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ABSTRACT

The paper presents the formulation of the boundary value problem of a thin channel in a
boiling distance near the free surface. The modified boundary layer method is used to
obtain an analytical solution of the boundary value problem for measuring the fraction
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One of the main problems that often arise
during the operation of chemical reactors in a
fluidized bed is the formation of through thin
channels in the bed, through which the
reactants pass, bypassing the solid particles of
the catalyst. Channel formation leads to a
decrease in efficiency. reactor, to its output to
off-design mode.

This raises the question of the laws of
development of long and narrow channels of a
liquid or gaseous reagent in dense and
fluidized beds of solid catalyst particles. It is
natural to try to answer this question by first
constructing an effective solution of the
hydrodynamic problem of flow in a given
channel of finite length, and then, by analyzing
the solution, draw conclusions about the nature
of the change in length depending on the
reagent flow rate, as well as on the physical and
geometric parameters of the system. The initial
channels of a sufficiently small size are always
present in a dense layer of solid particles due to

uneven stacking. In a fluidized bed, such initial
channels can be considered as some inevitable
fluctuations in  the random  mutual
arrangement of particles.

In the quasi-stationary approximation, this
problem is effectively solved below by the
method proposed earlier in [1,2,3].

1. Statement of the problem. Let a porous
layer of solid particles occupy a half-space z<0
and let there be a channel in the layer in the
form of a right circular cylinder of radius r0
and length 1. Let us denote the cylindrical
coordinates by Orz: the Z axis coincides with
the axis of the cylinder, the origin of
coordinates coincides with the beginning of the
channel on the layer surface (Fig. 1). The length
of the channel r<r0, 0<z<l will be considered
large compared to its radius, ie. I>>r0.
Therefore, the flow of a liquid or gaseous
reagent in a channel can be considered one-
dimensional.
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Fig.1

Outside the channel, the flow of the
reagent between the solid particles is described
differently for the case of a fluidized bed. Away
from the channel, the flow can be considered
undisturbed; here, the volumetric flow rate of
the reagent moving in the direction of the Z
axis is assumed to be given and equal to Vo. The
pressure of the environment at z=0 will be
denoted by Po.

It is required to determine the flow field
and, in particular, the outlet flow rate of the
liquid (through the channel section at z=0).

We present the basic equations.

Packed Layer:

Equation of axisymmetric fluid filtration

2 2
12 IO+}0"IO+5 P_p
or’ ror 972
(1)

Darcy's Law

Vr:_ﬁ@’vzz_ﬁ @4_ pg
u or u|or

(2)

Equation of motion in a channel

xr’ ap
= — 0 — 4+
Q-5+ e

(3)
Mass Conservation Equation
dQ

dz 4 (q=-27rVr at r=ro)

(4.)
Here: (p(r,z) is the liquid pressure in the
layer, P(z) is the pressure in the channel, V- and
Vz are the components of the filtration rate,

Q(z) is the volumetric flow rate of the liquid in
the channel, (with a plus sign at movement in
the direction of the z axis) q(z) is the
volumetric inflow of liquid into the channel
(per unit length of the channel), Ko is the
permeability of the packed layer, u is the
dynamic viscosity of the liquid, p is the density
of the liquid, g is the acceleration of gravity
directed opposite to the axis z The flow in the
channel is considered to be Poiseuille
according to (3) Fluidized bed [4]:
Fluid motion equation

b ___H )Vr(1+ﬂ,(g)\/)

or K(s
(5.
SE+pg =Ky V)
_a d%s? e 3 dep
(K(g)_ 1 (1—8)2 ’2’( ) ,u(l—g)j

(6)
(V2=V2r+VZZ)
The law of conservation of mass of liquid
170 N
19 (rv)+ D g
r or

o1
(7)

(a1 and a2z are numerical components)

In addition, equations (3) and (4) will be
valid for the flow in the channel. The value of
K(¢) is the effective permeability of the
fluidized bed. Layer porosity ¢ in this case is a
function of V; implicitly determined by the
following equation [4].

ﬁvz @+ A(eV,)=(ps - p)1-2)g

(8)

(V<<V)

(s - solids density).

Equations (1)-(2) are valid for V:<V+ and
equations (5)-(8) are valid for Vz>V~ Here V- is
the critical flow rate of the start of fluidization,
determined by equation (8) at e=&v, where & is
the porosity of the packed bed. We also give the
boundary conditions:
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at z=0 P=Po (9)
at z=I Q=0 (10)
at z=0 ¢=0 (11)

at Z2+r2—)00, V=V, V=0 (12)

Condition (10) is satisfied asymptotically
for | >> ro. It means that the influx of liquid
through the end of the cylinder is neglected in
comparison with the inflow through the side
surface of the channel. Boundary condition
(11) physically means that the liquid inflow
into the channel near the free surface is
negligibly small due to the predominant liquid
outflow to the surface.

It is required to determine the functions p,
Vr, Vz, P, Q, g. The formulated boundary value
problems belong to the class of singular
boundary value problems [1, 2]: they have two
independent small parameters

5:£2<<1,ﬂ,:r—°<<1
ry I
(13)

By virtue of the condition ¢ <<1, the
pressure graph p in various sections z=const
has a form resembling a velocity profile in a
boundary layer in a viscous fluid. Therefore, in
some neighborhood of the channel for ro<r<r«
(we will call it the zone of influence of the
channel), it is natural to accept the following
assumptions

@ << @’li(rvr ) >> 0’7\/2 ’
or oz ror oz
(Vr>>VZ) (14‘)

(approximation of the boundary layer, r* is the
radius of the zone of influence)

Under condition (14), equations (1), (2)
take the form

o°p 10p _, y - _Ko P
or2 ror U or
(15)
Let us write down the solution of
equations (15) in the zone of influence ro<r<r+,

0<z<I, which satisfies the natural conditions
p=P and q=-2rVr at r=ro:

p=p i L0 .nL(vr:_ij

27K, 1,

(16)

(packed layer).

