

Effectiveness Of Using Albit And Gummi 20 Stimulators On Medium Fiber Andijon-35 Cotton Varieties

Fazliddin Shamsitdinov,

Senior teacher of Namangan institute of engineering and technology

FazliddinShamsitdinov@gmail.com
Mobile number 99894-271-40-72

ABSTRACT

Light gray stony soils of Namangan region Albit stimulator 75 ml/t per seed before planting and 40 ml/ha during weeding and Gummi 20 stimulator 1.0 l/t per seed before planting and 1.0-1.5 l/ha during weeding-flowering periods when processed according to standards, the field germination rate of the seed is accelerated by 7.5-9.0%, sprouts germinated 1-2 days earlier and plant height is 7.6-11.7 cm, harvested branches are 1.3-1.8 pieces, total formed pods 1.4-1.8 grains, opening of bolls increased by 3.3-5.0%, additional cotton yield increased by 3.3-5.2 tons/ha.

Keywords:

cotton variety, Andijon-35, Albit and Gummi 20 preparations, seed germination, growth, development, cotton yield and quality

Introduction. In the agriculture of our country, a lot of work is being done on the development and implementation of modern technologies for obtaining abundant and high-quality crops.

"Development of agriculture of the Republic of Uzbekistan" of the President of the Republic of Uzbekistan PF-60 of January 28, 2022-decisions for 2022-2026 and In the action strategy on the five priority directions of the development of the Republic of Uzbekistan, among the priorities of the modernization and rapid development of agriculture, the main attention is focused on the tasks of expanding scientific research works on the creation and introduction of new advanced agrotechnologies suitable for the climatic conditions of agricultural crop care.

Growth regulators have been found to have a positive effect on optimal plant growth and development and increased productivity. In this regard, you can find a lot of information in the literature. For example, stimulants

accelerate the activity of physiological processes in plant agroecosystem, that is, carbohydrate, protein and lipid metabolism increases, metabolism improves, and the redistribution of nutrients is coordinated, and plant growth and development accelerate. Also, resistance to diseases increases, resulting in an increase in product quality and weight.

The biological effectiveness of the new biologically physiologically active substances Albit and Gummi 20 stimulants in the medium-fiber Andijon-35, cotton variety, was studied in the conditions of light gray stony soils of the "Ma'murbek, Mukhtorbek" farm located in the area of hilly fields of Torakorgan district of Namangan region. In the experiment, the plants were treated with stimulants before planting the seeds and during the period of cotton growth, and Albit and Gummi 20 stimulants were tested as a comparison with the control option.

Experience system

N	Experience options	Seed processing standard	Processing rate during the cotton growing season	
			polishing	bloom
1	control	6.5 kg/t	will not be processed	
2	Albit	75 ml/t	40 ml/ha	-
3	Gummi 20	1.0 l/t	1.0 l/ha	1.5 l/ha

Albit drug was applied at the rate of 75 ml/t before seeding, and 40 ml/t was applied during the tillering period.

Gummi 20 stimulator was treated at the rate of 1.0 l/t of the seed before planting and 1.0-1.5 l/ha during the flowering period. It should be noted that Albit and Gummi 20 stimulants have been compared to the control option and scientific work has been carried out.

In the experiment, before planting, soil samples were taken from the 0-30-30-50 cm layers using the envelope method. The obtained analyses, humus content by I.V. Tyurin, total nitrogen and phosphorus by the method of I.M. Maltseva and L.I. Gritsenko, mobile phosphorus

by B. P. Machigin and exchangeable potassium were determined by the method of P.V. Protasov . When we analyzed the soil samples, it was found that the soil of the experimental field was low in humus, very low in mobile phosphorus and exchangeable potassium, and 30 cm the amount of humus in the tillage (0-) layer of the soil was 0.82; total nitrogen 0.144; phosphorus 0.148; potassium was 2.38%. These indicators are 0.40 in the under-driving (30- 50 cm) layer, respectively; 0.093; was 0.102 and 2.15%.

