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Definition: a


expressed as the с vector product 

of vectors a b and , b


it is said that the vector 
satisfies the following three conditions [2]: 

1 0 . a b = с = a

b

sin( a


^ b


) 

2 0 . с ⊥a


,с ⊥b


 

30 .  a


, b


, с vectors to the common head, and с

from the end a


of , b


when viewed in the plane 
where the vectors lie, let the shortest path turn 

from the a


vector b


in the direction of the 

vector be counter-clockwise. Vector 

multiplication is a

b


denoted as [ [3]], a b or 

с =[ a

b


].  
According to property 1 in the given definition, 
the с length of a vector is equal to the face of a 

parallelogram consisting of sides a


and b


vectors. Property 2 means that it is a vector 

product (that is, a с vector) a


and b


is 
perpendicular to the plane on which the vectors 
lie. 

 
 
Vector multiplication has the following 
properties. 

1 0 . [ a

b


]=0 if at least one of the multiplier 

vectors is a zero vector or a


// b


. 
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Proof : If indeed a


// b


then [ a

b


]=0. If 
they are parallel, the angle between them is 0 

or 180 , so sin( a


^ b


)=0, and according to 
condition 1 is perpendicular to the plane, but in 

the product [a

b


] a


, the b


right с vector 
product is the zero vector . 
2 0 . If the positions of the multipliers of the 
vector multiplication are interchanged, the sign 

of the vector multiplication changes: [ a

b


]=-[ 

b

a


] 
Proof : In fact, according to clauses 1 and 

2 of the definition of vector multiplication, 

vectors [ a

b


] and [ b

a


] have equal lengths 
and both are perpendicular to one plane, but   [ 

a

b


] in multiplicationa


 Since forms the b


right 

triple and [ b

a


] forms the left triple, we create 

a vector [ a

b


] opposite to the direction [ b

a


] 
. 

30 .  These relations hold for any real number 

[ a

b


]=[ a

b


]= a


[ b


] 
4 0 . The distributive law holds true for vector 
multiplication. 

[ a


( b


+ с


)]=[ a

b


]+[ a

с


] 
1. Vector products of unit vectors are as 

follows. 

[ i

j


]= – [ j

i


]= k


;   [ i

i


]=0 

[ k

i


]= –[ i

k


]= j


;   [ j

j


]=0 

[ j

k


]= –[ k

j


]= i ;   [ k

k


]=0 

If in the Cartesian coordinate system a


and b


given by vector coordinates, i.e 

a


= a x i


+ a y j


+ a z k


 b


=b x i


+b y j


+b z k


, then   [ a

b


]=( a x i


+ a y j


+ a z k


)(b x i


+b y j


+b z 

k


)=( a y b z - a z b y ) i


-( a x b z - a z b x ) j


+( a x b y - a y b x ) k


= 

= 
у z x yx z

x y z

у z х z х у

х у z

i j k
а а a aa a

i j k a a a or
b b b b b b

b b b

− + = [ a

b


]= ; ;
y z x yx z

у z х z х у

a a a aa a

b b b b b b

 
 

− 
  

 

a formula for calculating the area of a triangle 
can be derived using vector multiplication. Let 
ABC be given by the coordinates of the vertices 
of the triangle; 
A (x 1 ,y 1 ,z 1 ,) , B(x 2 ,y 2 ,z 2 ) , C(x 3 ,y 3 ,z 3 ) formed 
according to the definition of vector 
multiplication the modulus of the vector is equal 
to the area of the parallelogram. And half of it 
gives the face of the triangle; 

S A BC =  ACAB 
2

1
 

 three a


, b


, с


vectors be given. 

Definition: a


, b


and с


is a mixed product of 
vectors (according to the specified order of 

vectors) a


and b


is the number obtained by 
scalar multiplication of a vector by a vector 
equal to the vector product of vectors . с


 

A mixed product is specified as [ a

b


] or ( a

b


с


). 