At the boundary of the zone of influence at
r=r+ this solution should be “matched” with the
unperturbed solution. Since according to (2)
and (3) it will be

Kol 2 170 r
VvV, =——2 7P, Pg 2 ARt
u\ oz 27 01 T,
(17)
then, according to the boundary condition (12),
we obtain

V0 :_ﬁ @4_ Py _i@mr_*
u\ oz 2 01 1,
(18)
Equations (18), (3) and (4) constitute a

closed system of ordinary differential
equations with respect to the functions P, q and

Q.
Eliminating q and Q successively using (3)
and (4), we arrive at the following equation

1d°p d Y 16K
R Ll PV
A dz®  dz K, r, In(r, /1,)

(19)
The general solution of this equation has
the form

P=C,+C,I*+C,1™ -z pg +ﬂ—V°
Ko
(20)
where (1, C2, C3 are arbitrary constants.

Three boundary conditions (9)-(11) serve
to determine them. From here we find with the
help of (3), (4) and (20)

C2 — IUVO
2AK, ChAI ’
C2 (21)
As aresult, we get the following solution

UV, shAz
P=p,—p0z- Z|l-—
Po=~9 K, ( AzchAI]

(22)

C1=po, C3=-
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0= ﬂVI’(ChAZ 1}

8K chAl
B ﬁVr shAz
8K0 chal

Note the following formulas:

v,y 1
—_ 1— _
9=k, ( chAI] (=@ at

z=0) (23)
(total debit channel):

yVJ(#_tgAz

P=p,+p0z+ =
Po + L0 K Al J (Po=P at

0
z=-1) (24)
(channel bottom pressure;)

ap = Ao

0

—=thAl

(25)
(differential pressure):

;Z v rO
= thAl
% 8K

0

(26)
(maximum inflow of liquid into the channel
near and its bottom).

The last expression determines the
absolute value of the pressure difference at the
channel bottom and at the nearby undisturbed
point of the layer. We also note the following
limiting cases of formulas (21)-(23):

at Al<<1
VI, 4
Qo 16K (AI) ,  Po=potpgl,
Al = %"I (27)
0
at Al>>1
e N |
Q, =% Po= p0+pgl+'u 0
16K, 0
AP = % (28)
0

It is convenient to introduce the
dimensionless matching parameter a as
follows.

=(/r,)
r0
(29)

To determine this parameter, one can use
the data of the numerical calculation of the
original problem in any one particular case or
some limiting case in which an analytical
solution can be found by another method.

To this end, we study the following
limiting case ourselves:

0—0, -0, A0, (po=0, g=0).

(30)
Recall that according to (19), (13) and

(29) we have:
45

AJaln(L/ 1)
(31)

According to (22), the pressure P in the
channel increases monotonically with an
increase in |Z] from po to Po, see (24).
Therefore, in the limiting case (30), based on
(24) and (22), we have

Al =

7rV0I‘04

P=0, =————1,
q 8K,

Q=- 7er (I _22)

8K,
(32)

On the other hand, the limiting case (29) is
a classical problem of potential theory: to
determine the harmonic function p (vanishing
on the surface of the cylinder r<ro, -I<z<0, and
also on the surface of the half-space z=0) and
tending to linear function -uVoz/Ko at infinity
(Benjamin Franklin problem).

According to [5], a thin cylinder & r<ro, -
[<z<0, in this problem can be replaced by a

spheroid
z° r?
+ =1(¢£ >0
S e (€=0)

(33)
at £ =0. To prove this fact, a direct numerical
calculation was made on a computer using the
finite element method of the original problem
for a thin cylinder. On fig. Table 2 shows one of
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the calculation results: the ratio of q for a
cylinder and a spheroid (qyua)/(qcgep)
depending on the coordinate z/l. As you can
see, these two channels (at [=50r0).

Yo
1,12 £= 50?‘0
{
1
0 Z
)
Fig.2

The exact solution of the Benjamin
Franklin problem for the spheroid (33) is easy
to find.

It has the form (for I>ro)

I S L

2 1

\/r§+|2 + 12 =12

2 2
N JE+I2 121

Ko 2 1

|—\/ﬁ
I74_\/|2_r0

L+ 17 =1
(34)

Here &=&(r,z) is defined by formula (33).
According to (34) we have:

[22 rzjl/Z
R
4 4
I Iy

vV 2V, z
ool 1 |- JI2 —r2
2+ In °
R A N | .
(35)

Here Vi is the filtration rate on the surface
of the spheroidal cavity &=0.

In the limiting case of a thin prolate
spheroid, when A=ro/I<<1, by formulas (20)
and (33) we find

V = V,z q=—271V, = 27V, z

rin(l/A) In(1/A)
(36)

Comparing the value of q obtained by
approximate and exact methods - see formulas
(32) and (36) - using (19) and (29) we find the
value of the matching parameter

a=1 (IA _ 4\5 J
2:/In(1/ 2)
(37)
Formulas (16), (22) and (37) give the
complete solution of the original problem for a
packed layer of solid particles.
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