The amount of humus and nutrients in the soil before the experiment ("Ma'murbek, Mukhtarbek" f/x)

Soil layer, cm	Humus, %	In general form, %			Mobile form, mg/kg soil		
		nitrogen	phosphorus	potassium	NO ₃	P ₂ O ₅	K ₂ O
0-30	0.82	0.144	0.148	2.38	17.9	5.0	60.0
30-50	0.40	0.093	0.102	2.15	8.3	5.0	60.0

Also, the amount of nitrate nitrogen in the driving layer was NO₃ -17.9, mobile phosphorus P₂O₅ -5.0 and exchangeable potassium K₂O -60 mg/kg, while in the driving layer it was 8.3; 5.0; At 60.0 mg/kg, it was found to be very low in nutrients.

In many scientific sources, it is noted that the fertility of seeds treated with various physiologically active substances has increased.

The seed of the Andijan-35 cotton variety was planted using a seeder in the order of 90 x 20 x 2. Monitoring work 25.04; 27.04; Held on April 29 and May 2.

F.A. Abdullaev (2014) Gumin stimulators, i.e. Gumimax stimulator applied to 0.8-1.0 l/t of seed increased control by 11.1% compared to theoretical hives. found that the seeds were 13-17 more than the control variety [4].

Germination of seedlings and after yagana and seedling thickness at the end of the period of operation (Ma'murbek Mukhtorbek f/x)

№	Experience options	Seed processing standard	Germination of seeds, %				from control, %	Seedling thickness, thousand bush/ha	
			25.04	27.04	29.04	2.05		after yagana	at the end of the validity period
1	control	6.5 kg/t	6.5	22.0	41.5	62.5	-	111.1	109.5
2	albit	75 ml/t	8.0	23.0	43.5	69.0	7.5	111.1	109.5
3	gummi 20	1.0 l/t	13.5	27.0	49.0	71.5	9.0	111.1	108.7

In the final analyzes of our studies described above, it was found that Albit stimulator 75 ml/t per seed before planting and 40 ml/ha at tillering and Gummi 20 at 1.0 l/t per seed before planting and 1.0-1 during tillering-flowering periods. High results were achieved in the variants processed at the rate of 5 l/ha. That is, compared to the control, initially, the height of the plant increased by 1.5-3.1 cm, the number of true leaves increased by 0.6-1.1 pieces, and in July, the plant height increased by 3.4-6.3 cm, compared to the control ,5-0.8 pieces, the number of combs increased by 1.3-1.7 pieces. By August 1, it became clear that the above options were superior to the control option, in which the plant height was 57.7-65.8 cm, the number of harvested branches was 9.8-1.5, the number of pods was 1.6-2.0, and the number of nodes was 4. , equal to 8-7.5 pieces, the optimal standards of Albit and Gummi 20 stimulants compared to the control are the length of the cotton 4.8-8.1 cm, the harvest branches 0.8-1.7 pieces, the number of bolls 0.4 pieces, the number of nodes 0.8-2.7 pieces, it was observed that more were formed.

In the observations conducted on September 1, the height of the plant was 63.8-75.5 cm, the yield branches were 10.9-12.7 pcs., the total number of pods formed was 8.1-9.9 pcs., including those that opened by 49.4-51.6% was equal. When we compared the results obtained in the study with the control option, we saw the following patterns.

That is, it was observed that Albit and Gummi 20 stimulants are higher than the control option, plant height increased by 7.6-11.7 cm, harvested branches increased by 1.3-

1.8 units, total formed pods increased by 1.4-1.8 units.

The dynamics of flowering and opening of bolls during the period of cotton were studied, and if we focus on the analytical results of the data obtained on the level of flowering of cotton, the flowering level of cotton was 2.07, 5.07 and 8.07, and the level of opening of bolls was 14.08. Held on 17.08 and 20.08.

Albit and Gummi 20 stimulators had a positive effect on the flowering rate of cotton, 77.5% in the control option on July 8, Albit stimulator 75 ml/t per seed before planting, 40 ml/ha during the tillering period, and Gummi 20 stimulator 1.0 l per seed before planting. /t and 1.0-1.5 l/ha during the flowering-flowering period, and 80.3-82.4% when processed in the norms. It was noted that the used stimulants had a positive effect on the flowering of cotton and accelerated it by 2.8-4.9% compared to the control option.