A mixed product has the following geometric 

meaning. a


, b


, с


vectors placed at a point O 
and form a non-coplanar right triad. We make a 
parallelepiped whose edges consist of these 

vectors. ][ ba we see that the quantity 

represents the face of this parallelepiped. 
According to the definition of scalar 

multiplication: cos][][ сbaсba = . 

[4]Being cos|| c


 here )])^(([ cba


=   

is equal to the straight line projection of the 
vector in the direction and is the height of the 
parallelepiped cos|| c


 = с


h 

So [ a

b


] с


=S base h=V. Here V is the 
volume of the parallelepiped. So the volume of 

the parallelepiped: V= [ a

b


]с


  [5] 

={ a x , a y , a z } b


={b x ,b y ,b z } and с


={c 

x ,c y ,c z } are given in the coordinate system a
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R={o, i


, j


, } k


. Let's find the mixed product of 

three vectors given by their coordinates. 

 a


and b


the vector product of vectors is: 
 

[ a

b


]=
у z x yx z

у z х z х у

а а a aa a
i j k

b b b b b b
− +  

Now с


we multiply the resulting vector by a
→

vector scalar: 

[ a

b


] с


=

х у z

у z x yx z

х y z х у z

у z х z х у

x y z

с с с
а а a aa a

с c c b b b
b b b b b b

a a a

− + =  

We write this determinate in the following form: 

[ a

b


] с


=

х у z

х у z

x y z

а а а

b b b

c c c

 

 an application of this formula, let's derive 
the formula for calculating the tetrahedron 
volume based on the coordinates of its vertices 
 Points A (x 1 ,y 1 ,z 1 ), B(x 2 ,y 2 ,z 2 ), C(x 3 ,y 3 ,z 3 ) 
and D(x 4 ,y 4 ,z 4 ) of the tetrahedron be the ends. 

    AB ={ x 2 -x 1 , y 2 -y 1 ,z 2 -z 1 } , AC ={x 3 -x 1 ,y 

3 -y 1 ,z 3 -z 1 } AD ={x 4 -x 1 ,y 4 -y 1 ,z 4 -z 1 } 
Since the volume of a tetrahedron is equal to 1/6 
of the volume of a parallelepiped built on three 
edges from one end of the tetrahedron 

V tetr = 
6

1
( AB AC AD ) = 

6

1
mod

2 1 3 1 4 1

2 1 3 1 4 1

2 1 3 1 4 1

х х x x x x

y y y y y y

z z z z z z

− − −

− − −

− − −

 

A mixed product has the following properties. 

1 0 . (a


 b


 с


)=(b


 с


 a


)=(с


 a


 b


) Indeed, the 
absolute values of the volumes of the 
parallelepiped constructed from these three 
vectors are equal. 

2 0 . (a


 b


 с


)=-(b


 a


 с


), because (a


 b


 с


)=[a


 b


] с


=-[b


 a


] с


=-(b


 a


 с


) means (a


 b


 с


)=-(b


 

a


 с


), (b

с


 a


)=-(с


 b


 a


), (с


 a


 b


)=-(a


 с


 b


) 

30 . _ (( a


+ b


) с

d


)=(a


 с


 d


)+(b


 с


 d


) because (( a


+ b


) с

d


)=[ a


+ b


, с


] d


=([ a

с


]+[ b

с


]) d


=[ a

с


] d


+[ b

с


] d


=(a


 с


 d


)+(b


 с


 d


) 

4 0 . for R (  a

b

с


)= (a


 b


 с


) because (a


 b


 с


)=[ a

b


] с


= [ a

b


] с


= ( a

b

с


) 

50 . _ Coplanar a


, b


and с


vectors the mixed product is equal to 0 , because the parallelepiped 

constructed from these vectors is in the plane, its height is equal to zero, and vice versa ( a


 b


 с


)=0 

from which a


, b


, с


vectors are coplanar. 

 Let a


, b


, с


be a given vector. For them a

( b


с


) vector is called double vector product . We 
show the simplest rule for finding double vector multiplication by the following theorem. 

Theorem 1: for  three a


, b


, с


vectors this  equality a


( b

с


)=( a


, с


) b


-( a


, b


)с


 holds.  

