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It is known that the values of continuous 

random variables completely fill an interval 
(𝑎, 𝑏). For example, the distance to a target is a 
continuous random variable, and its possible 
values completely fill an interval. Obviously, 
the distribution law of such a random variable 
cannot be expressed in a table. 

If the random variable is continuous, the 
concept of the distribution function is 
introduced and the random variable is studied 
through it. Suppose that 𝜉 is a continuous 
random variable, and its possible values consist 
of the interval (𝑎, 𝑏). Let us consider the event 
that, taking some real number 𝑥, this random 
variable takes values less than 𝑥. We denote 
this event as 𝜉 < 𝑥. Its probability  

𝑃{𝜉 < 𝑥} 
depends on the given 𝑥, that is, it is a function 
of 𝑥. 

Definition. This function  
𝐹(𝑥) = 𝑃{𝜉 < 𝑥} 

is called the distribution function of the random 
variable 𝜉. 

We present the properties of the 
distribution function 𝐹(𝑥): 

Property 1. 0 ≤ 𝐹(𝑥) ≤ 1 for the 
distribution function 𝐹(𝑥). 

This property follows from the 
definition of the distribution function and the 
fact that 0 ≤ 𝑃(𝐴) ≤ 1 for the probability of an 
event. 

Property 2. 𝐹(𝑥) is an increasing 
function, that is, for any 𝑥1, 𝑥2 satisfying the 
inequality 𝑥1 < 𝑥2, 𝐹(𝑥1) ≤ 𝐹(𝑥2). 

Clearly, the event {𝜉 < 𝑥2} is equal to the 
sum of the events {𝜉 < 𝑥2} and {𝑥

1
≤ 𝜉 < 𝑥2}, 

and according to the addition theorem for their 
probabilities,  
𝑃{𝜉 < 𝑥2} = 𝑃{𝜉 < 𝑥1} + 𝑃{𝑥1 ≤ 𝜉 < 𝑥2}. 

Now, considering that 
𝐹(𝑥2) = 𝑃{𝜉 < 𝑥2}, 𝐹(𝑥1) = 𝑃{𝜉 < 𝑥1}, 𝑃{𝑥1 ≤

𝜉 ≤ 𝑥2} ≥ 0, 
we find from the next equality that 𝑃{𝑥1 ≤ 𝜉 <
𝑥2} = 𝐹(𝑥2) − 𝐹(𝑥1) ≥ 0, that is,  
𝐹(𝑥1) ≤ 𝐹(𝑥2). 
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Result. The probability that a random 
variable 𝜉 falls in the half-interval [𝑎, 𝑏) is 
𝑃{𝑎 ≤ 𝜉 < 𝑏} = 𝐹(𝑏) − 𝐹(𝑎). 

If the distribution function 𝐹(𝑥) of a 
random variable 𝜉 is continuous, the random 
variable is called continuous. 

Property 3. The probability of a 
continuous random variable taking a given 
value is zero: 

𝑃{𝜉 = 𝑥1} = 0. 
In the above relation, we get 𝑥2 = 𝑥1 +

𝛥𝑥. Then, from the equation  
𝑃{𝑥1 ≤ 𝜉 < 𝑥1 + 𝛥𝑥} = 𝐹(𝑥1 + 𝛥𝑥) − 𝐹(𝑥1), it 
follows that 𝑃{𝜉 = 𝑥1} = 0 at 𝛥𝑥 → 0.   

Property 4. The probability that a 
continuous random variable falls into the 
intervals (𝑎, 𝑏), [𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏] is the same: 

𝑃{𝑎 < 𝜉 < 𝑏} = 𝑃{𝑎 ≤ 𝜉 ≤ 𝑏} = 𝑃{𝑎 ≤ 𝜉 <
𝑏} = 𝑃{𝑎 < 𝜉 ≤ 𝑏}. 

Property 5. If all possible values of the 
random variable 𝜉 belong to the interval (𝑎, 𝑏), 
then  

𝐹(𝑥) = 0 when 𝑥 ≤ 𝑎, 
and 𝐹(𝑥) = 1 when 𝑥 ≥ 𝑏. 

Suppose 𝑥1 ≤ 𝑎. In this case, the event 
{𝜉 < 𝑥1} is an impossible event, and 

𝑃{𝜉 < 𝑥1} = 0, i.e. 𝐹(𝑥) = 0. 
Suppose 𝑥2 ≥ 𝑏. In this case, {𝜉 < 𝑥2} is 

an inevitable event, and  
𝑃{𝜉 < 𝑥2} = 1, i.e. 𝐹(𝑥) = 1. 