Although it was emphasized in our research that cotton flowering is observed until 100% flowering according to the methodological guidelines, due to the sudden warming of the day, the observation calculation work was done in the interval of 3 days, due to the high influence on the dynamics of flower opening, combined with stimulators and external factors, premature flowering occurred. is explained by the fact that the level has accelerated.

Sh. Abdualimov, Y. Soriev et al. (2013) Bukhara-102 variety hairy seed of cotton was treated with Tj-85 stimulator at the rate of 20 g/t and Rostbisol at the rate of 135 ml/t before sowing, when 60, 45 and 30 kg per hectare were

planted. under these conditions, the seed germination was 7.7-13.8% higher than the control, the growth and development of the cotton was accelerated, the height was 4.3-10.7 cm, the number of bolls increased by 1-2 grains, the opening of the bolls was accelerated, and the yield of high-quality cotton cultivated. In this case, the highest results were achieved when the rate of sowing seeds was 45 kg per hectare, and the consumption of seeds was saved by 20-25% [7].

List of used literature.

1. Misirova, S. A. "Systematic types of fungi of allocated and determined types from decorative flowers in conditions region Tashkent." *Agricultural sciences* 6.11 (2015): 1387.
2. Misirova, Surayyo, and Ibrohim Qurbanov. "Biological Characteristics of Fungal Pathogens of Bulb Flowers and Control Measures." *Texas Journal of Agriculture and Biological Sciences* 22 (2023): 49-56.
3. Abdumatalovna, Misirova Surayyo, and Sarimsaqova Nilufar Sobirjonovna. "Bioecology of Fungi-Pathogens of Flower Crops and the System to Combat Them." *Agricultural sciences* 7.8 (2016): 539-547.
4. Misirova, S., et al. "Growing Dutch tulips in Namangan region." *Bulletin of Agrarian Science of Uzbekistan* 1 (2021).
5. Misirova, Surayyo, and Ibrohim Qurbanov. "Biological Characteristics of Fungal Pathogens of Bulb Flowers and Control Measures." *Texas Journal of Agriculture and Biological Sciences* 22 (2023): 49-56.
6. Misirova, Surayyo. "Technology of growing orchid flowers from seeds." *E3S Web of Conferences*. Vol. 390. EDP Sciences, 2023.
7. MISIROVA, SA, and NN ERNAZAROVA. "FIGHTING MEASURES THE DISEASE CAUSES A VERY DANGEROUS FUNGAL SPECIES WIDESPREAD IN TASHKENT REGION." *International Journal of Botany and Research (IJBR)* 6 (2016): 5-12.
8. MISIROVA, SA. "TECHNOLOGY OF CULTIVATION AND REPRODUCTION OF ORNAMENTAL AND UNIQUE ORCHID FLOWER IN NAMANGAN CONDITIONS." *World Bulletin of Social Sciences* 17 (2022): 156-164.
9. Misirova, S. A. "BIOLOGICAL CHARACTERISTICS OF FUNGAL SPECIES THAT CAUSE DISEASES OF ONION FLOWERS AND MEASURES TO COMBAT THEM." (2022).
10. Misirova, S., and M. Haydarova. "Flowers from Nederland are Considered to Develop in the Climatic Conditions of Uzbekistan and Are Identified the types of Fungus." *Annals of the Romanian Society for Cell Biology* 25.4 (2021): 5922-5929.
11. Misirova, S. A., et al. "Determination types of fungi-pathogens of ornamental flower crops in conditions region Namangan." *ISJ Theoretical & Applied Science* 10.66 (2018): 185-189.
12. Abdumatalovna, Misirova Surayyo, and Muhabbat Davlatova Urmanovna. "Technology of in vitro propagation of mangosteen in the climatic conditions of Uzbekistan." *NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal/ NVEO* (2021): 5610-5617.
13. Мисирова, Сурайё Абдумуталовна. "БИОЛОГИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ФУНГИЦИДОВ В БОРЬБЕ С МУЧНИСТОЙ РОСОЙ И РЖАВЧИНОЙ РОЗ." *Научный поиск в современном мире*. 2016.
14. Misirova, Surayyo. "Reproduction technology of a unique orchid flower in the conditions of Namangan." *Texas Journal of Agriculture and Biological Sciences* 22 (2023): 37-48.
15. Мисирова, Сурайё Абдумуталовна, Иброхим Шарифбаевич Курбонов, and Назокат Кобилжоновна Сайфуллаева. "ОПРЕДЕЛЕНИЕ ГРИБКОВЫЕ БОЛЕЗНИ ЦВЕТОЧНЫХ КУЛЬТУР В УСЛОВИЯХ ОБЛАСТИ НАМАНГАНА." *Theoretical & Applied Science* 10 (2018): 185-189.

