Eurasian Medical Research Periodical



# Some Aspects of Radiation Diagnostics in Traumatology

| No1 22             |                                                              |
|--------------------|--------------------------------------------------------------|
| J. T. Tukhtaev     | ASMI, Department of Traumatology, Orthopedics,               |
|                    | neurosurgery, CVH and disaster medicine                      |
| K. Kh. Mamadjonov  | ASMI, Department of Traumatology, Orthopedics,               |
|                    | neurosurgery, CVH and disaster medicine                      |
| O. N. Abdulazizov  | ASMI, Department of Traumatology, Orthopedics,               |
|                    | neurosurgery, CVH and disaster medicine                      |
| N. T. Botirov      | ASMI, Department of Traumatology, Orthopedics,               |
|                    | neurosurgery, CVH and disaster medicine                      |
| To develop and imp | now now methods of rediction disgnastics in traumetology and |

To develop and improve new methods of radiation diagnostics in traumatology and orthopedics, 1,310 patients with various injuries and diseases of the musculoskeletal system were examined using radiography, ultrasound, CT, and MRI. As a result of the work, new methods for diagnosing chronic osteomyelitis, quantitative assessment of reparative osteogenesis during limb lengthening and treatment of fractures, methods for assessing distraction regenerate, new methods for quantitative and qualitative diagnosis of the condition of soft tissues during lengthening, methods for assessing the condition of bone in systemic skeletal diseases have been developed.

**Keywords**:

bones, radiation diagnostics, new methods, joints.

### Introduction

It is well known that progress in science is determined by the progress of research methods. The improvement of diagnostic methods, undoubtedly, led to the discovery of patterns of the emergence new and development of the pathological process, the identification of more accurate and early symptoms of diseases, and the determination of more subtle mechanisms of influence of therapeutic measures. Classical radiology has been supplemented bv such modern visualization methods ultrasound as diagnostics, computed tomography, magnetic resonance imaging, photoemission and positron emission tomography, interventional radiology [1].

# **Materials And Methods**

One of the earliest and most closely related disciplines to radiation diagnostics is traumatology and orthopedics. the development and improvement of which is impossible without the use of modern research methods. The development and improvement of diagnostic algorithms for diseases and injuries of the musculoskeletal system are based on an integrated approach to the selection of methods and techniques of radiation examination, which consists of a combination of classical and modern, radiation and non-radiation diagnostic methods, which allows optimizing diagnostic process from the point of view of safety for the patient and efficiency for the doctor. Considering the unequal sensitivity and specificity of various imaging methods medical in displaying pathological changes in bone, cartilage and soft tissue structures, modern radiation diagnostics

#### Volume 26| November 2023

makes possible it to more accurately characterize the morphological features and pathological prevalence of processes, contributes to clarification of pathogenesis, improves the semiotics of diseases and injuries of the musculoskeletal system. New diagnostic technologies and algorithms make it possible to monitor the effectiveness of treatment stages and the final result. contribute to the

improvement of existing and the creation of new treatment methods [3].

To develop and improve new methods of radiation diagnostics in traumatology and orthopedics, 1310 patients with various injuries and diseases of the musculoskeletal system were examined using radiography, ultrasound, CT, and MRI (Table 1)

| Distribution of pa             | tients by nature of pathology a  | nd research m | nethods            |
|--------------------------------|----------------------------------|---------------|--------------------|
| Nature of the                  | Object of study                  | Number of     | Research           |
| pathology                      |                                  | patients      | methods            |
| Congenital and acquired        | Distraction regenerate           | 96            | X-ray, CT, MRI     |
| shortenings and deformities    |                                  | 20            | densitometry       |
| of the lower extremities       |                                  |               | _                  |
| Erlacher-Blount disease        | Metaepiphyseal zone of           | 80            | X-ray, CT          |
|                                | the tibia                        |               |                    |
| Achondronlasia                 | Soft tissues of the lower        | 84            | X-ray, CT, MRI,    |
| nenonal opiasia                | extremities                      | 01            | ultrasound,        |
|                                |                                  |               | densitometry       |
| Chronic osteomyelitis of       | Femur                            | 109           | X-ray, CT          |
| the femur                      |                                  | 10,7          |                    |
| Developmental                  | Foot bones, distraction          |               | X-ray, CT          |
| anomalies, hindfoot            | regenerate, contact              | 79            |                    |
| defects, foot deformities,     | regenerate                       |               |                    |
| hallux valgus                  |                                  |               |                    |
| Consequences of vitamin D-     | Metaepiphyseal zone of           | 92            | X-ray, CT, MRI     |
| deficient rickets and vitamin  | the tibia and femur              | <i>,</i>      |                    |
| D-resistant rickets            |                                  |               |                    |
| Gonarthrosis, closed injuries  | Knee joint (before and after     |               | X-ray, ultrasound, |
| without fracture of the bones  | arthroscopy)                     | 150           | MRI                |
| forming the knee joint, intra- |                                  |               |                    |
| articular fractures            |                                  |               |                    |
| Fractures of the thoracic and  | Thoracic and lumbar spine        | 67            | X-ray, CT          |
| lumbar spine                   | (before and after treatment)     | 07            |                    |
| Osteoporosis of the spine in   | Lumber and the regis ening       | 220           | X-ray, CT.         |
| menopausal women               | Lumbar and thoracic spine        | 220           |                    |
| Ashondronlogia                 | Formur tibic and fibule before   | 71            | densitometry       |
| Achonul opiasia                | relliul, ubla allu libula belore | /1            |                    |
|                                |                                  |               | V rou CT           |
| Osteoarthritis of the hip      | Hip and knee joint               | 125           | A-1dy, C1          |
| and knee joints                |                                  |               |                    |
| Fractures of the shin bones    | Fracture healing zone            | 53            | X-ray, CT, MRI     |
| Dysplastic coxarthrosis        | Hip joint                        | 35            | X-ray, CT, MRI     |
| Consequences of                | Hip, knee, shoulder joints       | 28            | X-ray, CT, MRI     |
| hematogenous                   | 1,,,                             |               |                    |
| osteomyelitis                  |                                  |               |                    |

| Table 1                                                              |
|----------------------------------------------------------------------|
| Distribution of patients by nature of pathology and research methods |

| Deforming arthrosis of the | Vessels of the neck, lower | 21 | X-ray, CT, MRI |
|----------------------------|----------------------------|----|----------------|
| hip and                    | extremities                |    |                |

