x,,..,x,)- point in this

space.
It is required to find the minimum of
the functional
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2
| =] %b(x)(ap(x)} +a()p () [dx-2[cx)p(x)dx (1)

OX;

Qli=1

under the conditions that

OX:

p(X) =0, xe I'; p(x) = f(x),
g(x) >d(x), xe Q.

Such a problem arises in the optimization
of oil production. Wherein p(x) - reservoir

i=1 8Xi

pressure, q(x) - fluid flow rate, functional (1) -

internal energy of the oil reservoir [1,4,5].

A special case of this problem is the
minimization of the functional (1) under the
conditions

p(x)=0,xe I, p(x) > f(x), xeQ.

(4)

finds application in the theory of elasticity and
underground hydraulics. Examples include the
problem of the equilibrium of a membrane [1]
and the problem with a free boundary
associated with the flow of a liquid through
porous media [3].

The existence of a solution to problem (1)
- (4) necessary and sufficient optimality
conditions have been studied in many works,
for example, in [4-8].

Carrying out computational experiments
is directly related to the creation of numerical
algorithms and a set of programs for the
implementation on a computer of the problems
of analysis and synthesis to be solved.

Let in space R" a grid with a step h; oni -
th coordinate (i=1, 2, ...,n). We call a grid node
internal if it belongs to the region Q=Qu I

along with all neighboring nodes. The set of
such nodes will be denoted S. We call a grid
node boundary if it belongs to 2, but at least
one of its nodes does not belong Q. We denote
the set of boundary nodes y . Let under given

control q(x),xeS, state of the system
p(x), xe S Uy, can be found from the solution

of a system of linear algebraic equations, which
is a finite-difference analogue of equation (2)

Q

n o { ap(x)}
2 —| b(x) —a(x)p(x) = g(x), xeQ,

(2)

(3)

S (bp ), —a(x) p (x) = q(x), X S,

i=1

(5)

provided that on the border of the region
p(x) =0, xey.

(6)

Here indicated
1
mmm=ﬁ{pu+hxo—pwﬂ,
i
where fi - unit vector with 1 in 7 - th position,

1
mxm=ﬂ{puy—mX—maﬂ,

1
(00, =b(x-+ /)P, (4.

1 1 1
(bpy. )z = [b(x +—ht;)p, (%) =b(x = —hf;) Py (X)}-
[ h 2 1 2 i

We pose the problem of determining the
state functions p(x),

satisfying (5), (6) and under the restrictions
p(x) = f(x), q(x) 2d(x),xe S,
(7)

minimizing the functional

. [i(mm>me+w«mp%m}—zz<xmpu>

xeSuy Li=1 xe$S
(8)

Here a, b, ¢, d, f - predefined functions,
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b(x)>v>0, a(x)>0, xeQ
(9)

In formula (8) and henceforth, we assume
that p(x) =0 at grid nodes in non-area Q.

In a finite-dimensional space H(S)

functions defined in nodes xS, we introduce
the norm and the scalar product by the
formulas

1

2
ol =] Dop%0 | (p.8) =D p(x)8().

XeS xe$S
Outside S functions from H(S) set equal

to zero.
In space H(S) define the operator Lp:

n

Lp(x) == (bp, ) a(x)p(x).

i=1 ‘

This is a self-adjoint operator, i.e.
(Lu,9)=(u,L3).

Since under conditions (6) the identity [2]

-2 (p)p = X (b, )Py

Xe$S ! xeSuy

then the quadratic part of the functional (8) can
be written as (Lp,p). Under conditions (9) and
taking into account the fact that p(x)=0

outside nodes S, the inequality is true [1]

(Lp,p) 2 vy| p|[. v, >0, (Lp, p),
therefore (Lp,p) - positive definite quadratic
form.

Along with problem (5) - (8) (let's call it
problem 1), we will consider its special case
(problem II), when there is no lower restriction
on the function q(x) (and control (5) is

dropped from consideration and the problem is
reduced to minimizing functional (8) under the
conditions

p(x)=0,xey, p(x)= f(x),xeS.

Problem I is a difference analog of the
following variational problem.

The convergence of the solution of
difference problem 2 with a change in the grid
step to the solution of problem (1) - (4) is
substantiated in [9]. It is assumed that the
function f(x) quite smooth in Q and f(x)=0

at x e I" . With minor changes, these studies are

also applicable to a more general problem (1) -
(3).

In works [1, 10], to solve problem (1) -
(4), the methods of local variations and
gradient projection were used. In this article,
based on the use of properties characteristic of
objects described by elliptic type equations, an
effective algorithm for solving problem (5) - (8)
is constructed.