16. Мисирова, Сурайо Абдумуталовна. "Биоэкология грибов-возбудителей болезней цветочных культур и создание системы борьбы с ними." *Материалы 54-й Международной научной студенческой конференции МНСК-2016: Сельское хозяйство*. 2016.

17. Насритдинов, А., А. Нормирзаев, and А. Нуридинов. "Разработка агрегатов для основной и предпосевной обработки почвы к севы промежуточных." *ФУНДАМЕНТАЛ ФАНЛАР* (2015): 44.

18. Насритдинов, Ахмаджон Абдухамидович, and Хусниддин Тургунбоевич Киргизов. "Агрегат для полосной обработки почвы." *Современные научные исследования и инновации* 12 (2015): 412-416.

19. Байбобоев, Н. Г., Насридинов, А. А., Нормирзаев, А. Р., & Нуридинов, А. Д. (2014). Энергоресурсосберегающий комбинированный агрегат для обработки почвы. *Вестник Рязанского государственного агротехнологического университета им. ПА Костычева*, 3(23), 42-44.

20. Насритдинов, Ахмаджон Абдухамидович. "Результаты исследования формы лобовой поверхности стойки чизеля-культиватора." *Universum: технические науки* 1 (58) (2019): 18-20.

21. Байбобоев, Набижон Гуломович, and Ахмаджон Насритдинов. "Теоретические определение перемещение частиц почвы по поверхности углоснима." *Science Time* 6 (18) (2015): 84-89.

22. Байбобоев, Набижон Гуломович, and Ахмаджон Насритдинов. "Теоретические определение перемещение частиц почвы по поверхности углоснима." *Science Time* 6 (18) (2015): 84-89.

23. Ходжаев, Ш. Т., Сагдуллаев, А. У., Исаев, О. Б., & Юсупова, М. Н. (2011).

Проблемы защиты растений в Узбекистане. *Защита и карантин растений*, (8), 23-24.

24. Yusupova, M. N., and A. M. Gapparov. "Biological Method Of Plant Protection In Uzbekistan." *The American Journal of Agriculture and Biomedical Engineering* 2.11 (2020): 29-32.

25. Ходжаев, Ш. Т., Юсупова, М. Н., Курязов, Ш., & Саттаров, Н. (2008). Перспективы биологической защиты хлопчатника от хлопковой совки. *Сборник трудов.-Ташкент: Таллин*, 44-49.

26. Yusupova, M. N. "Biological method of crop protection in the fergana valley." *Agrarian science* 6 (2018): 68-70.

27. Юсупова, Махпуза Нумановна, Азиза Нуьмановна Тургунова, and Сайдулло Нуридинович Очилов. "Система интегрированной защиты растений." *Российский электронный научный журнал.-2015 1* (2015): 169-174.

28. MN, Yusupova, and B. Z. Nosirov. "Control Of Cotton Pests On Stubble Lands." *International Journal of Applied* 10.2 (2015): 99-108.

29. Yusupova, M. N., S. T. Hodzhaev, and K. S. Mamatov. "Possibilities of the biological method of cotton plant protection." *Agriculture and Biology Journal of North America* 2.5 (2011): 742-744.

30. Yusupova, Maxpuza. "Protection of after harvest cultures-as a reservoirs of cotton pests." *Agriculture and Biology Journal of North America* 4.5 (2013): 576-582.

