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1 Introduction 
In most design problems, a control design 
problem should deal with the "best" or 
"optimal" 
design. The concept of an optimal controller is 
one that meets all of the design criteria while 
minimizing the performance index. For a 
continuous-time linear dynamical system(DS), 
the elements of the optimum control problem 
can really be described [1]. An approach for 
modeling and investigating events that modify 
through time and space is DS theory. OCPs play 
a major role in a variety of fields, like 
economics, engineering, and finance. The 
subject of control theory is a subfield of the 
theory  of optimization that deals with 
lowering costs or maximizing payouts [2]. 
Finding an optimal control of open-loop in 

which denoted by 𝑢∗(𝜏) or even the feedback of 
optimal control that denoted by 𝑢∗(𝜏, 𝑥) which 
satisfies the DS which optimizes in some sense 
performance index is an apparent objective. 
Direct and indirect approaches are the two 
most common ways for addressing OCPs today. 
This problem is converted into another 
problem via an indirect way.  The original OC 
problem can transformed into a boundary 
value problem(BVP), which can be solved 
numerically or analytically utilizing classical or 
modern methods  for solving differential 
equations (DEs)[2-3]. Because the analytical 
solutions for OCPs are not always available, 
finding numerical solutions for handling OCPs 
is the suitable and  most reasonable way to 
deal with OCPs, and it has proven to be an 
appealing study for mathematical scientists. 
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Numerous mathematical computational 
approaches and efficient methods have been 
used to solve the OCPs in recent years [2-4]. On 
the other hand, the indirect methods provide 
the optimal solutions by directly minimization 
of the performance index subject to limitations. 
In reality, the OCPs can be converted into a 
problem optimization. The three different 
ways: control parameterizations, control-state 
parameterizations, and state parameterizations 
are used in the technique  of parameterizations  
can be used to implement the direct 
techniques. The control-state 
parameterizations and control 
parameterizations have been used extensively 
to solve general OCPs. [5-6] proposed 
numerical methods for solving unconstrained 
and constrained OCPs, and then, they extended 
their ideas to nonlinear OCPs with control 
inequality constraints, terminal state 
constraints, and simple state variable 
limitations. [7] described a method for solving 
nonlinear constrained OCPs using numerical 
methods. Using a new Chebyshev spectral 
approach, [8] has proposed a numerical 
method for solving OCPs and the controlled-
Duffing-oscillator(CDO). [9] showed how to 
solve the CDO using a spectral technique. [10] 

presented a numerical algorithm for solving 
the CDO, in which the control and state 
variables have been approximated by 
Chebyshev series, and [11] presented a method 
for solving OCPs and the CDO, however, the 
algorithm of the method of solution is based on 
state parametrization, where the variable state 
can be considered as a linear combination of 
Chebyshev polynomials with unknown 
coefficients, and later, extended state 
parametrization. This paper is designed as the 
following sections, the first one is the 
introduction of the article . Preliminaries is 
introduced in Section 2. The proposed 
estimated approach is presented in sections 
three and four which contains the 
implementations. Finally, there is a conclusion 
to the paper. 
 
2 Preliminaries 
In this section, we have introduced the 
background which related with the problem of 
this 
study. 
2.1 The Optimal Control System 
In general, we define an OC system as a state 
variable 𝑥∗(𝜏) that optimizes the performance 
index in some way.                                                        

minimize 𝐽(𝑡0, 𝑥(𝜏0); 𝑢(𝜏)) =

𝑚inimize ∫ L(𝜏, 𝑥(𝜏),
𝑡1

𝜏0
𝑥̇(𝜏), 𝑥̈(𝜏), 𝑥(𝜏), … , 𝑥̇(𝑛)(𝜏), 𝑢(𝜏))𝑑𝜏,                                                     (1) 

subject to the following ordinary-differential equation(ODE) 

In this section, we deal with the OC with the problem of finding a control law for a given system 

𝑓 (𝜏, 𝑥(𝜏), 𝑥̇(𝜏), 𝑥̈(𝜏), 𝑥(𝜏), 𝑥̈̈(𝜏), … , 𝑥̇(𝑛)(𝜏), 𝑢(𝜏)) = 0, , 𝜏 ∈ 𝐼                                                 (2) 