Without limitation, we will assume that in
the conditions (7) f(x)=0. This can be
achieved by replacing in problem (5) - (8) p on
p+f , where f(x)=f(x), xeS and
f(x)=0, xey and replacing ¢q on q-Lf.
Wherein ¢, d are replaced accordingly with
c-Lf and d-Lf. Taking into account this

remark and the notation introduced earlier, we
write problem (5) - (8) in the form

(L p, p) —2(c,p) = min
(10)
under conditions
Lp+q(x)=0, xe§S,
(11)

p(x) > 0,q(x) >d(x),xeS.
(12)

For the applicability of the proposed
algorithm, it is essential that condition (11),
(12) be satisfied.

Algorithm for solving the problem. The
algorithm given below is constructed according
to the scheme proposed in [11,12] for solving
optimal control problems in systems described
by elliptic-type equations with boundary
control and observation.

The algorithm wuses the following
properties of the operator L.

Properties 1. For any function
p,geH(S) and many AcS there are

functions p,,q,, satisfying equation (11) and

conditions
qa(X) =q(x), xe A, pp(x)=0,xeS/A.
Substantiation. Required  Features

Pa: U, can be found in the following way. We
solve the system of linear algebraic equations
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Lp, =—q(x), xe A under conditions

PA(x)=0,xeS\A (such a function exists and
is unique) [2], and we set q,(x) =q(x),x € A at
XeS\VA g,(x)=-Lp,,xeA.

Properties 2. Let the
p,ge H(S) satisfy equation (11).

Then.

a) q(x)<0, xe A, p(x)>0, xeS\A, then
p(x)>0,xeS;

b) if q(x)<0, xe A p(x)=0, xeS\A,
then q(x) >0, xe S\ A.

Substantiation. a) in that
Lp=-q(x)>0, xeA and p(x)>0, xeS\A
and p(x) >0, xe S; then it follows from the
maximum  principle for finite-difference
analogs of elliptic-type equations [2] that
q(x)<0,xe A b) in that
p(x)=0,xeS\A, p(x)>0,xe A (by property
2a),thenat xe S\ A,

functions

. b(x+£hi£i)p(x+hi£i)+
g =% — 2 ,
i:lhi 1
+b(x—5hi£i)p(x— )

those q(x) >0, xe S\ A.

The necessary sufficient optimality
conditions for problem (10) - (12) are as
follows. Functions po, q0 e H(S) satisfying
(11), (12) are solutions to problem (10) - (12)
if and only if there are functions y2 V0 e H(S),
such that the relations

Ly0 +v0(x) =0,
(13)

qo(x) + vo(x) +c¢(x) <0, yo(x) >0,
(14)

p°(x)[q°(x) v (x) + c(x)} =0,

yO(X)[qO(x) - d(x)J ~0,xeS.

This is the Kuhn-Tucker condition for the
considered problem of quadratic programming
[10].

The algorithm consists of two stages. At
the first stage, there are many grid nodes S +y

and features yO,VO, satisfying the system of

equations (13) and the conditions
y2(x) >0, vV (x) = —(c(x)+d(x)), xeS,

y2(x) =0, v?(x) < —(c(x) + d(x)), x e S\ S°.
(15)

At the second stage, there are many grid
nodes S+y and features pO, qo, satisfying the
system of equations (11) and the conditions

p°(0) >0, °(x) =d(x), xeS°,

p°(0) >0, ¢° () = —(c() +v°(x)), xeF’,

(16)
p°(x) =0, q°(%) < —(c(x) +v° (X)),

xeS|(s®uUFY),
Given that d(x)<0,xeS and applying

properties 2,b) on the set S\F°, we get

q’(x)20,d(x)<0xeS/(S°UFY), those
conditions (12) are satisfied. Conditions (15)
and (16) together coincide with conditions

(13), (14), therefore po, qO optimal solution of
problem (10) - (12).
Remark 1. Function y° e H(S), found at

the first stage of the procedure is the solution
of the following optimal control problem

Ly—-2(c+d,y) —> min, y(x) >0, xeS.

Indeed, conditions (13), (15) are
necessary and  sufficient = Kuhn-Tucker
conditions for such a quadratic programming
problem. Thus, the first stage of the algorithm
(if you put in it d(x)=0) solves the above
problem 2.

Remark 2. Function &° y°eH(9),
satisfying conditions (13). (15) are the solution
of the linear programming problem [10]
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(L,y) > max, Ly+93(x)=0, y(x)=0,
(x) <—(c(x)+d(x)), xeS, where 9(x)

any given function.

The first stage of the algorithm.

1. Let k=1, S¥ - empty set.

2. Let's find functions y* 9 eH(S),
satisfying the system of equations (13) and the
conditions
IE(x) = —(c(x) +d(x), xe S¥, y*(x)=0, xeS\S¥.

