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Introduction 
The problem statement of the modern theory 
of control of systems with distributed 
parameters has great potential and is 
associated with a real physical basis, and the 
role of mathematical modeling is very large in 
this [1,2]. 
The practical application of the problems of 
analysis and synthesis of systems with 
distributed parameters is directly related to the 
applied problems of development and 
additional development of mineral deposits (in 
particular, oil and gas fields). At the 
development stage of these fields, the problems 
of analysis and synthesis are solved in order to 
determine the qualitative and quantitative 
indicators of development associated with 
hydrostatic and hydrodynamic processes. At 
the same time, the proposed mathematical 
model and the created numerical algorithm for 
the computational experiment are a useful 
mathematical research tool [3]. 

Oil (gas) reservoirs and wells located in it 
(production and injection) in a single 
hydrodynamic connection is a multi-connected 
system with distributed parameters. The 
conditions of the productive formation and the 
wells located in it are constantly changing in 
time, as an object of control. Thus, the 
“reservoir-well” system can be represented as 
a technical control system. 
The state of the system under consideration is 
described by a partial differential equation, and 
the parameters change in space and time. 
The considered problem of optimal control of 
systems with distributed parameters is 
described by equations of elliptic type, and 
linear restrictions are placed on the state 
functions. 
Formulation of the problem.  Let   bounded 
connected area n- dimensional ( 2,3)n =  space 

Rn with border Г, 1( ,..., )nх х х= - point in this 

space.  
 It is required to find the minimum of 
the functional 
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( ) 0, ; ( ) ( ),

( ) ( ), .

p x x Г p x f x

q x d x x

=  

 
                               

(3) 

Such a problem arises in the optimization 
of oil production. Wherein  ( )p x  - reservoir 

pressure, ( )q x - fluid flow rate, functional (1) - 

internal energy of the oil reservoir [1,4,5]. 
 A special case of this problem is the 
minimization of the functional (1) under the 
conditions 
                             

( ) 0, , ( ) ( ),p x x Г p x f x x=    .                            

(4)  
finds application in the theory of elasticity and 
underground hydraulics. Examples include the 
problem of the equilibrium of a membrane [1] 
and the problem with a free boundary 
associated with the flow of a liquid through 
porous media [3]. 
 The existence of a solution to problem (1) 
- (4) necessary and sufficient optimality 
conditions have been studied in many works, 
for example, in [4-8]. 
 Carrying out computational experiments 
is directly related to the creation of numerical 
algorithms and a set of programs for the 
implementation on a computer of the problems 
of analysis and synthesis to be solved. 

Let in space Rn a grid with a step ih  on i – 

th coordinate ( 1, 2, ..., )i n= . We call a grid node 

internal if it belongs to the region Г =   

along with all neighboring nodes. The set of 
such nodes will be denoted S. We call a grid 
node boundary if it belongs to  , but at least 
one of its nodes does not belong  . We denote 
the set of boundary nodes  . Let under given 

control ( ),q x x S , state of the system 

( ), ,p x x S    can be found from the solution 

of a system of linear algebraic equations, which 
is a finite-difference analogue of equation (2) 

                          

1

( ) ( ) ( ) ( ),
n

xi xi

i

bp a x p x q x x S

=

 − =  ,                                                                

(5) 
provided that on the border of the region 

                                           ( ) 0, .p x x =                                                                          

(6) 
Here indicated 

 
1

( ) ( ) ( ) ,
xi i i

i

p x p x h p x
h

= + −  

where i  - unit vector with 1 in i - th position,  

                
1

( ) ( ) ( ) ,
xi i i

i

p x p x p x h
h

= − −  

               
1

( ) ( ) ( ),
2i i

x i i x
bp b x h p x= +  

           

1 1 1
( ) ( ) ( ) ( ) ( ) .

2 2i i
x x i i x i i xi i

i

bp b x h p x b x h p x
h

= + − −
 
  

 
We pose the problem of determining the 

state functions ( )p x , 

satisfying (5), (6) and under the restrictions 
                           

( ) ( ), ( ) ( ),p x f x q x d x x S   ,                                                                       

(7) 
minimizing the functional 

          

2

1

( ) ( ) ( ) ( ) 2 ( ) ( )
i i

n

x x

x S i x S

I bp p x a x p x c x p x

  = 

=   + − 
 
 
 

.                                            (8) 
 

 Here , , , ,a b c d f - predefined functions, 
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( ) 0, ( ) 0,b x v a x x                                                                        

(9) 
In formula (8) and henceforth, we assume 

that ( ) 0p x =  at grid nodes in non-area  . 