Where,  f is a continuously differentiable real function and 𝑓: 𝐼 × 𝐸 × 𝐸 × 𝐸 × 𝑈 →  ℜ𝑛. Also, the time 
interval  𝐼 = [𝜏0, 𝜏1] and the control , 𝑢(𝜏): 𝐼 → ℜ𝑛  and 𝑥(𝜏): 𝐼 →  ℜ𝑚 is used for the state variable, with 
the following BCs                                                                                                                                                                      

𝑥(𝑘1)(𝜏0) = 𝑥𝑘1
; 𝑥(𝑘2)(𝜏1) = 𝑥𝑘2

,                                                                                           (3) 

For 𝑘1 = 1,2, … , 𝑛1  and  𝑘2 = 1,2, … , 𝑛2 .where , 
𝑛1 + 𝑛2 = 𝑛   and 𝑥(𝜏0), 𝑥(𝜏1)  are the initial 
and ending states of in ℜ𝑛; resp., That might be 
fixed or unrestricted-control 𝑢∗(𝜏) is called an 
OC and the state variable 𝑥∗ (𝜏). an optimal 
trajectory(OT) . Also, 𝐿: 𝐼 × 𝐸𝑛 × 𝑈 → ℜ𝑛 in all 
three parameters, is considered to be a 
continuously differentiable function. A 
Lagrange problem is a problem of optimization 
with a performance index like in Equation (2). 
The Bolza-Mayer problems are two other 
optimization problems that are similar. An 

energy or fuel function can really be significant 
in OCPs. 
 
2.1.1 Optimal Control with Second-Order 
ODEs 

In this subsection, we deal firstly with the OC of 
the problem of determine  a control law for a 
given system of second-order ODEs . 

𝑓(𝑡, 𝑥(𝜏), 𝑥̇(𝜏), 𝑥̈(𝜏), 𝑢(𝜏)) = 0,                   𝑡 ∈ 𝐼     

                                                                (4) 

where, 𝑓: 𝐼 × 𝐸 × 𝐸 × 𝐸 × 𝑈 →  ℜ𝑛  is a  real 
differentiable continuously function. Also, 𝐼 =



7667-2795ISSN:                                                                                                                                          April 2022| 5Volume  

 

www.geniusjournals.org                                    Eurasian Journal of Physics, Chemistry and Mathematics  

P a g e  | 19 

[𝜏0, 𝜏1] is the time interval and the function  
𝑢(𝜏): 𝐼 → ℜ𝑛  for the control and   𝑥(𝜏): 𝐼 →
ℜ𝑚  for the state variable is used. As the control 
function is changed, the solution to the DE can 
be changed. The objective is to find at least a 
piecewise continuous control 𝑢∗  and the 
associated state variable 𝑥∗ (𝜏) that optimizes 

in some sense the performance index 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏, 𝑥(𝜏); 𝑢(𝜏))

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ 𝐿(𝑡, 𝑥(𝜏), 𝑥̇(𝜏), 𝑥̈(𝜏), 𝑢(𝜏))
𝑡1

𝑡0

𝑑𝜏,                         (5), 

subject to the conditions in Equation (1) with 
the following BCs: 

𝑥(𝜏0) = 𝑥0  and  𝑥1   𝑥(𝜏1) = 𝑥1  where, 𝑥0  and 
𝑥1 are the initial and final state in ℜ𝑛 . resp. 
Which are fixed or free points. The control 𝑢∗ is 
called an OC and state variable 𝑥∗. an OT. 
However, in all three arguments, 𝐿: 𝐼 × 𝐸 ×→
ℜ𝑛  is assumed to be a differentiable 
continuously  function. A Lagrange problem is 
optimization with a performance index as 
shown in Equation (2). The Bolza and Mayer 
problems [2] are two other optimization 
problems that are similar. L can be an energy 
or fuel function in OCPs, as shown below [28]: 

                      𝐿(𝜏, 𝑥(𝜏), 𝑢(𝜏)) =
1

2
(𝑥2(𝜏) + 𝑢2(𝜏))                                                               

(6) 
                       𝐿(𝜏, 𝑥(𝜏), 𝑢(𝜏)) = |𝑥(𝜏)| + |𝑢(𝜏)|                                                                   

(7) 
J can be a multi-purpose or multi-objective 
functional in general, such as minimizing fuel 
dissipation or maximizing utility. 
 
