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One of the main problems that often arise 

during the operation of chemical reactors in a 
fluidized bed is the formation of through thin 
channels in the bed, through which the 
reactants pass, bypassing the solid particles of 
the catalyst. Channel formation leads to a 
decrease in efficiency. reactor, to its output to 
off-design mode. 

This raises the question of the laws of 
development of long and narrow channels of a 
liquid or gaseous reagent in dense and 
fluidized beds of solid catalyst particles. It is 
natural to try to answer this question by first 
constructing an effective solution of the 
hydrodynamic problem of flow in a given 
channel of finite length, and then, by analyzing 
the solution, draw conclusions about the nature 
of the change in length depending on the 
reagent flow rate, as well as on the physical and 
geometric parameters of the system. The initial 
channels of a sufficiently small size are always 
present in a dense layer of solid particles due to 

uneven stacking. In a fluidized bed, such initial 
channels can be considered as some inevitable 
fluctuations in the random mutual 
arrangement of particles. 

In the quasi-stationary approximation, this 
problem is effectively solved below by the 
method proposed earlier in [1,2,3]. 

1. Statement of the problem. Let a porous 
layer of solid particles occupy a half-space z<0 
and let there be a channel in the layer in the 
form of a right circular cylinder of radius r0 
and length l. Let us denote the cylindrical 
coordinates by 0rz: the Z axis coincides with 
the axis of the cylinder, the origin of 
coordinates coincides with the beginning of the 
channel on the layer surface (Fig. 1). The length 
of the channel r<r0, 0<z<l will be considered 
large compared to its radius, i.e. l>>r0. 
Therefore, the flow of a liquid or gaseous 
reagent in a channel can be considered one-
dimensional.  
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Fig.1 

Outside the channel, the flow of the 
reagent between the solid particles is described 
differently for the case of a fluidized bed. Away 
from the channel, the flow can be considered 
undisturbed; here, the volumetric flow rate of 
the reagent moving in the direction of the Z 
axis is assumed to be given and equal to V0. The 
pressure of the environment at z=0 will be 
denoted by Р0. 

It is required to determine the flow field 
and, in particular, the outlet flow rate of the 
liquid (through the channel section at z=0). 

We present the basic equations. 
Packed Layer: 
Equation of axisymmetric fluid filtration 
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Equation of motion in a channel 
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  (3) 
Mass Conservation Equation 

q
dz

dQ
=  (q=–2rVr  at  r=r0)  

       (4.) 
Here: (р(r,z) is the liquid pressure in the 

layer, Р(z) is the pressure in the channel, Vr and 
Vz are the components of the filtration rate, 

Q(z) is the volumetric flow rate of the liquid in 
the channel, (with a plus sign at movement in 
the direction of the z axis) q(z) is the 
volumetric inflow of liquid into the channel 
(per unit length of the channel), K0 is the 
permeability of the packed layer,  is the 
dynamic viscosity of the liquid,  is the density 
of the liquid, g is the acceleration of gravity 
directed opposite to the axis z The flow in the 
channel is considered to be Poiseuille 
according to (3) Fluidized bed [4]: 

Fluid motion equation 
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(V2=V2r+V2z)   
The law of conservation of mass of liquid 
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(a1 and a2 are numerical components) 
In addition, equations (3) and (4) will be 

valid for the flow in the channel. The value of  
К() is the effective permeability of the 
fluidized bed. Layer porosity   in this case is a 
function of  Vz implicitly determined by the 
following equation [4]. 
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                (8) 
(Vr<<Vz)  
(S – solids density). 
Equations (1)-(2) are valid for Vz<V*, and 

equations (5)-(8) are valid for Vz>V*. Here V* is 
the critical flow rate of the start of fluidization, 
determined by equation (8) at =0, where 0  is 
the porosity of the packed bed. We also give the 
boundary conditions: 
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  at  z=0 P=P0         (9) 
at  z=l Q=0    (10) 
at  z=0 q=0    (11) 
at  z2+r2→, Vz=V0, Vr=0   (12) 
Condition (10) is satisfied asymptotically 

for l >> r0. It means that the influx of liquid 
through the end of the cylinder is neglected in 
comparison with the inflow through the side 
surface of the channel. Boundary condition 
(11) physically means that the liquid inflow 
into the channel near the free surface is 
negligibly small due to the predominant liquid 
outflow to the surface. 