In a finite-dimensional space ( )H S  

functions defined in nodes x S , we introduce 
the norm and the scalar product by the 
formulas  

1

2
2
( )

x S

p p x



=

 
 
  
 , ( , ) ( ) ( )

x S

p p x x 



= . 

Outside S functions from ( )H S  set equal 

to zero. 
In space ( )H S  define the operator Lp : 

( ) ( ) ( ) ( )

1

.
i х i

x

n

Lp x bp a x p x

i

= −

=

  

This is a self-adjoint operator, i.e. 

( ) ( ), ,Lu u L = . 

 Since under conditions (6) the identity [2] 

( ) ( ) ,
i i ii

x x xx
x S x S

bp p b p p

  

−  =   

then the quadratic part of the functional (8) can 
be written as (Lp,p). Under conditions (9) and 
taking into account the fact that ( ) 0p x =  

outside nodes S, the inequality is true [1] 

1 1
( , ) , 0, ( , )Lp p v p v Lp p  , 

therefore (Lp,p) – positive definite quadratic 
form. 
 Along with problem (5) - (8) (let's call it 
problem 1), we will consider its special case 
(problem II), when there is no lower restriction 
on the function ( )q x  (and control (5) is 

dropped from consideration and the problem is 
reduced to minimizing functional (8) under the 
conditions 

( ) 0, , ( ) ( ),p x x p x f x x S=    . 

Problem I is a difference analog of the 
following variational problem. 

The convergence of the solution of 
difference problem 2 with a change in the grid 
step to the solution of problem (1) - (4) is 
substantiated in [9]. It is assumed that the 
function ( )f x  quite smooth in   and ( ) 0f x =  

at x Г . With minor changes, these studies are 

also applicable to a more general problem (1) - 
(3). 

In works [1, 10], to solve problem (1) - 
(4), the methods of local variations and 
gradient projection were used. In this article, 
based on the use of properties characteristic of 
objects described by elliptic type equations, an 
effective algorithm for solving problem (5) - (8) 
is constructed.  

Without limitation, we will assume that in 
the conditions  (7) ( ) 0f x = . This can be 

achieved by replacing in problem (5) – (8) p on 
p f+  , where ( ) ( ),f x f x x S=  and 

( ) 0,f x x =   and replacing  q on q L f− . 

Wherein с, d are replaced accordingly with 
c L f−  and d L f− . Taking into account this 

remark and the notation introduced earlier, we 
write problem (5) – (8) in the form 

                                      
( , ) 2( , ) minL p p c p− →                                                               

(10) 
under conditions 

                                          ( ) 0, ,Lp q x x S+ =                                                                  

(11) 
                                    

( ) 0, ( ) ( ),p x q x d x x S   .                                                           

(12) 
For the applicability of the proposed 

algorithm, it is essential that condition (11), 
(12) be satisfied.   
 
Algorithm for solving the problem.  The 
algorithm given below is constructed according 
to the scheme proposed in [11,12] for solving 
optimal control problems in systems described 
by elliptic-type equations with boundary 
control and observation. 

The algorithm uses the following 
properties of the operator L.  

Properties 1. For any function 
, ( )p q H S  and many A S  there are 

functions , ,
A A

p q  satisfying equation (11) and 

conditions 

( ) ( ), , ( ) 0, /
A A

q x q x x A p x x S A=  =  . 

Substantiation. Required Features 

, ,
A A

p q   can be found in the following way. We 

solve the system of linear algebraic equations 
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( ),
A

Lp q x x A= −   under conditions 

( ) 0, \
A

p x x S A=   (such a function exists and 

is unique) [2], and we set  ( ) ( ),
A

q x q x x A=   at 

\ ,x S A  ( ) ,
A A

q x Lp x A= −  .  

Properties 2. Let the functions 
, ( )p g H S  satisfy equation (11).  

Then.   
a) ( ) 0, , ( ) 0, \ ,q x x A p x x S A     then 

( ) 0,p x x S  ; 

b) if ( ) 0, , ( ) 0, \ ,q x x A p x x S A  =   

then ( ) 0, \q x x S A  . 

Substantiation. a) in that 
( ) 0,Lp q x x A= −    and ( ) 0, \p x x S A    

and ( ) 0, ;p x x S   then it follows from the 

maximum principle for finite-difference 
analogs of elliptic-type equations [2] that 

( ) 0,q x x A   b) in that 

( ) 0, \ , ( ) 0,p x x S A p x x A=    (by property 

2a), then at \ ,x S A          
                  

1

1
( ) ( )

1 2
( ) ,

1
( ) ( )

2

i i i in

i i
i i i i

b x h p x h

q x
h

b x h p x h
=

+ + +

= 

+ − −

 
 
 
 
  

  

those ( ) 0, \q x x S A  . 