Result. If the values that the continuous 
random variable takes are located on the 
number axis, then 

𝐹(−∞) = 𝑙𝑖𝑚
𝑥→−∞

𝐹(𝑥) = 0, 𝐹(+∞) =

𝑙𝑖𝑚
𝑥→+∞

𝐹(𝑥) = 1. 

Suppose that the distribution function 
𝐹(𝑥) of a random variable 𝜉 is a differentiable 
function. 

Definition. The derivative of the function 
𝐹(𝑥) is called the probability density of a 
random variable 𝜉 and is denoted as 𝑝(𝑥): 

𝑝(𝑥) = 𝐹′(𝑥). 
Now we give the properties of the 

probability density of a random variable. 
Property 1. For an arbitrary 𝑥, 𝑝(𝑥) ≥ 0, 

and 

𝑃{𝑥1 < 𝜉 < 𝑥2} = ∫ 𝑝(𝑥)𝑑𝑥
𝑥2

𝑥1

. 

It is known that 𝐹(𝑥) is an increasing 
function. Then 𝐹′(𝑥) ≥ 0, and since 𝑝(𝑥) =
𝐹′(𝑥) it follows that 𝑝(𝑥) ≥ 0. 

Clearly, according to the Newton-
Leibnitz formula, 

∫ 𝐹′(𝑥)𝑑𝑥
𝑥2

𝑥1

= 𝐹(𝑥2) − 𝐹(𝑥1). 

Meanwhile, according to property 4 of the 
distribution function, 

𝑃{𝑥1 < 𝜉 < 𝑥2} = 𝐹(𝑥2) − 𝐹(𝑥1). 
From the last equalities, it follows that 

𝑃{𝑥1 < 𝜉 < 𝑥2} = ∫ 𝑝(𝑥)𝑑𝑥
𝑥2

𝑥1

. 

Property 2. For the probability density of 
a random variable, 

∫ 𝑝(𝑥)𝑑𝑥
+∞

−∞

= 1. 

Using the definition of the non-specific 
integral and the properties of the function 
𝐹(𝑥), we find: 

∫ 𝑝(𝑥)𝑑𝑥
+∞

−∞

= 𝑙𝑖𝑚
𝑣→−∞
𝑢→+∞

∫ 𝑝(𝑥)𝑑𝑥
𝑢

𝑣

= 𝑙𝑖𝑚
𝑣→−∞
𝑢→+∞

[𝐹(𝑢) − 𝐹(𝑣)] = 

= 𝐹(+∞) − 𝐹(−∞) = 1 − 0 = 1. 
Property 3. The distribution function of a 

random variable is 𝐹(𝑥) with probability 
density 𝑝(𝑥), then 

𝐹(𝑥) = ∫ 𝑝(𝑥)𝑑𝑥
𝑥

−∞

. 

Now we give the definition of the 
mathematical expectation of a continuous 
random variable.  

Let 𝑝(𝑥) be the density function of the 
random variable 𝜉. 

Definition. The mathematical 
expectation of a continuous random variable 𝜉 
is called the integral (if this integral is an 
absolute approximation) 

𝑀𝜉 = ∫ 𝑥
∞

−∞

𝑝(𝑥)𝑑𝑥. 

Example 1. Find the mathematical 
expectation of a normally distributed random 
variable with parameters 𝜉~(𝑎, 𝜎).  
  Solution: According to the formula  
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substituting 𝑧 =
𝑥−𝑎

𝜎
 and considering that the 

integral of an odd function over a symmetric 
interval with respect to zero is zero, we get 

a
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So, the mathematical expectation of the 
random variable 𝜉~(𝑎, 𝜎) is equal to the 
parameter 𝑎. 

Example 2. Find the mathematical 
expectation of a uniformly distributed random 
variable 𝜉 on the interval [𝑎, 𝑏]. 

Solution: We know that,  

𝑓(𝑥) = {

0,                  𝑖𝑓 𝑥 ≤ 𝑎,
1

𝑏 − 𝑎
, 𝑖𝑓  𝑎 < 𝑥 ≤ 𝑏,

0,                𝑖𝑓 𝑥 > 𝑏.

 

 
According to the formula 

𝑀𝜉 = ∫ 𝑥 ⋅
1

𝑏 − 𝑎

𝑏

𝑎

𝑑𝑥 =
𝑏 + 𝑎

2
. 

If the random variable 𝜉 is given by the 
distribution function 𝐹(𝑥), its mathematical 
expectation  

𝑀𝜉 = ∫ 𝑥𝑑𝐹
∞

−∞

(𝑥) 

is determined by the equation. 
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