3. The Proposed Approximated Method 
 
[3] and [12] have been used the approach  of 
state parameterization to convert it to a 
nonlinear optimization problem and 
distinguish polynomial coefficients of degree at 
most n in the following form                                                  
           𝑥(𝑡) = ∑ 𝑎𝑖Ω𝑖(𝜏)𝑛

𝑖=0                                                                                                      
(8) 
For the optimal solution. 
 
In this paper, using a base of approximation 
                                               Ω =
{Ω0(𝜏), Ω1(𝜏), Ω2(𝜏), … , Ω𝑛(𝜏)},                        (9) 
The following is an approximate of x(t). 

                                      𝑥(𝑡) = 𝑐0Ω0(𝜏) + 𝑐1Ω1(𝜏) +
𝑐2Ω2(𝜏) + ⋯ + 𝑐𝑛Ω𝑛(𝜏),            (10) 
If we use the DE in Equation (2) and the BCs in 
Equation (3), we get an approximation (2). 
 
𝑥(𝑡) = 𝑐𝑖0Ω0(𝜏) + 𝑐𝑖1Ω1(𝜏) + 𝑐𝑖2Ω2(𝜏) + ⋯ +
𝑐𝑖𝑚Ω𝑛(𝜏) + 𝑐𝑗1

∗ Ω0(𝜏) + 𝑐𝑗2
∗ Ω1(𝜏) +

                                               𝑐𝑗3
∗ Ω2(𝜏) + ⋯ +

𝑐𝑗𝑖
∗ Ω𝑛−𝑚(𝜏)                                                 (11) 

where 𝑚 <  𝑛 .  To achieve the optimal value, 
substitute Equation (11) in the minimization 
problem in Equation (5). As a result, the 
problem's approximation has been assessed.. 
3.1 Algorithm of  Proposed Method 
The least square method for solving DEs [28-
29] is one of the most-powerful approximated 
methods for solving DEs. This type of the 
methods is based on the approximating of the 
solution of DE by  series of approximation by 
using a complete sequence of functions which  
means a combination of sequence of linearly 
independent functions that have no non-zero 
function which perpendicular to any function 
of this sequence of functions. To approximate 
the solution of OC problem in Equation (1) 
subject to the ODEs in Equation (2) with the  
BCs in Equations (3) using the proposed 
method can applied according to the following 
steps: 
3.1.1  Algorithm 

• Consider the approximation's base, as 
shown in Equation (9). 

• Approximate the problem's solution 
using Equation (10). 

• Satisfy the boundary conditions of the 
research problem to identify some of 
the approximation parameters, and the 
approximation problem in Equation ten 
is simplified to the problem of 
evaluating the coefficients as in 
Equation eleven (11). 

• As a result, the OC problem in Equation 
(1) is translated to evaluate the other 
parameters of the approximation of x(t) 
by minimizing the functional in 
Equation (1) to discover the other 
coefficients 𝑎𝑖for i = 0,1,2,..., n of the 
approximation by minimizing the 
functional in Equation (1) 



7667-2795ISSN:                                                                                                                                          April 2022| 5Volume  

 

www.geniusjournals.org                                    Eurasian Journal of Physics, Chemistry and Mathematics  

P a g e  | 20 

• The least-square method transforms the 
optimal issue of coefficient evaluation.. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏, 𝑥(𝜏), 𝑢(𝜏))  
=  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑎0, 𝑎1, … , 𝑎𝑛) 

             Equation (2), in approximation form, 
gives the best approximation to the optimal    
             problem solution. 

• However, in order to determine the 
coefficients while limiting the functional 
error 𝐽(𝑡;  𝑥(𝑡);  𝑢(𝑡)),  the absolute 

error(E(x)) should be kept to a 
minimum, where 
 

𝐸(𝑥(𝜏)) = |𝐽(𝜏, 𝑥(𝜏), 𝑢(𝜏))

− 𝐽(𝑎0, 𝑎1, … , 𝑎𝑛)| 

 
4  Implementations 
Some examples have been implemented in this 
part to introduce and test the approximated 
method. 
Example 4.1  
Take into consideration the following: OC 
problem that in some way increases the 
performance index  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏0, 𝑥(𝜏0); 𝑢(𝜏)) =

