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Simply connected area D , limited 

smooth lines  , based on points ( )0;1А  and 

( )1;0В  located in the quarter ( ), 0x a y   

and segments 1АА , ВЕ , 1АЕ  directed 0х = . 

1х = , 1у =  respectively, where ,О Е −  dots 

with coefficients ( )0;0 , ( )1;1  considering 

equations 

( ) 0Lu
у


=


             (1) 

where  

                                   
1 sgn 1 sgn

2 2
xx yy y

y y
Lu u u u

− +
= + −                                      (2) 

Task 1. Find a function ( ),u x y  with the following properties: 

1. Function ( ),u x y  is a regular solution of the equation (1) in the region of D  ( )0у   

2. Function ( ),u x y  and its first-order partial derivatives are continuous in a closed domain D  

(it is assumed that at the dots ( )0;0О , ( )1;0В  partial derivatives xu , yu  may go to infinity of order 

less than one) 
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3. Function ( ),u x y  satisfies the boundary conditions 

( )u f


=  ( -contour dot  ), ( )
1

1А Е
u х=  

x l BE
u u

=
=  ( )0 1l  , ( ) ( ) ( )

1

0, 0,
AA

u y u y y+ − =                                  (3) 

( )x AO
u y=  

Where 1, , ,f    − given functions satisfying certain smoothness conditions and matching conditions, 

( )у − the private function in the study of these problems will use the factor that any regular solution 

of equation (1) can be represented in the form 

                                           ( ) ( ) ( ), ,u x y z x y x= +                                                   (4) 

Respectively (1), ( ),z x y −  regular solution of the equation  

1 sgn 1 sgn
0

2 2
xx yy y

y y
z z z

− +
+ − =            (5) 

 −  arbitrary twice continuously differentiable function can be assumed without loss of generality 

( ) ( )0 0 0 = = , it is assumed that   lies entirely in the strip of bounded straight lines 0x = , 1x =  

on the grounds of  (3)-(5) Problem 1 is reduced to finding a regular solution to Eq. (5) in the domain 

( )0D y   satisfying the boundary conditions 

                        

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

1

1

1

, 1

0 1 , , 1 0

,

BE x l

OA AO

xA E AO

z f x z z y

z y y z y y y

z x x z y


   

  

  

=


= − = = −


=   = − − −   


= − = 

           (6) 

Let us prove the uniqueness of the 

solution to Problem 1. If 1 0f   = = = = , 

then the function ( ),z х у  cannot reach a 

positive maximum (negative minimum) on the 

segment ОВ  и 1АА . Indeed, suppose that a 

positive maximum (negative minimum) is 

reached at some dot ( )0 ,0N x . Then the 

equations 0xx yz z− =  follows that 

( )0 ,0 0yz x  ( )( )0 ,0 0yz x   on the other 

hand, from the elliptical part of the region 

( ) , , 0, 0D x y D x y=     have 

( )0 ,0 0yz x  , ( )( )0 ,0 0yz x  . From the 

problem statement it follows that 

( ) ( )
0 0

lim , lim ,
y y

z x y z x y
→ − → +

= , 

( ) ( )
0 0

lim , lim ,y y
y y

z x y z x y
→ − → +

=  hence we 

conclude that the function ( ),z х у  cannot reach 

a positive maximum (negative minimum) on 
ОВ .  

Let the function ( ),z х у  reaches a 

positive maximum (negative minimum) at the 

dot ( )0,N y  segment 1АО . Then ( ),z х у  

reaches a positive minimum (negative 

maximum) at the dot ( )1 0,N y  segment АО . 

From the situation 0x AO
z =  following that 

( ),z х у  does not reach a positive maximum 

(negative minimum) on an open segment ОА .  

Consequently, ( ),z х у  does not reach a 

positive maximum (negative minimum) on 1АО

. Function ( ),z х у  cannot reach a positive 

maximum (negative minimum) on ВЕ . 
Otherwise, this maximum must be realized 
inside the region 

( ) 1 , , 0, 0D x y D x y=    , which is 

impossible, it follows that ( ), 0z х у =  in the 



Volume 5| April 2022                                                                                                                                         ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                     www.geniusjournals.org 

