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1. Introduction 
Let 𝐺 = (𝑉, 𝐸) be an undirected, simple, and 
finite graph of order |𝑉| . The open 
neighborhood of a vertex 𝑣  in 𝐺 is 𝑁𝐺(𝑣)  =
{𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}  and 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣)  ∪
{𝑣} is the closed set [12]. 
 A subset 𝐷 ⊆ 𝑉is a dominating set of 𝐺 , if  
𝑁𝐺[𝐷] = 𝑉. The domination number 𝛾(G) is the 
minimum cardinality of a dominating set in 𝐺. 
The 𝑁𝐺(𝑣)  = {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}is the open 
neighborhood of a vertex 𝑣 ∈ 𝐺and 𝑁𝐺[𝑣] =
𝑁𝐺(𝑣)  ∪ {𝑣}.Domination in graphs has wide 
range to solve variant problems life. So there 
are many appeared many parameters of 
domination as in [1-8] for domination by 
vertices and [22] for domination by edges. Also, 
there is a study of domination polynomial of 
certain graph as in[9,14,15,16,18,19]. And 
Chromatic polynomials and chromaticity of 
zero-divisor graphs as in [17]. The domination 
deal with many fields as a strong graph and 
fuzzy graph [11, 20], topological graph [13], 
and others. C. Berge in [10] is the first person 

who introduced the domination parameter. In 
[21] the co-neighborhood domination is 
defined as a subset 𝐷 ⊂  𝑉  is equality co-
neighborhood dominating set of 𝐺 (ENDS), if  
|𝑁[𝑣] ∩ (𝑉 –𝐷)|  equal ∀ 𝑣 ∈ 𝐷 . In [18] the 
inverse co-neighborhood domination is 
introduced. In this paper, the new concept of 
parameter domination is introduced which is 
called the strong EN domination.  
To prove our main results we need the 
following results 
Definition.1.1[20]. Let 𝐺be a simple graph, a 
proper subset 𝐷 ⊂ 𝑉  is called equally co-
neighborhood dominating set of G (ENDS), if 
every vertex in set 𝐷  is adjacent to equally 
number of vertices in 𝑉 − 𝐷. The set 𝐷is called 
minimal 𝐸𝑁𝐷𝑆( 𝑀𝐸𝑁𝐷𝑆)  if it has no proper 
ENDS. The equally domination number denoted 
by 𝛾𝑒𝑛(𝐺) for simplicity 𝛾𝑒𝑛(𝐺) is the minimum 
cardinality of a 𝑀𝐸𝑁𝐷𝑆 . The 𝑀𝐸𝑁𝐷𝑆  of 
cardinality 𝛾𝑒𝑛 is called 𝛾𝑒𝑛- set. 
 

Proposition 1.2. [20].   
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For a complete bipartite graph 𝐾𝑛,𝑚 ,𝛾𝑒𝑛(𝐾𝑛,𝑚) = 𝑚𝑖𝑛{𝑚, 𝑛, |𝑚 − 𝑛| + 2}. 

Theorem 1.3. [20].  
 If 𝐺1 and 𝐺2 are two graphs, then in general 1) 𝛾𝑒𝑛(𝐺1⨀𝐺2) = |𝐺1|.  2) 𝛾𝑒𝑛(𝐺2⨀𝐺1) = |𝐺2|. 
 
2   SENDS for some certain graphs 
 
Definition 2.1. 
Consider 𝐺 is a simple graph, 𝐷 ⊂ 𝑉is called the strong equality co-neighborhood dominating set of the 
graph G (SENDS), if  |𝑁[𝑣] ∩ (𝑉 –𝐷)| equal ∀ 𝑣 ∈ 𝐷, and deg(𝑣) ≥ deg(𝑢) ∀𝑣 ∈  𝐷  and ∀𝑢 ∈  𝑉 − 𝐷. 
The strong co-equally domination number denoted by 𝛾𝑒𝑛

𝑠 (𝐺) is the minimum cardinality of SENDS. The 
MSENDS of cardinality is called  𝛾𝑒𝑛

𝑠 -set. (For example see Fig .1)  

