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The paper considers the reaction of a cylindrical layer located in a viscoelastic medium,
when exposed to a transverse (longitudinal) seismic wave. It has been established that
the maximum dynamic stress is 10-15% higher than the static one, and the wave
numbers at which the maximum value is reached.
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We assume that the harmonic wave is plane equations of the theory of viscoelasticity for
and that the wave front is parallel to the axis of this plane strain problem are reduced to the
the cylindrical layer (Fig. 1). The basic following equation
t 2 ‘ 1 0%
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where o2 = (Ao+2po0)/p; b2=po/p; euy incident plane wave is considered to propagate
- movement potentials. Ra(t-t) and Ry(t-t) - in the positive direction of the x-axis and is
relaxation core; v - Poisson's ratio, which we represented as
consider to be a non-relaxing quantity [1]. The

" = e, " = 0—when exposed to prolonged pain
follows: i i Bxe - 2
" =y e " = 0-when exposedto shear waves ()
@, u y,— amplitude values; w - circular coefficients; a« R and PR denote the wave

numbers of longitudinal waves and shear
waves, respectively. The solution of equation
(1) can be sought in the form:

frequency; a and 3 are wave numbers, which
must be complex numbers o = ar+iar; B=Pr+i
Brair<0 and B1<0 denote the attenuation

¢ (6= ¢ (r0e"; v (r,6,0)=> vy, (ro)e", (3)
k=1 k=1

rae ¢k (r,0) u Wk(r,0) - real functions satisfying the equations
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20e L, = [[R,(£)+ 2R, (&)]exp(-iwd)ds M, = [R, (&) exp(-imd)ds.

To describe the viscoelastic properties of the material, the Boltzmann-Voltaire theory with the

—Bya-l
Rzhanitsyn-Koltunov relaxation kernel in the form R(t) = Ae ﬂtta . In this case, the sine I'(s) and

cosine I'(c) of the Fourier samples, the relaxation kernel R(t) is expressed in terms of the I'(a)-Gamma
function

rs= Msm(aarctgg) re= _Ar@)
(0 + %) B (e By
The solution of equation (4) is expressed in terms of the Hankel functions of the 1st and 2nd kind of
@ = i[Aan‘l) (@r)+A H,® (oz”r)}cosmé'e““’t
the nth order: ”;0 , (5)
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where An, Aw, Bn, B - expansion coefficients, the nth order, respectively
which are determined by the corresponding H @ (ar) = (Otl’)—iN (Otl’) luti
boundary conditions ; Hn() (a'r) and Ha(® (a* n n n - Solution
r) - Hankel function of the 1st and 2nd kind of (5) satisfies at infinity

r = oo to the Sommerfeld radiation condition [1]:
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Fig.1. Calculation scheme of a cylindrical reinforced hole in a viscoelastic medium
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For this, A'n =B'n = 0 must be present. The solution of equation (5) is represented as:

@ oy _ > 4 Y (ax*r)cosn@)e 't 6)
Nn=0O
v = 3 B H P (BT sin(no)e T

The total potential can be determined by superimposing the potentials of the incident and reflected
waves. Thus, the displacement potentials will be [1]:

M 4 (k) (P) — (k) _
¢=0 =p(r,0,0),y =y +y " y® =yrot) @
It follows that stresses and dlsplacements can easily be expressed in terms of displacement potentials
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where

f (t) - some function; ur - radial displacement;
uf is the tangential displacement; err, €0 0 ,e r
0 - strain tensor elements; o rr,o0 r0,c 00, 0 zz -
stress tensor elements. As mentioned above,
the coefficients An and Bn are determined from
the corresponding boundary conditions.

(. 2) f(t)}=(ﬂo,uo)[f<t)— [ Ri,ﬂa—r)f(r)dr}

The boundary conditions for r = a, and is the
radius of the cylindrical discontinuity surface
willbe: orr=0;0r0=0.