31. Ходжаев, Ш. Т., Юсупова, М. Н., Юлдашев, Ф., Исаев, О. Б., & Шокирова, Г. (2011). Борьба с вредителями хлопчатника на пожнивных культурах в севообороте. *Вестник защиты растений*, (2), 46-52.

32. Ходжаев, Ш. Т., Юсупова, М. Н., Юлдашев, Ф., & Жамалов, А. Г. (2010). Хлопковая совка на пожнивных культурах. *Защита и карантин растений*, (12), 22-23.

33. Юсупова, М. "Особенности защиты хлопчатника посевного под пленки от вредных организмов." *Автореф. канд. дисс./М. Юсупова*. Ташкент (2001).

34. Yusupova, Makhpuzha, Shakhnoza Irisova, and Otabek Numonov. "Biology of Pomegranate Pests, Control Measures and First Aid in Case of Pesticide Poisoning." *BIO Web of Conferences*. Vol. 82. EDP Sciences, 2024.

35. Yusupova, M., Turgunova, A., & Ochilov, S. INTERGRATED PLANT PROTECTION SYSTEMS.

36. Yusupova, M. N., and B. Z. Nosirov. "Cotton Pest Control on Stubble Crops at Crop Rotation." *International Journal of Biotechnology and Allied Fields* 1.11 (2013): 472-482.

37. Khodzhaev, S. T., Sagdullaev, A. U., Isaev, O. B., & Yusupova, M. N. (2011). Plant protection problems in Uzbekistan.

38. Khodzhaev, S. T., Yusupova, M. N., Yuldashev, F., & Zhamalov, A. G. (2010). Cotton bollworm in the post harvest crops.

39. Khodzhaev, Sh T., and M. N. Yusupova. "Defoliation times and bollworm." (2001): 35.

40. Sabirov, R. Z., Kurbannazarova, R. S., Melanova, N. R., & Okada, Y. (2013). Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. *PLoS One*, 8(1), e55646.

41. Rashidovna, Melanova Nazira, and Numonov Otabek Urmonovich. "Comparative Characteristics of the Leaving of Glutathione From Cells of Different Types." *International Journal on Orange Technologies* 2.10: 79-82.

42. Sabirov, R. Z., Kurbannazarova, R. S., Melanova, N. R., & Okada, Y. (2010, January). Swelling-induced release of glutathione from rat thymocytes. In *JOURNAL OF PHYSIOLOGICAL SCIENCES* (Vol. 60, pp. S13-S13). 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN: SPRINGER TOKYO.

43. Melanova, N. R., M. U. Davlatova, and O. Numanov. "The Effect of Extracellular Glutathione on the Regulation of Thymocyte Volume in Rats under Conditions of Hypoosmotic Stress." *Annals of the Romanian Society for Cell Biology* (2021): 7032-7038.

44. Меланова, Назира Рашидовна. "Сравнительная характеристика выхода глутатиона из различных типов клеток." *Universum: химия и биология* 5 (59) (2019): 9-12.

45. Melanova, N. R., & Yulchiyeva, S. A. (2021). EFFECT OF EXTRACELLULAR GLUTATHIONE ON COLLOID-OSMOTIC LYSIS OF HUMAN RED BLOOD CELLS. *Scientific Bulletin of Namangan State University*, 2(2), 144-149.

46. Choriyeva, N. M., & Melanova, N. R. (2019). STUDY OF LYSIS OF HUMAN ERYTHROCYTES UPON ADMINISTRATION OF GOSSYPOL, MEGOSIN AND BATRIDEN. *Bulletin of Namangan State University*: Vol, 1(9), 11.

47. Melanova, N. R., Yulchieva, S., Rahimova, G. L., & Mamadjanova, M. A. (2020). The role of intracellular camp in the production of glutathione from rat thymocyte cells under hypoosmotic stress. *International journal of Advanced Science and Technology*, 29(8 Special Issue), 821-825.