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ 𝑢2(𝜏)𝑑𝜏
𝑡1

𝑡0
                          (12) 

 
subject to the ODE 

                                            𝑢(𝜏) = 𝑥̇(𝜏) +
𝑥̈(𝜏),                                          (13) 

with the boundary conditions(BCs) 
                     𝑥̇(0) = 𝑥(0) = 0, and , 𝑥(2) =
𝑥̇(2) − 20 = 28                    (14) 

Using the approximation base Ω(𝜏) =
{1, 𝜏, 𝜏2, 𝜏3, 𝜏4}, we have the approximation of 
𝑥(𝑡) as  

𝑥(𝜏) = 𝑐0 + 𝑐1𝜏 + 𝑐2𝜏2 + 𝑐3𝜏3 + 𝑐4𝜏4.                                                                    
(15) 

If we use the BCs in Equation (14), we obtain 
the following approximation 

                         𝑥(𝜏) = 𝜏2(−3 + 4𝑐4 +
(5 − 4𝑐4)𝜏 + 𝑐4𝜏2).                                   
(16)   

To get the best value of 𝑐4  = 0.54, substitute 
Equation (16) into the minimization problem in 
Equation (12). As a result, the problem's 
approximation is as follows:  
                        𝑥(𝜏) = 𝜏2(−0.84 + 2.84𝜏 +
0.54𝜏2),                                          (17) 

Example 4.2  
Take into consideration the following: OC 
problem that in some way increases the 
performance index  

      𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏0, 𝑥(𝜏0) ;  𝑢(𝜏)) =

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ (𝑥̈(𝜏) + 𝑢(𝜏))𝑑𝜏
𝑡1

𝑡0
 ,            

(18)  
subject to the ODE  

                                                      𝑢(𝜏) =
𝑥̇(𝜏) + 𝑥̈(𝜏),                                      (19) 

with the BCs 
 
  𝑥̇(0) = 𝑥(0) = 0, and , 𝑥(2) = 𝑥̇(2) − 20 = 28                                                               
(20) 
Using the basis of approximation  Ω =
{1, 𝜏, 𝜏2, 𝜏3, 𝜏4} , we have the approximation of 
𝑥(𝑡) as 
                                                   𝑥(𝜏) = 𝑐0 + 𝑐1𝜏 +
𝑐2𝜏2 + 𝑐3𝜏3 + 𝑐4𝜏4.                             (21)  
If we use the BCs in Equation (20), we obtain 
the following approximation 
                                               𝑥(𝜏) = 𝜏2(−3 + 4𝑐4 +
(5 − 4𝑐4)𝜏 + 𝑐4𝜏2).                         (22) 
Substitute Equation (22) in minimizing 
problem in Equation (18) to obtain the 
optimal-value 
of 𝑐5 = 1 , As a result, the problem's 
approximation is as follows: 
                                             𝑥(𝜏) = 𝜏2(1 + 𝜏 + 𝜏2).                                                             
(23) 
Exact solution is 𝑥(𝜏) =  𝜏2 + 𝜏3 + 𝜏4 . 
 
Example 4.3  
Take into account the following: OC problem 
that improves the performance index in some 
manner 

         𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏0, 𝑥(𝜏0); 𝑢(𝜏)) =

 minimize ∫ u2(τ)dτ
t1

t0
 ,                                

(24)  
subject to the ODE   
                                                              𝑢(𝜏) = 𝑥̇(𝜏) +
𝑥̈(𝜏) ,                                               (25)  
with the BCs  

           𝑥̇(0) = 𝑥(0) = 0 ,  and     𝑥(1) =
0.5 𝑥̇(1)  = 0.5                                       (26)  

 
Using the basis of approximation  Ω =
{1, 𝜏, 𝜏2, 𝜏3, 𝜏4} , we have the approximation of 
𝑥(𝑡) as 
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                                         𝑥(𝜏) = 𝑐0 + 𝑐1𝜏 +
𝑐2𝜏2 + 𝑐3𝜏3 + 𝑐4𝜏4.                          (27) 

We get the following approximation if we use 
the BCs in Equation (26) 
                                               𝑥(𝜏) = 𝜏2(4𝑐4 +
(5 − 3𝑐4)𝜏 + 𝑐4𝜏2).                                   (28) 
To determine the optimal value of 𝑐4, substitute 
Equation (28) in the minimization problem in 
Equation (24) As a result, the problem's 
approximation has been written. 
                                        