By property 1, such functions exist. To
determine them, it is necessary to solve the
system of linear algebraic equations

Ly* =c(x)+d(x), xeS*, under conditions

yk(x):O,XGS\Sk and put Bk(x)z—Lyk at

x € S\SX. Then what y'=v' =0.
3. Select a set of grid nodes DXcs \Sk, in

which the inequality
() > —(c(x) +d(x)), x e D¥.
4. If D" empty, we assume

sO=5% y0=y* 9°=9" and the first stage is
completed.

5. We believe s¥? =gy D, assign k
meaning k+1 and repeat steps 2-4.

As S- finite set and S'c S?c...c S, then
after a finite number of iterations the set D

will be empty, therefore, the first stage will be
completed in a finite number of steps.

Theorem 1. Variables y0,30 e H(S), we

find at the first stage of the procedure, satisfy
conditions (13), (15), and over the iterations of
the procedure, the inequalities

Y ) = yE(x), xe s, ) = 95 (x), xes\sk
(17)
Substantiation. Let us first prove
inequalities (17). These inequalities follow
from properties 2 when applied to the function

yk, 9 and take into account that
v =y (x) =0, xe S\ sk,
FH(x) = 9 (%) = (c(x) +d(x)), xeS¥,
I (x) = —(c(x) +d (X)) < F(x), x e SF L\ sk,
Condition (15) follows from the method
of constructing the functions %, y* and

inequality (17) and the fact that at the last

iteration of the first one the set D* empty.
The second stage of the algorithm.

1. Let k=1, F* - empty set.
2. Let's find functions pk,qk e H(S), satisfying
the system of equations (11) and the
conditions
g (0 =d(x), xes’,
0" () = —(c(x) +v° (X)), x e F*,

pk(x) =0,xeS\ (S0 V) Fk) By property 1, such
functions exist; to determine them, it is
necessary to solve the system of linear
algebraic equations

ka =—qk(x), XESO U Fk,

where qk(x) =d(x), xe s? in

qk (x) =—(c(x) + vo(x)),x c F* under conditions

pk(X)=O,X€S\(SOUFk), and then put

q“(x) = —Lp*, xe S\ (s° UF).

3. Define the set of grid nodes

N es \(S0 U Fk) in which the inequality

qk(x) > —(c(x) +v0(x)), xe NX,

4. If Nk empty, we assume

FO=F*, p°=p", q”=q"* and the second stage
is completed.

5. We believe F*"' = FF U NK, assign k
meaning k+1 and repeat the points
2 - 4. As 5S\s° of course and

F'cF2c..cS\SY then the second stage will
be completed in a finite number of iterations.

p’.q° € H(S),
found at the second stage of the procedure,
satisfy conditions (11), (16) and is a solution to
problem (10) - (12). By iterations of the
procedure, the relations

Theorem 2. Function

P (%) 2 p“(x), xS, g

(18)

k+1

(x)>g"(x), xe S\ (s’ U
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Substantiation. Applying property 2 to

functions pk, qk , constructed in paragraph 2 of
the algorithm, we obtain
P“(x)=0,xeS, g (x)>0d(x) <0xeS\(S° UFY)

Applying
k+1

property 2 to functions

k

p“" = p*, g - g* given that

k+1

pr(x)= pk(X)=0,XES\(SoquJrl

),
M0 =q (0 =d(x) xes°,

a0 = 9" (%) = =(c(x) + $° (), x e F",

k

k+1\F ,

g (%) = —(c(x) + $° (X)) < g (x), x e F

we obtain inequality (18).

Since at the last iteration of the second stage
the set is empty and (18) is satisfied, then
conditions (16) are also satisfied, which
together with (15) make up the system of
necessary and sufficient conditions for the
optimality of problem (10) - (12).

Conclusion.

It can be seen from the description of the
algorithm that at each iteration of the first and
second stages, it is necessary to solve a system
of linear algebraic equations of the form (1),
which is a difference analog of an elliptic
partial differential equation. Efficient
algorithms have been developed to solve such
systems [2].

The proposed algorithm, due to
monotonic convergence in all variables,
finiteness, and the possibility of separately
finding dual and direct variables, has an
advantage (in terms of computation time and
the amount of necessary RAM of computers
(computers)) over the known methods of
quadratic programming [10] and the method of
local variations [1,10] . The results of the
computational experiment of the numerical
implementation of the algorithm on test
examples were compared with the methods of
Beal and Hildert [10]. Calculations have shown
that when approximating the region (1 with a
grid with 500 nodes, the time for solving

problem (1) - (4) by the Beal, Hildreth method
and the proposed algorithm in the work was
17, 20, 5 minutes, respectively.

The algorithm is applicable only for a
special class of problems and allows solving
problems of large dimensions, which is very
important for the optimal control of objects
described by elliptic partial differential
equations.
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