48. Melanova, N. R. (2023). REPRODUCTION OF THE MAGNOLIA (MAGNOLIACEAE) PLANT IN NAMANGAN CONDITIONS. *British Journal of Global Ecology and Sustainable Development*, 22, 81-87.

49. Melanova, Nazira R. "The importance of the soap tree plant (Keluiteria Paniculata) in environmental protection and landscaping in the climatic conditions of the Namangan region." *E3S Web of Conferences*. Vol. 390. EDP Sciences, 2023.

50. Шамситдинов, Ф. "Результаты опыта." *Защита и карантин растений* 5 (2003): 27-27.

51. Абдуалимов, Ш. Х., and Ф. Р. Шамситдинов. "Влияние применения

стимуляторов роста на всхожесть семян, рост, развитие и урожайность хлопчатника в условиях светлых сероземных каменистых почв Наманганской области Республики Узбекистан." *Актуальные проблемы современной науки 5* (2019): 47-51.

52. Абдуалимов, Шухрат Хамадуллаевич, and Фазлидин Расулович Шамситдинов. "НАМАНГАН ВИЛОЯТИНИНГ ҚИР АДИРЛИ ТОШЛОҚ ЕРЛАРИДА ЯНГИ СТИМУЛЯТОРЛАРНИНГ ФЎЗА БАРГ ЮЗАСИ ВА ҲОСИЛДОРЛИГИГА ТАЪСИРИ." *Журнал Биологии и Экологии 1* (2019).

53. Kurbanov, I. G. "CARE OF TULIP VARIETIES OF THE NETHERLANDS IN THE CLIMATIC CONDITIONS OF THE NAMANGAN REGION." *American Journal of Interdisciplinary Research and Development 6* (2022): 117-120.

54. Qurbanov, Ibragim Sharifjonovich. "CLONELY MICRO-CULTIVATION OF PLANTS AND ITS APPLICATION TO AGRICULTURE." *Scientific Bulletin of Namangan State University 1.4* (2019): 74-78.

55. Qurbanov, I. "E-RECRUITMENT: SOCIAL MEDIA AND RECRUITING." *InterConf.-2021*.

56. Qurbanov, I. "Tulip varieties imported from the netherlands technology of cultivation of namangan region. galaxy international interdisciplinary research journal (giirj) issn (E): 2347-6915 Vol. 9." (2021).

57. Yusupova, M., Irisova, S., & Numonov, O. (2024). Biology of Pomegranate Pests, Control Measures and First Aid in Case of Pesticide Poisoning. In *BIO Web of Conferences* (Vol. 82, p. 01014). EDP Sciences.

58. Irisova, Sh. "Protection Of Plants Sown After Cereals In The Fergana Valley." *Science and innovation 2.D11* (2023): 158-166.

59. Irisova, Sh. "GROWTH AND REPRODUCTION CHARACTERISTICS OF BLACK FISH (SCHIZOTHORAX INTERMEDIUS) IN A PASTORAL POOL." *Science and innovation 3.D10* (2024): 132-136.

60. IRISOVA, Shakhnoza. "BIO-ECOLOGICAL FEATURES OF BLACKFISH (SCHIZOTHORAX INTERMEDIUS) IN CHERVOK RESERVOIR." *Journal of Experimental Studies 1.12* (2023): 18-24.

61. Yusupova, Makhpuzza, and Shakhnoza Irisova. "Agrotechnological protection of cotton from sucking pests in various ways of planting." *E3S Web of Conferences*. Vol. 390. EDP Sciences, 2023.

62. Faxriddinovna, Irisova Shaxnoza. "Ekish oldidan chigitga elektrofaollahgan suv bilan ishlov berishning g'o'zaning o'sish davriga ta'siri." *Science and innovation 2.Special Issue 11* (2023): 421-425.

63. Urmonovich, Numonov Otabek. "MANGOSTEEN NUTRITIONAL PRICE AND FUNCTIONAL PROPERTIES." *ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ 14.5* (2023): 3-5.

64. Abduhamidovich, Nasritdinov Ahmadjon. "MANGOSTIN DARAXTI VA MEVASINI TIBBIYOTDA FOYDALANISH." *Journal of new century innovations 28.2* (2023): 12-14.