## **Results And Discussion**

Based on a complex of modern methods of radiation diagnostics, the stages of the pathological process were studied to determine the tactics and method of treatment for patients with vitamin D-resistant rickets and patients with the consequences of vitamin Ddeficient rickets. Before treatment, patients with vitamin D-resistant rickets had uneven deposition of osteoid in the metaepiphyseal sections of the femur and tibia, which was first identified by MRI as non-mineralized areas of growth zones in the form of an the indeterminate bizarre form of formations that were especially well visualized on T1FL2D FS in the coronal plane. In the axial plane, in the medial parts of the metaepiphyseal zones, lumpy formations of a cellular nature were determined [6]. In 14 patients with vitamin Dresistant rickets, radiographic changes in the zone of restructuring of the cortical layer and adiacent bone structures manifested themselves in the form of resorption zones (Loozer zones). After the deformities were eliminated, the patients experienced closure of the Loozerov zones. At the age of 12-16 years, Loozer zones were most pronounced, their density was 549.4±78 HU. After treatment, bone density in the reconstruction zone in patients in the age group over 30 years was no less than 1416±83 HU [3].

A study of the spine in patients with achondroplasia before and after limh lengthening showed that 76% of children with achondroplasia had kyphotic deformity of the spine and 17% had grade I-II scoliosis. During the lengthening process, a decrease in bone mineral density was noted in the lumbar vertebrae of patients with achondroplasia, with a significant difference for LI. The frontal and sagittal dimensions of the spinal canal in patients with achondroplasia decrease in the caudal direction with obvious signs of stenosis in 9% of children [4]. When lengthening the femur and tibia in patients with skeletal dysplasia at the first and second stages of treatment, the age-related dynamics of the

development of growth zones is preserved, which makes it possible to consider lengthening at any age. During the first stage of treatment and in the interval between the first and second stages, non-elongated segments have greater growth potential than elongated ones.

Densitometry and CT data in women with menopausal osteoporosis showed that in patients without vertebral compression fractures, osteopenia and osteoporosis were detected in 80% with early menopause and in 74.3% with surgical menopause. According to the results of quantitative computed tomography patients with vertebral of compression fractures. the density of cancellous bone in patients 40-49 years old was 111.44 mg/cm<sup>3</sup>, 50-59 years old - 79.03 mg/cm<sup>3</sup>, 60-69 years old - 72.85 mg/cm<sup>3</sup>. The compact bone density in the indicated age groups was 241.78 mg/cm<sup>3</sup>, 208.99 mg/cm<sup>3</sup> and 185.83 mg/cm<sup>3</sup>, respectively, and significantly decreased with the age of the patients, influencing the decrease in the strength of the vertebrae. The developed algorithm for radiological diagnostics contributes to the early diagnosis of osteoporosis in women at risk, identification of vertebrae with a high risk of fracture and the use of minimally invasive technologies for the treatment and prevention of osteoporotic vertebral fractures [5]

# Conclusion

1. The use of modern methods of radiation diagnostics has made it possible to obtain new data on X-ray morphological changes in the joints and long bones of the extremities in patients with systemic and dysplastic diseases with a quantitative assessment of the severity of the pathological process.

2. An algorithm for describing the distraction regenerate was proposed and methods for quantitative assessment using CT and MRI were developed.

3. A set of indicators has been developed to assess the condition of the soft tissues of the limbs during lengthening, depending on the period of lengthening and the research method.

4. Algorithms for studying the distraction regenerate and muscles during limb lengthening have been developed.

5. Features of fusion were identified with a quantitative assessment of the reparative process and bone restructuring in fractures of the tibia and proximal end of the tibia.

## References

- Mikhailov E. S., Novikov K. I., Novikova O. S. X-ray morphological features of long tubular bones of the lower limb in patients with achondroplasia in the age aspect // Genius of Orthopedics. 2011. No. 3. pp. 147–147.
- MRI in the study of the process of reconstruction of the bones of the knee joint after fractures / G. V. Dyachkova [et al.] // Med. visualization. 2018. No. 5. P. 111-116.
- MRI, CT semiotics of vitamin D-resistant rickets / V. I. Shevtsov [et al.] // Vestn. traumatology and orthopedics named after. N. N. Priorova. 2019. No. 1. P. 43-47.
- MRI and CT visualization of the consequences of rickets and vitamin Dresistant rickets / G. V. Dyachkova, E. A. Ryazanova, K. A. Dyachkov, M. A. Korabelnikov // Genius of Orthopedics. 2018. No. 1. P. 33-36.
- The role of computed tomography in assessing the density of the bone block of the damaged segment of the spine at various stages of treatment with an external transpedicular fixation device / P. V. Netsvetov, A. T. Khudyaev, G. V. Dyachkova, S. V. Lyulin // Vestn. . radiology and radiology. 2017. No. 2. P. 23-26.
- 6. Characteristics of the restructuring of the distraction regenerate during lengthening and elimination of deformities of the lower extremities in patients with different etiologies of

shortening / V. I. Shevtsov [et al.] // Ibid. pp. 27-32.