Example 4.4  
Take into account the following: OC problem 
that improves the performance index in some 
manner 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜏0, 𝑥(𝜏0);  𝑢(𝜏)) =

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ 𝐿(𝜏, 𝑥(𝜏), 𝑥̇(𝜏),
𝑡1

𝑡0
𝑥̈(𝜏), 𝑥(𝜏), 𝑥̈̈(𝜏), 𝑥̈̈̇(𝜏), 𝑢(𝜏))𝑑𝜏             

                                                       =

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ 𝑢2(𝜏)𝑑𝜏,
𝑡1

𝑡0
                                                     

(31)  
subject to the ODE  
                                             𝑢(𝜏) = 𝑥̇(𝜏) + 𝑥̈(𝜏) +

𝑥(𝜏) + 𝑥̈̈(𝜏) + 𝑥̇̈̈(𝜏)                            (32)  
with the BCs 
                                        𝑥(0) = 𝑥̇(0) = 𝑥̈(0) =
𝑥(0) = 0 and      𝑥̇(1) = 1.                     (33)  
Using the approximation base Ω =
{1, 𝜏, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6}    and  𝑥(𝜏)  is a close 
approximation as 

                                        𝑥(𝜏) = 𝑐0 + 𝑐1𝜏 +
𝑐2𝜏2 + 𝑐3𝜏3 + 𝑐4𝜏4 + 𝑐5𝜏5 + 𝑐6𝜏6.   (34)                         

 
Using the BCs in Equation (33), we could get 
the approximation of x(t) Substitute Equation 
(34) in the minimizing problem in Equation 
(31) to get the optimal value of 𝑐6 showing that 
the problem's approximation has been 
evaluated. 
 
Example 4.5 The Controlled Linear Oscillator 
 
We'll look at the OC of a linear oscillator that's 
controlled by the DE. 
                                                        𝑢(𝜏) = 𝑥̈(𝜏) +
𝑤2𝑥(𝜏), 𝜏 ∈ [−𝑇, 0],                             (37)  
T is stated, along with the boundary conditions.  
                                        𝑥(−𝑇) = 𝑥0 ,  𝑥̇(−𝑇) = 𝑥̇0 ,
𝑥(0) = 𝑥̇(0) = 0 .                           (38) 

It is desirable to maintain control over the state 
of this plant in order for the performance index 
to improve. 
                                                               𝐽 =
1

2
∫ 𝑢2(𝜏)𝑑𝜏,

0

−𝑇
                                              (39)  

For all acceptable control functions u is 
minimized (t). When Pontryagins' maximal 
principle method is applied to this OC problem, 
the exact analytical answer is as follows: 
Using the basis of approximation: Ω(𝜏) =
{1, 𝜏, 𝜏2, 𝜏3, 𝜏4}  , We have a rough estimate 
o 𝑥(𝑡) as  
                                             𝑥(𝜏) = 𝑐0 + 𝑐1𝜏 +
𝑐2𝜏2 + 𝑐3𝜏3 + 𝑐4𝜏4.                            (40)  
 
We can get the approximation of x(t) if we 
apply the BCs in Equation (38). Substitute 
Equation (40) in the minimizing problem in 
Equation (39) to get the optimal value of 𝑐4, 
and so the problem's approximation has been 
evaluated. 
 
5 Conclusion 
This paper gives a numerical analysis using the 
approximated technique to solve OCPs and 
specific kinds of OCPs. State parameterizations 
are used in the approximated solutions 
technique. Using a small number of unknown 
parameters, it generates an estimated or 
accurate answer. This strategy is helpful for the 
classes of OCPs, we focus. In reality, the 
suggested direct technique has the capability of 
calculating the state variables as functions of 
time and continuous control. In addition, the 
value of the performance index is directly 
obtained. The numerical method described 
here is a straightforward way to alter and 
assess an OC that can be simply applied to 
various challenges. The quick convergence of 
this approximation method is one of its most 
notable advantages. The approximated 
outcomes of the sample instances show that 
the suggested approach is a powerful method, 
which is a critical consideration when selecting 
a method for engineering applications. 
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