 
Figure 1:    (a) 𝛾𝑒𝑛(𝐺)        (b)  𝛾𝑒𝑛

𝑠 (𝐺) 
Proposition 2.2. Assume that the graph 𝐺has order 𝑛, then 
1. 𝑣 ∉  𝐷,    if   𝑣 is a pendant vertex such that  𝑛 ≥ 3 and G be connected graph. 
2.    𝛾𝑒𝑛

𝑠 (𝐺) = 𝛾𝑒𝑛(𝐺) If  𝛾𝑒𝑛(𝐺) = 1 
3.  1 ≤  𝛾𝑒𝑛

𝑠 (𝐺) ≤ 𝑛 − 1. 
4.   𝛾𝑒𝑛

𝑠 (𝐺) ≥ 𝛾𝑒𝑛(𝐺). 
5. If G be a graph has ENDS, then G not necessary has SENDS 
Proof. 
Let 𝑣 be a pendant vertex in 𝐺 and let 𝐷 be a 𝛾𝑒𝑛

𝑠 (𝐺)-set. since  n ≥ 3 and G is connected graph, then 
there is 𝑢 ∈ 𝐺 such that deg (𝑢) ≥ 2, since deg (𝑢) > deg (𝑣) hence 𝑣 ∉  𝐷,  according to Definition 
1.1 and Definition 2.1. 
If  𝛾𝑒𝑛(𝐺) = 1, then there is vertex (v) such that  𝑑𝑒𝑔(𝑣) = 𝑛 − 1,  therefore   𝛾𝑒𝑛

𝑠 (𝐺) = 𝛾𝑒𝑛(𝐺). 
The lower bound occurs by (2) and upper bound occurs when  𝐺 = 𝑃2. 
If 𝐺 = 𝐾4,5, 𝑡ℎ𝑒𝑛 𝛾𝑒𝑛(𝐺) = 3  but   𝛾𝑒𝑛

𝑠 (𝐺) = 4, then  𝛾𝑒𝑛
𝑠 (𝐺) > 𝛾𝑒𝑛(𝐺) and by (2)  therefore   𝛾𝑒𝑛

𝑠 (𝐺) ≥
𝛾𝑒𝑛(𝐺). (For example see Fig .1)  
It is straightforward by the following example. 
Example .2.3  
Let  G be a bipartite  graph see figure 2. We have   𝐷1 = {𝑣1, 𝑢1, 𝑢2}, 𝐷2 =  {𝑣2, 𝑢1, 𝑢2} and  𝐷3 =
 {𝑣3, 𝑣4, 𝑢3, 𝑢4, 𝑢5}  are ENDS, but not SENDS because deg(𝑣2) ≥ deg(𝑢1), deg(𝑣1) ≥ deg(𝑢1), 
deg(𝑣2) ≥ deg(𝑢3), respectively for  𝑣1 𝑜𝑟 𝑣2 ∈ 𝑉 − 𝐷, then G has no SENDS. 

 
Figure 1: G has no SENDS 

Proposition 2.4.  For complete 𝐾𝑛, wheel 𝑊𝑛, and star 𝑆𝑛 graphs, then 
   𝛾𝑒𝑛

𝑠 (𝑆𝑛) =   𝛾𝑒𝑛
𝑠 (𝐾𝑛) =   𝛾𝑒𝑛

𝑠 (𝑊𝑛) = 1, ∀𝑛 ≥ 3.  
 
 Proof. 
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It is straightforward from  Proposition 2.2.(2). 
Proposition 2.5. For a complete bipartite graph, then 

 𝛾𝑒𝑛
𝑠 (𝐾𝑛,𝑚) = {

min{𝑛,𝑚} ,        𝑖𝑓 𝑛 ≠ 𝑚
2 ,                      𝑖𝑓 𝑛 = 𝑚

. 