It is required to determine the functions р, 
Vr, Vz, P, Q, g. The formulated boundary value 
problems belong to the class of singular 
boundary value problems [1, 2]: they have two 
independent small parameters 
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By virtue of the condition  <<1, the 

pressure graph p in various sections z=const  
has a form resembling a velocity profile in a 
boundary layer in a viscous fluid. Therefore, in 
some neighborhood of the channel for r0<r<r*  
(we will call it the zone of influence of the 
channel), it is natural to accept the following 
assumptions 
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(approximation of the boundary layer, r* is the 
radius of the zone of influence) 

Under condition (14), equations (1), (2) 
take the form 
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Let us write down the solution of 

equations (15) in the zone of influence r0<r<r*, 
0<z<l, which satisfies the natural conditions 
р=Р and q=–2rVr at r=r0: 
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(packed layer). 
At the boundary of the zone of influence at 

r=r*, this solution should be “matched” with the 
unperturbed solution. Since according to (2) 
and (3) it will be  
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then, according to the boundary condition (12), 
we obtain 
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   (18) 
Equations (18), (3) and (4) constitute a 

closed system of ordinary differential 
equations with respect to the functions Р, q and 
Q. 

Eliminating q and Q successively using (3) 
and (4), we arrive at the following equation 
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The general solution of this equation has 

the form 
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where С1, С2, С3 are arbitrary constants. 

Three boundary conditions (9)–(11) serve 
to determine them. From here we find with the 
help of (3), (4) and (20) 
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As a result, we get the following solution 
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Note the following formulas: 
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(maximum inflow of liquid into the channel 
near and its bottom). 

The last expression determines the 
absolute value of the pressure difference at the 
channel bottom and at the nearby undisturbed 
point of the layer. We also note the following 
limiting cases of formulas (21)–(23): 

at l<<1 
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at l>>1 
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It is convenient to introduce the 
dimensionless matching parameter a as 
follows. 
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To determine this parameter, one can use 

the data of the numerical calculation of the 
original problem in any one particular case or 
some limiting case in which an analytical 
solution can be found by another method. 

To this end, we study the following 
limiting case ourselves: 

→0, →0, l→0, (p0=0, g=0). 
   (30) 

Recall that according to (19), (13) and 
(29) we have: 
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According to (22), the pressure P in the 

channel increases monotonically with an 
increase in Z from p0  to P0, see (24). 
Therefore, in the limiting case (30), based on 
(24) and (22), we have 
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On the other hand, the limiting case (29) is 

a classical problem of potential theory: to 
determine the harmonic function р (vanishing 
on the surface of the cylinder r<r0, –l<z<0, and 
also on the surface of the half-space z=0) and 
tending to linear function –V0z/K0 at infinity 
(Benjamin Franklin problem). 

According to [5], a thin cylinder  r<r0, –
l<z<0, in this problem can be replaced by a 
spheroid  
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at  =0. To prove this fact, a direct numerical 
calculation was made on a computer using the 
finite element method of the original problem 
for a thin cylinder. On fig. Table 2 shows one of 
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the calculation results: the ratio of q for a 
cylinder and a spheroid  (qцил)/(qсфер) 
depending on the coordinate z/l. As you can 
see, these two channels (at l=50r0).  

 
Fig.2 

The exact solution of the Benjamin 
Franklin problem for the spheroid (33) is easy 
to find. 

It has the form (for l>r0)  
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            (34) 
Here =(r,z) is defined by formula (33). 

According to (34) we have:  
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Here Vn is the filtration rate on the surface 

of the spheroidal cavity =0. 
In the limiting case of a thin prolate 

spheroid, when =r0/l<<1, by formulas (20) 
and (33) we find   
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Comparing the value of q obtained by 

approximate and exact methods - see formulas 
(32) and (36) - using (19) and (29) we find the 
value of the matching parameter 

a=1 
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Formulas (16), (22) and (37) give the 

complete solution of the original problem for a 
packed layer of solid particles. 
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