The coefficients An and Bn are determined
from the corresponding boundary conditions
for each value of n. Thus, the stress
concentration in the flow under the influence of
a shear wave (2) takes the following value[1]
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I'; u I, - describe the viscoelastic properties of the material.

In the case of an elastic cylindrical body in a
viscoelastic medium, rigid contact conditions
are set at the boundary r = a, under which
stresses and displacements are continuous at
the boundary:
Orr1=0rr2 , 001 =07102;

Ur1=Ur2 uei=uoe

o r02 - viscoelastic inclusion stresses; url, ub1
- radial and tangential displacements of the
environment; ur2, uf2 - radial and tangential
displacements of the elastic inclusion. If there is
no friction at the contact boundary, then o rr 1
=orr2;or0l1=0r02=0;url=ur2.

Determination of stresses at r = a. Near the

2 cylindrical cavity, the contour stresses 000 atr

Where, 61,0181 - stresses in a viscoelastic = a express the stress concentration. The

environment; o rr 2 and contour stress under the influence of a
longitudinal harmonic wave has

= { (@a)H, ,(@a)| (n* —1) paH, ,(Ba)—(n° —n+ %Ezaz)Hn(ﬁa)] —

the form:
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The stress concentration under the influence of a shear wave (or transverse waves) has the following
form
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Where
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Stress at the boundary of a rigid inclusion under the influence of a shear wave (r = a). in dimensionless
form has the form:
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Here n = p/p1l is the ratio of the ambient density to the inclusion density. Under the influence of
longitudinal Waves in a rigid inclusion, the stress tensor components o*rr and o*r0 take the form:
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The stress tensor components o*rr and o* 00 of an elastic cylindrical inclusion at r = a under the

action of longitudinal waves take the following form:

g = 3 BB o0 5 g wan-PiE o (7 }COS enh
T = A 2

n
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The Bessel and Hankel functions of the real
argument are tabulated in the same way as the
trigonometric functions of the logarithm and
are known functions of their argument. Since
these are real functions, they describe steady
waves, in fact, a steady cylindrical wave is a
superposition of two traveling waves: one
diverges from the axis of the cylinder, and the
other converges with it. Since at r=0 the phases
of these two waves are opposite, they cancel
each other, and therefore the amplitude of the
steady wave remains finite at r=0 [1]. This
statement is used in solving the problem of
wave propagation in viscoelastic media.
Cylindrical wave 10 (kr) corresponds to a plane

steady wave cos(kx-m/4); the amplitudes of
successive maxima, due to the distribution of
energy on ever larger cylindrical surfaces, are
not constant, but decrease with distance.
Cylindrical wave NO(kr) asymptotically
corresponds to a plane wave sin (kx-m/4). On
the axis of the cylinder (r=0) grad u of the
incident and reflected waves are the same, and
the amplitude of the reflected wave becomes
infinitely large, in contrast to the case of a plane
wave; therefore, the function NO on the axis of
the cylinder (r=0) has a pole, i.e. represents the
source.

3 A y
T T
0= 0=
. 12 1
| 0s Ba=0,1
Ba=15
[ 0,4
\+[ (P)
Eurasian SCanﬁﬁE Herald \ / \ > \)@w.gcniusj()umals.org
-?|’ -; _1| / :ll ; :lg Page | 130




Volume 7| April, 2022

ISSN: 2795-7365

1) A=0.01; f=0.05; a=0.1; A=0.05;
and for dimensionless wave numbers in the interval 0.01<a” a< 3.0

The results of distribution calculations for
different values of the wave numbers are
shown in Fig.2. It should be noted that at and
the stress distribution is almost the same as in
the static case, while at higher wave numbers
the stress distribution differs significantly from
the static case. The maximum dynamic stress is
10-15% higher than the static one, and the
wave numbers at which the maximum value is
reached lie between 0.25-0.75.
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