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ABSTRACT

The Vrag boundary value problem for a third-order equation of a mixed-compound type
in a quadrilateral domain is considered. Using the Galerkin method under certain
conditions for the coefficients and the right side of the equation, the existence of a weakly
generalized solution in Sobolev space has been proved. Under the same conditions, the
uniqueness of the generalized solution has been proved.
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Introduction mixed type of the second and high order, of the

It is known that the study of boundary
value problems for nonclassical equations of
mathematical physics is of considerable
mathematical interest due to the importance of
their applications in various branches of
mechanics, physics, and engineering. Quite a lot
of works are devoted to the formulation of
boundary value problems for equations of

mixed-composite type, the study of their
generalized and fredholm solvability in various
spaces [ 1 -13].

This paper investigates the generalized
solvability of the Vragov boundary value
problem [ 4,5,12] for a third-order equation of a
mixed-compound type.

In this area, Q ={(X,t): —=1<x<1, 0<t <T} consider the equation

Lu =k(x,t)u,, + a(x)u
where Xu(X) >0 atthe X#0, #(0)=0.
Put

XXX

+a(x,t)u, +b(x,t)u, = f(x,t) (1)

P ={(x,t):k(x,0) >0, xe[-1,1]}, B, ={(x,t):k(x,0) <0, x e[-1,1]},
B ={(x,t):k(x,T) >0, xe[-L1}, B ={(x,t):k(x,T) <0, xe[-11]}.
The problem of the enemy. Find the Q solution of equation (1) in the domain that satisfies the

boundary conditions

u

ol 0, U,

I50+:O’ ul_=0. (2)

tPf

For the sake of simplicity, we will assume that the coefficients of equation (1) are infinitely

differentiable functions.
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Definition 1. Let us denote in terms H (Q) of the space of functions obtained by closing functions from

C”(Q), satisfying conditions (2) according to the norm
2 2 2 2 .2
Jull o = J.(uXX +UZ +uZ +u? +u?)dQ
Q

Definition 2. A function U € H(Q) will be called a weak generalized solution of problem (1), (2), if
veC; (Q) the identity is fulfilled for all

I(kutvtt + 2ktutvt + kttutv —HuV, — UV + al'IxxV - butvt - btutv)dQ :I deQ (3)
Q Q
Theorem. Let the conditions be fulfilled
a(x,t)—g|yx|25>0, b(x,t)—g|kt|251>0, @

then, for any function f(X,t) suchthat f €L,(Q), there is a single solution to the problem (1), (2) of

H(Q).

Proof. The solution to problem (1) and (2) will be searched by the Galerkin method
m
U, (X,t) = Z Mo ()
i=1
where functions ¢, (X) are solutions to a problem

(Pi” =-A@, @ -1 = b, 1) =0.

And the coefficients J;(t) are derived from the solution of the system of ordinary differential equations
(kumttt ! (Di)o + (luumxxx’wi)o + (aumxx’goi)o + (bumtt ! ¢i)0 = ( f ’¢i)0 (5)
J|(0):J|(T):J|t(0) |50+:O:jit(T) '3{:0 i:1’2""1m (6)

The solvability of problem (5) and (6) with a fixed one M follows from the general theory by ordinary
differential equations.

By virtue of the boundary conditions (2), it is not difficult to see that the correct estimate for the
solution is

fuzdQ<c|u?,dQ (7)
Q Q

Let's get uniform estimates M for Galerkin approximations. To do this, multiply (5) by —J;(t) and,
summing up by 1, we get
(kumttt’_um)o + (luumxxx’_um)o + (aumxx’_um)o + (bumtt | _um)O = (f ’_um) (8)
Hence, by integrating and t, integrating in parts, in force (2), (4), (7), after some transformations, we
arrive at inequality
Jw? +ul +u2)dQ<c 9)
Q
Next, consider the following equations

(kumttt ' umxx)O + (luumxxx’umxx)o + (aumxx ’ umxx)O + (bumtt ' umxx)O = ( fm’umxx)o (10)
From identity (10), in virtue of (2), (4) and evaluation (9), integrating and integrating in t, parts, after
simple transformations, the following evaluation follows

Jw?, +uz)dQ<c. (11)
Q
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From the estimates (9), (11) follows the limitation of the sequence of approximate solutions {u, (x,t)}

in space H(Q), we can select the subsequences{U,, (X,t)} and proceed to the limit of the m, — oo
system (5). It is not difficult to verify that the limit function belongs to space H (Q)and satisfies the
identity (3). Since the system {¢. (x)} is dense in L,(-1, 1).

Let us prove that the solution of problem (1) and (2) is unique.
If U,V —two solutions to the problem (1), (2), then W=U —V satisfies the equation

kw,, + z(x)w,,, +a(xt)w, +b(x,t)w, =0
Consider the integral

[ (g + () w + (X)W, +b(x,H)WAQ =0
Q

and integrating in parts, in force (2) we get
.[(Wf +W +W)dQ <0
Q

Hence it follows that W =0 in the Q.
Theorem proved.
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