65. Юсупова, Махпузза Нумановна. "ФАРФОНА ВОДИЙСИ ШАРОИТИДА ИГНА БАРГЛИ ДАРАХТЛАРНИ ЗАРАРКУНДАЛАРДАН ҲИМОЯЛАШ." *SO 'NGI ILMIY TADQIQOTLAR NAZARIYASI 6.4* (2023): 316-320.

66. Юсупова, Махпузза Нумановна. "АНОРНИ ЗАРАРКУНДАЛАРДАН ҲИМОЯЛАШ." *PEDAGOG 6.4* (2023): 562-567.

67. Юсупова, Махпузза Нумановна. "БИОЛОГИЧЕСКИЙ МЕТОД ЗАЩИТЫ РАСТЕНИЙ." *Scientific Impulse 1.9* (2023): 1460-1464.

68. O'rmonovna, Davlatova Muhabbat. "MANGOSTIN DARAXTI VA UNING KIMYOVIY XUSUSIYATLARI." *INNOVATION IN THE*

MODERN EDUCATION SYSTEM 3 (2022): 1-4.

69. Юсупова, Махпаза Нумановна. "УФТ: 635 САБЗАВОТ ЭКИНЛАРИГА БИОЛОГИК КУРАШ ҲАҚИДА МУЛОХАЗАЛАР." *Научный импульс* 355.

70. Юсупова, М. Н., and О. У. Нумонов. "ЗАЩИТА ТУТОВОГО ДЕРЕВА ОТ ВРЕДИТЕЛЕЙ." *Экономика и социум* 6-1 (121) (2024): 1500-1503.

71. Shamsitdinov, Fazliddin, and Numonov Otabek Urmonovich. "FIBERS OF THE PREPARATION BIOBARS-M IMPACT ON QUALITY INDICATORS I." *American Journal of Interdisciplinary Research and Development* 23 (2023): 173-175.

72. Юсупова, Махпаза Нумановна. "ТУТ ПАРВОНАСИ ВА УНИНГ ЗАРАРИ." *O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI* 3.32 (2024): 35-38.

73. Khusanova, Onarkhon, and Muhammadali Kamoliddinov. "The ecological features of the soil seaweeds." *AIP Conference Proceedings*. Vol. 2789. No. 1. AIP Publishing, 2023.

74. Khusanova, O. G., M. I. Kamoliddinov, and D. B. Muhammadjanova. "The taxonomic structure of soil waterweed in altitudinal belt of the north fergana." *Asian Journal of Multidimensional Research (AJMR)* 8.2 (2019): 332-336.

75. Xusanova, Onarxon. "FARG 'ONA VODIysi TEKISLIK MINTAQALARIDA TARQALGAN AL'GOSENOZLARNING EKOLOGIYASI." *Namangan davlat universiteti Ilmiy axborotnomasi* 8 (2023): 190-195.

76. Khusanova, Onarkhon, and Zulfiya Rakhimova. "ФАРФОНА ВОДИЙСИ ТУПРОҚЛАРИДА ЎЧРАЙДИГАН (CHLOROPHYTA) ЯШИЛ СУВ ЎТЛАРИ." *Formation and Development of Pedagogical Creativity: International Scientific-Practical Conference (Belgium)*. Vol. 1. 2023.

77. Khusanova, Onarkhon. "GREEN SOIL ALGAE DISTRIBUTED IN THE SOILS OF FERGANA VALLEY." *Conferencea* (2023): 63-66.

78. Khusanova, Onarkhon. "SOIL ALGAE INDICATORS." *E Conference Zone*. 2023.

79. Onarkhon, G., Khusanova Kh, and X. A. Alimjanova. "Structure and taxonomic analysis of soil algae steep areas of northern Ferghana in winter." *European science review* 7-8 (2018): 26-29.

80. Khusanova, Onarkhon Gaynullaevna. "TAXONOMIC ANALYSIS OF THE SUANOPHYTA DEPARTMENT ON THE SOILS OF THE NORTHERN FERGANA." *Scientific Bulletin of Namangan State University* 2.2 (2021): 136-140.