The necessary sufficient optimality 
conditions for problem (10) – (12) are as 

follows. Functions 
0 0
, ( )p q H S  satisfying 

(11), (12) are solutions to problem (10) - (12) 

if and only if there are functions 0 0
, ( )y v H S , 

such that the relations 

                                               0 0
( ) 0,Ly v x+ =                                                                             

(13) 
                                

0 0 0
( ) ( ) ( ) 0, ( ) 0,q x v x c x y x+ +                                                         

(14) 
                               

0 0 0

0 0

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) 0, .

p x q x v x c x

y x q x d x x S

+ + =

− = 

 
 

 
 

 

This is the Kuhn-Tucker condition for the 
considered problem of quadratic programming 
[10]. 

The algorithm consists of two stages. At 
the first stage, there are many grid nodes S +  

and features 0 0,y v , satisfying the system of 

equations (13) and the conditions 
0 0
( ) 0, ( ) ( ( ) ( )), ,y x v x c x d x x S = − +   

                                           
0 0 0
( ) 0, ( ) ( ( ) ( )), \ .y x v x c x d x x S S=  − +                                    

(15) 
At the second stage, there are many grid 

nodes S +  and features 
0 0
,p q , satisfying the 

system of equations (11) and the conditions  
                                             

0 0 0
( ) 0, ( ) ( ), ,p x q x d x x S =   

                                   
0 0 0 0
( ) 0, ( ) ( ( ) ( )), ,p x q x c x v x x F = − +                                         

(16) 
0 0 0

0 0

( ) 0, ( ) ( ( ) ( )),

| ( ),

p x q x c x v x

x S S F

=  − +

 

 

Given that ( ) 0,d x x S   and applying 

properties 2,b) on the set 
0

\S F , we get 
0 0 0
( ) 0, ( ) 0 / ( )q x d x x S S F    , those 

conditions (12) are satisfied. Conditions (15) 
and (16) together coincide with conditions 

(13), (14), therefore 
0

p , 
0

q  optimal solution of 

problem (10) – (12). 

Remark 1. Function 0
( )y H S , found at 

the first stage of the procedure is the solution 
of the following optimal control problem     

                                     
2( , ) min, ( ) 0, .Ly c d y y x x S− + →    

Indeed, conditions (13), (15) are 
necessary and sufficient Kuhn-Tucker 
conditions for such a quadratic programming 
problem. Thus, the first stage of the algorithm 
(if you put in it ( ) 0d x = ) solves the above 

problem 2. 

Remark 2. Function 0 0
, ( )y H S  , 

satisfying conditions (13). (15) are the solution 
of the linear programming problem [10] 
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( , ) max,L y → ( ) 0, ( ) 0L y x y x+ =  , 

 ( ) ( ( ) ( )), ,x c x d x x S  − +   where ( )x  

any given function. 
The first stage of the algorithm. 

1. Let k=1, kS - empty set. 

2. Let's find functions , ( )
k k

y H S  , 

satisfying the system of equations (13) and the 
conditions 

( ) ( ( ) ( ), , ( ) 0, \
k k k k

x c x d x x S y x x S S = − +  =  .  

By property 1, such functions exist. To 
determine them, it is necessary to solve the 
system of linear algebraic equations 

( ) ( ),
k k

Ly c x d x x S= +  , under conditions 

( ) 0, \
k k

y x x S S=   and put ( )
k k

x Ly = −  at 

\
k

x S S . Then what 1
' 0y v= = . 

3. Select a set of grid nodes \
k k

D S S , in 
which the inequality 

( ) ( ( ) ( )),
k k

x c x d x x D  − +  .  

4. If k
D  empty, we assume 

0 0 0
, ,

k k k
S S y y  = = =  and the first stage is 

completed.  

5. We believe 
1k k

S S D
+

=  , assign k 
meaning k+1 and repeat steps 2-4.  

As S- finite set and 2
' .... ,S S S     then 

after a finite number of iterations the set k
D  

will be empty, therefore, the first stage will be 
completed in a finite number of steps. 

