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We assume that the harmonic wave is plane 
and that the wave front is parallel to the axis of 
the cylindrical layer (Fig. 1). The basic 

equations of the theory of viscoelasticity for 
this plane strain problem are reduced to the 
following equation 
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where α2 = (λ 0 +2μ 0)/ρ;   b2 = μ 0 /ρ;        φ и ψ 
– movement potentials.   Rλ(t-τ) and Rμ(t-τ) – 
relaxation core; ν - Poisson's ratio, which we 
consider to be a non-relaxing quantity [1]. The 

incident plane wave is considered to propagate 
in the positive direction of the x-axis and is 
represented as 

follows: 






−==

−==

−

−

sshear wave  toexposedwhen 0,

pain prolonged  toexposedwhen 0,

)()(

0

)(

)()(

0

)(

itxii

itxii

e

e









           (2) 

−00  и  amplitude values; ω - circular 

frequency; α and β are wave numbers, which 
must be complex numbers  α = αR+iαI ;  β=βR+i 
β I α I < 0  and  β I < 0   denote the attenuation 

coefficients; α R and βR denote the wave 
numbers of longitudinal waves and shear 
waves, respectively. The solution of equation 
(1) can be sought in the form: 
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где к (r,θ) и Ψк(r,θ) – real functions satisfying the equations 
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To describe the viscoelastic properties of the material, the Boltzmann-Voltaire theory with the 

Rzhanitsyn-Koltunov relaxation kernel in the form  
1)( −−=  tAetR t

. In this case, the sine Г(s) and 

cosine Г(c) of the Fourier samples, the relaxation kernel R(t) is expressed in terms of the Г(α)-Gamma 
function 
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The solution of equation (4) is expressed in terms of the Hankel functions of the 1st and 2nd kind of 

the nth order:                
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where Аn , А′n , Вn,  В′n – expansion coefficients, 
which are determined by the corresponding 
boundary conditions ; Hn(1) (α*r)  and   Hn(2) (α* 
r) – Hankel function of the 1st and 2nd kind of 

the nth order, respectively 

)()()()2( riNrIrH nnn  −= . Solution 

(5) satisfies at infinity 

r → ∞ to the Sommerfeld radiation condition [1]: 
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Fig.1. Calculation scheme of a cylindrical reinforced hole in a viscoelastic medium 
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For this, А′n =В′n = 0 must be present. The solution of equation (5) is represented as: 
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The total potential can be determined by superimposing the potentials of the incident and reflected 
waves. Thus, the displacement potentials will be [1]:  
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It follows that stresses and displacements can easily be expressed in terms of displacement potentials              
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)(tf  – some function; ur - radial displacement; 

uθ is the tangential displacement; εrr, ε θ θ ,ε r 
θ - strain tensor elements; σ rr,σ rθ , σ θθ , σ zz - 
stress tensor elements. As mentioned above, 
the coefficients An and Bn are determined from 
the corresponding boundary conditions. 

The boundary conditions for r = a, and is the 
radius of the cylindrical discontinuity surface 
will be: σrr = 0 ; σrθ = 0 . 
The coefficients An and Bn are determined 
from the corresponding boundary conditions 
for each value of n. Thus, the stress 
concentration in the flow under the influence of 
a shear wave (2) takes the following value[1] 
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2Г - describe the viscoelastic properties of the material.  

In the case of an elastic cylindrical body in a 
viscoelastic medium, rigid contact conditions 
are set at the boundary r = a, under which 
stresses and displacements are continuous at 
the boundary:    
σ rr 1 = σ rr 2    ;       σ rθ 1 = σ rθ 2; 
     u r 1 = u r 2          ;         u θ 1 = u θ 

2    
Where,  σ rr 1 , σ rθ 1   - stresses in a viscoelastic 
environment; σ rr 2 and 

  σ rθ2 - viscoelastic inclusion stresses; ur1, uθ1 
- radial and tangential displacements of the 
environment; ur2, uθ2 - radial and tangential 
displacements of the elastic inclusion. If there is 
no friction at the contact boundary, then σ rr 1 
= σ rr 2 ; σ rθ 1 = σ rθ 2 = 0 ; u r 1 = u r 2 . 

Determination of stresses at r = a. Near the 
cylindrical cavity, the contour stresses σθθ at r 

= a express the stress concentration. The 
contour stress under the influence of a 

longitudinal harmonic wave has 

the form: 
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The stress concentration under the influence of a shear wave (or transverse waves) has the following 
form 
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Stress at the boundary of a rigid inclusion under the influence of a shear wave (r = a). in dimensionless 
form has the form: 
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Here η = ρ/ρ1 is the ratio of the ambient density to the inclusion density. Under the influence of 
longitudinal waves in a rigid inclusion, the stress tensor components σ*rr and σ*rθ take the form: 
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The stress tensor components σ*rr and σ* θθ of an elastic cylindrical inclusion at r = a under the 
action of longitudinal waves take the following form: 
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The Bessel and Hankel functions of the real 
argument are tabulated in the same way as the 
trigonometric functions of the logarithm and 
are known functions of their argument. Since 
these are real functions, they describe steady 
waves, in fact, a steady cylindrical wave is a 
superposition of two traveling waves: one 
diverges from the axis of the cylinder, and the 
other converges with it. Since at r=0 the phases 
of these two waves are opposite, they cancel 
each other, and therefore the amplitude of the 
steady wave remains finite at r=0 [1]. This 
statement is used in solving the problem of 
wave propagation in viscoelastic media. 
Cylindrical wave I0 (kr) corresponds to a plane 

steady wave cos(kx-π/4); the amplitudes of 
successive maxima, due to the distribution of 
energy on ever larger cylindrical surfaces, are 
not constant, but decrease with distance. 
Cylindrical wave N0(kr) asymptotically 
corresponds to a plane wave sin (kx-π/4). On 
the axis of the cylinder (r=0) grad u of the 
incident and reflected waves are the same, and 
the amplitude of the reflected wave becomes 
infinitely large, in contrast to the case of a plane 
wave; therefore, the function N0 on the axis of 
the cylinder (r=0) has a pole, i.e. represents the 
source. 
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Fig.2. Distributions | | at different values of а under the influence of shear waves. 
        1) А=0.01;  05.0= ;   1.0= ;   А=0.05; 1.0= ;   1.0= . 

and for dimensionless wave numbers in the interval 0.01≤α* а≤ 3.0 
 
The results of distribution calculations for 
different values of the wave numbers are 
shown in Fig.2. It should be noted that at and 
the stress distribution is almost the same as in 
the static case, while at higher wave numbers 
the stress distribution differs significantly from 
the static case. The maximum dynamic stress is 
10-15% higher than the static one, and the 
wave numbers at which the maximum value is 
reached lie between 0.25-0.75.  
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