Proof : Let arbitrary vectors be a


of b


,с


 the form a


= a 1 i


+ a 2 j


+ a 3 k


,                            b


=b 1 i


+b 2 

j


+b 3 k


 с


=c 1 i


+c 2 j


+c 3 k


. Then the b


vector product ofс


 

b

с


= k
сс

bb
j

сс

bb
i

сс

bb

ccc

bbb

kji




21

21

31

31

32

32

321

321 +−=  

gives the vector. Now a


we vectorially multiply the vector ( ) by the vector:b

с
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a

( b


с


)= 

21

21

31

31

32

32

321

cc

bb

cc

bb

cc

bb

aaa

kji

−



=

( ) ( )

( ) ( ) 

( ) ( )  ( )

2 1 2 2 2 1 3 1 3 3 3 1 1 2 1 1 1 2 3 2 3 3 3 2

1 3 1 1 1 3 2 3 2 2 2 3 1 1 1 2 2 3 3 1 1 1 2 2 3 3

2 1 1 2 2 3 3 2 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2

– – –   

(–

[

]

–c c c c i c c c j

c c c c k c c c i

c c

a b a b a b a b a b a b c a b a b

a b a b a b a b b a a a c a b a b a b

b a a a c a b a b a b b a a a c a b a bc j c c ac

→ →

→ →

→

+ + + +

− + − + + + +

+ + − + + + + − +

+

+ +

+ + +

=

( ) 3 3

( ) ( )

k

a c a b c

b

b

→

→→ → →→ →

=

= −

 

Theorem 2 : This equality holds for arbitrary three a


, b


, с


vectors 

a


x( b


x с


)+ b


x ( с


x a


)+ с


x ( a


x b


)=0 

Proof : according to theorem 1 a


x( b


x с


)=( a

с


) b


-( a

b


) с


, b


x ( с


x a


)=( b

a


) с


-( b

с


)a


 

с


x ( a


x b


)=( с

b


) a


-( с

a


)b


 
 Adding these equations and using the symmetry of scalar [6]multiplication gives the above 
equation. 
Example 1 : Calculate the sine of the angle between the diagonals of the parallelogram made of the 

following vectors. 2 3 , , , a m n p va b m n inp mh nt is p
→ → → → → → → → → → →

= + − = − + are mutually 

perpendicular sides. Calculate the length of this vector. [7] 
Solution : 

(2;1; 1) (1; 3;1)      , ,  0since they are unit vectors and reciprocalsa and b m n p m n m p n p
→ → → → → → → → → → →

− −  =  =  = will 

be. (3; 2;0) (1;4; 2),a b and a b
→ → → →

+ = − − = −  from this 

 2( ) ( ) 3 8 0 5 25 248
cos ,sin 1 cos sin 1

273 27313 21 2
 

73
from bein

a b a b

a

g

a b b

   

→ → → →

→ → → →

+  − − + −
= = = = − = − =

+  −

 

[ ; ] 3 2 0 4 12 2 6 4 6 14

1 4 2

[ ; ] (4;6;14), 16 36 144 248

m n p

c a b a b m p p n m n p

a b a b c c

→ → →

→ → → → → → → → → → → →

→ → → → → →

= + − = − = + + + = + +

−

+ − = = + + =

 

Example 2 : (3; 1; 2) (0; 2;4) , ( 2 ) (2 3 )a and b if a b a b
→ → → → → →

− − − +  − find the product. 

Solving . First 2 2 3m a b and n a b
→ → → → → →

= + = − we find the coordinates of the vectors. 

this m
→

={1‧3+2‧0;1‧(-1)+2‧(-2);1(-2)+2‧4}={3;-5;6}, n
→

={2‧3 -3‧0;2‧(-1)-3‧(-2);2(-2)-3‧4}={6;-8;-16} 

 
5 6 3 6 3 5

128 84 6
8 16 6 16 6 8

m n i j k i j k
→ → → → → → → →− −
 = − + = + +

− − − −
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