P a g e  | 14 

region of 1D . Then ( ) 0y = , ( ) 0x =  

Consequently, ( ), 0z х у   and in the region  

2D . Thus, it has been proven that ( ), 0u х у   

in the region of  D . 
Let us proceed to the proof of the 

existence of a solution to the problem. Let's 

assume that for the prostate  −  circular arc 
2 2 1х у+ = . Regular in the area 2D  solution of 

the equation (5) satisfying the boundary 

conditions ( )x AO
z y= , ( )1y OB

z x= ,  

( ) ( )z f x


 = −  is given by the formula 

          ( ) ( ) ( ) ( ) ( ) ( )
1 2 0

30 1

2 1

, , , ,0 , ;0,
G

z x y t G x y t dt f d t G x y t dt
n







   
−

=


= + −

         (6) 

( ) ( ) ( )cosf f   = − ; ( ), ; ,G x y   −  Green's function. From equality (6) we go ( )х  

                                          ( ) ( ) ( )
1 2 2

12 2

0

1 1
ln

t x
x t dt g x

t x
 



−
+ =

−                                 (7) 

Where  

                                 ( ) ( ) ( ) ( )
0 2

1

3 11

2

,0;0,
G

g x t G x t dt f d
n



 

  
=−


= +

   

Due to the continuity of the first derivatives of the function ( ),z х у  from the parabolic part 1D  

областиin the area of D  we get the ratio between ( )х  and ( )х  

                                                      ( ) ( )4

1 0х х − =                                                  (8) 

Using Conditions ( ) ( )0 1 0 = = , and (8) get  

                                      ( ) ( ) ( ) ( )
1

1 1

0 0

1 0

x

х t dt t t dt   − + − =                                       (9) 

Excluding ( )x  and (8) and (9), we have 

                                     ( ) ( )
1 2

1 2 2 2 2

0

1 2 2

1

t x x
t dt F x

x t t x




 
− = 

− − 
                                    (10) 

 Where  

                                     ( ) ( ) ( ) ( ) ( )
1

1 1

0 0

1

x

F x t dt t t dt g x  = − − −   

Using the change of variables 
2

41

t

t
=

+
, 

2

41

x
s

x
=

+
 

Equations (10) are reduced to the form  

                                                     
( )

( )
1

0

1 m v
dv P s

v s
=

−                                                 (11) 

Where  
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                                     ( ) ( )
4

1

1

2

t
m v t

t


+
= ,    ( ) ( )

41

2

x
P s F x

x

+
=  

Inverting the integral equation (11), we have  

                                          ( )
( )
( )

( )
1

1 2

0

11

1

s v p v
m v dv

v s v s

 −
= − = 

− − 
  

Returning to the old variables х  and t , we obtain the Fredholm integral equation of the second 
kind 

                                          ( ) ( ) ( ) ( )
1

1 0 1 0

0

1
,x k x t t dt f x 


− =                                    (12) 

where ( )0 ,K x t −  kernel resolvent 

( ) ( ) ( ) ( )
1

0

0

,f x f x g x t t dt= +   

where ( )0f x , ( ),g x t −  known features. 

Substituting values ( )1 х  into the formula (9) define ( )х  

                                         ( ) ( ) ( ) ( )
1

1 1

0

,х p x t t dt F x = +                                              (13) 

Solution of equation (5) satisfying the boundary conditions ( )
1OA

z y= ,  

( ) ( ) ( )1 11
BE

z y y  = − = , ( )
OB

z x=  is given by the formula  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

* * *

1

0 0 0

1
, , ;0, , ;1, , ; ,0

2

y

z x y G x y t dt t G x y t dt t G x y t dt    


 
= − + 

 
   (14) 

Where ( )* , ; ,G x y   −  Green's function. 

Realizing the condition ( )1x l
z y

=
=  relatively ( )1 y , we obtain a Volterra integral equation 

of the second kind with sufficiently smooth kernel 

                                       ( ) ( ) ( )*

1 1 2

0

1
( , ;1, )

2

y

y t G l y t dt F y 


+ =                       (15) 

where  

                           ( ) ( ) ( ) ( ) ( )* *

2

0

1 1
, ;0, , ; ,0

2 2

y

F y t G l y t dt t G l y t dt 
 

= +   

Equation (15) has a unique solution  

Imlement the conditions ( ) ( )
OA

z y y = − −  has  
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( ) ( ) ( ) ( ) ( )
( )

( ) ( )

1 2

1

30

2

1

1

0

0, ;cos ,sin
0, ; ,0

0, ;0,

G y
y y t G y t dt f d

n

t G y t dt





 
    



 −
= − − − +



+ − − −

 



 

Substituting values ( )y , ( )1 y  into the formula (14) and using the conditions 

( ) ( )
1

1A E
z x x = − , for determining ( )х  ( )0 1х   we obtain an integral Fredholm equation of 

the second kind, the solvability of which follows from the uniqueness of the solution of the problem. 
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