Theorem 1. Variables 0 0
, ( )y H S  , we 

find at the first stage of the procedure, satisfy 
conditions (13), (15), and over the iterations of 
the procedure, the inequalities 

                              
1 1 1
( ) ( ), , ( ) ( ), \ .

k k k k k
y x y x x S x x x S S 

+ + +
   

                          (17) 
Substantiation. Let us first prove 

inequalities (17). These inequalities follow 
from properties 2 when applied to the function 

k
y , k

  and take into account that 
1 1

1

( ) ( ) 0, \ ,

( ) ( ) ( ( ) ( )), ,

k k k

k k k

y x y x x S S

x x с x d x x S 

+ +

+

= = 

= = − + 
 

1 1
( ) ( ( ) ( )) ( ), \ .

k k k k
x c x d x x x S S 

+ +
= − +    

Condition (15) follows from the method 

of constructing the functions ,
k k

y  and 

inequality (17) and the fact that at the last 

iteration of the first one the set k
D  empty. 

The second stage of the algorithm.  

1. Let k=1, k
F - empty set. 

2. Let's find functions , ( )
k k

p q H S , satisfying 

the system of equations (11) and the 
conditions 

0
( ) ( ), ,

k
q x d x x S= 

0
( ) ( ( ) ( )), ,

k k
q x c x v x x F= − + 

0
( ) 0, \ ( )

k k
p x x S S F=   By property 1, such 

functions exist; to determine them, it is 
necessary to solve the system of linear 
algebraic equations  

0
( ), ,

k k k
Lp q x x S F= −    

where 
0

( ) ( ),
k

q x d x x S=   in 

0
( ) ( ( ) ( )),

k k
q x c x v x x F= − +   under conditions 

0
( ) 0, \ ( )

k k
p x x S S F=   , and then put 

0
( ) , \ ( )

k k k
q x Lp x S S F= −   .  

3. Define the set of grid nodes 
0

\ ( )
k k

N S S F   in which the inequality  

0
( ) ( ( ) ( )),

k k
q x c x v x x N − +  . 

4. If Nk empty, we assume 
0 0

, ,
k c k k

F F p p q q= = =  and the second stage 

is completed. 

5. We believe 
1k k k

F F N
+
=  , assign  k 

meaning k+1 and repeat the points 

 2 – 4. As 0
\S S  of course and 

2 0
' ... \F F S S   , then the second stage will 

be completed in a finite number of iterations. 

Theorem 2. Function 
0 0
, ( )p q H S , 

found at the second stage of the procedure, 
satisfy conditions (11), (16) and is a solution to 
problem (10) - (12). By iterations of the 
procedure, the relations   

                 
1 1 0 1
( ) ( ), , ( ) ( ), \ ( ).

k k k k k
p x p x x S q x q x x S S F

+ + +
    

                                (18) 
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Substantiation.  Applying property 2 to 

functions ,
k k

p q , constructed in paragraph 2 of 

the algorithm, we obtain
0

( ) 0, , ( ) 0 ( ) 0 \ ( )
k k k

p x x S q x d x x S S F     

. Applying property 2 to functions 
1 1

,
k k k k

p p q q
+ +
− −  given that 

            
1 0 1
( ) ( ) 0, \ ( ),

k k k
p x p x x S S F

+ +
= =    

        
1 0
( ) ( ) ( ) ,

k k
q x q x d x x S

+
= =   

              
1 0

1 0 1

( ) ( ) ( ( ) ( )), ,

( ) ( ( ) ( )) ( ), \ ,

k k k

k k k k

q x q x c x x x F

q x c x x q x x F F





+

+ +

= = − + 

= − +  

 

we obtain inequality (18).  
 
Since at the last iteration of the second stage 
the set is empty and (18) is satisfied, then 
conditions (16) are also satisfied, which 
together with (15) make up the system of 
necessary and sufficient conditions for the 
optimality of problem (10) - (12). 
 
Conclusion. 

It can be seen from the description of the 
algorithm that at each iteration of the first and 
second stages, it is necessary to solve a system 
of linear algebraic equations of the form (1), 
which is a difference analog of an elliptic 
partial differential equation. Efficient 
algorithms have been developed to solve such 
systems [2]. 

The proposed algorithm, due to 
monotonic convergence in all variables, 
finiteness, and the possibility of separately 
finding dual and direct variables, has an 
advantage (in terms of computation time and 
the amount of necessary RAM of computers 
(computers)) over the known methods of 
quadratic programming [10] and the method of 
local variations [1,10] . The results of the 
computational experiment of the numerical 
implementation of the algorithm on test 
examples were compared with the methods of 
Beal and Hildert [10]. Calculations have shown 
that when approximating the region Ω with a 
grid with 500 nodes, the time for solving 

problem (1) - (4) by the Beal, Hildreth method 
and the proposed algorithm in the work was 
17, 20, 5 minutes, respectively. 
 The algorithm is applicable only for a 
special class of problems and allows solving 
problems of large dimensions, which is very 
important for the optimal control of objects 
described by elliptic partial differential 
equations. 
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