Proof. 
Let 𝐾𝑛,𝑚 be complete bipartite graph and let 𝑋, 𝑌 be partite subsets of 𝐾𝑛,𝑚 such that |X|=n and |Y|=m. 
Since 𝑋, 𝑎𝑛𝑑 𝑌 are ENDS according to Proposition 1.2, if 𝑚 > 𝑛 then deg(𝑣) > deg(𝑢) ∀ 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑢 ∈
𝑌 according to definition of complete bipartite graph, then only X is SENDS, therefore  𝛾𝑒𝑛

𝑠 (𝐾𝑛,𝑚) =
min{𝑛,𝑚}.  
If n=m, then all vertices has equal degree, hence  the set {v,u} is SENDS ∀ 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑢 ∈ 𝑌 according to 
Definition 2.1., therefore   𝛾𝑒𝑛

𝑠 (𝐾𝑛,𝑚) = 2 
 
Theorem 2.6. Let G be a r-regular graph of order n, then  

 𝛾𝑒𝑛
𝑠 (𝐺𝑛) = 𝛾𝑒𝑛(𝐺𝑛) = ⌈

𝑛

𝑟+1
⌉, ∀𝑛 ≥ 𝑟 + 1. 

Proof. 
Since 𝑑𝑒𝑔(𝑣) = 𝑟  ∀ 𝑣 ∈  𝐺, then for every r of vertices in 𝐺 there is one vertex that dominates these 

vertices, so we could have 
𝑛

𝑟+1
  set if  𝑛 ≡  0(𝑚𝑜𝑑 𝑟 +  1) and 𝛾𝑒𝑛(𝐺𝑛) =

𝑛

𝑟+1
, and if  𝑛 ≡ 𝑗(𝑚𝑜𝑑 𝑟 +

 1), then there are set has 𝑗 ≤  𝑟 of vertices one vertex dominates the rest, therefore 𝛾𝑒𝑛(𝐺𝑛) = ⌈
𝑛

𝑟+1
⌉. 

Now Since 𝑑𝑒𝑔(𝑣)  = r ∀𝑣 ∈  𝐺𝑛, then  𝛾𝑒𝑛
𝑠 (𝐺𝑛) = 𝛾𝑒𝑛(𝐺𝑛) = ⌈

𝑛

𝑟+1
⌉ according to Definition 2.1.  

 
Proposition 2.7. Let 𝐶𝑛be a cycle graph with order 𝑛, then 

  𝛾𝑒𝑛
𝑠 (𝐶𝑛) = 𝛾𝑒𝑛(𝐶𝑛) = ⌈

𝑛

3
⌉, ∀𝑛 ≥ 3 . 

Proof. 

Since 𝑑𝑒𝑔(𝑣)  = 2 ∀𝑣 ∈  𝐶𝑛, then  𝛾𝑒𝑛
𝑠 (𝐶𝑛) = 𝛾𝑒𝑛(𝐶𝑛) = ⌈

𝑛

3
⌉ according to Definition 2.1. and Theorem 

2.6. 
 
Proposition 2.8 .Let 𝑃𝑛be a path graph with order n, then 

 𝛾𝑒𝑛
𝑠 (𝑃𝑛) = 𝛾𝑒𝑛(𝑃𝑛) = ⌈

𝑛

3
⌉, ∀𝑛 ≥ 2 . 

Proof. 
Since deg(𝑣) =  2∀𝑣 ∈  𝑃𝑛 except for the pendant vertices, then according to Definition 2.1 and 
Proposition 2.2 the pendant vertices are not in 𝐷, and they must be in 𝑉 − 𝐷, then  𝛾𝑒𝑛

𝑠 (𝑃𝑛) =

𝛾𝑒𝑛(𝑃𝑛) = ⌈
𝑛

3
⌉. 

 
3 SENDS of the join two graphs 
 
Theorem 3.1. Let 𝐺1and 𝐺2are two graphs with order n, m respectively, and let 𝐷𝑖 =  𝛾𝑒𝑛

𝑠 (𝐺𝑖 )– 𝑠𝑒𝑡  𝑖𝑓 
𝐺𝑖 has SENDS  or 𝐷𝑖 = 𝐺𝑖 𝑖𝑓 𝐺𝑖  has no SENDS such that i=1,2, then 
 𝛾𝑒𝑛
𝑠  (𝐺1+ 𝐺2) = 
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𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 

2                                                                                  𝑖𝑓  𝐺1 ≡ 𝐺2                                            

{
 
 

 
 |𝐷1|  

   if   𝑚 + 𝑠1 ≥ 𝑛 + 𝑝2  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
 𝑜𝑓 𝐷1 𝑎𝑛𝑑 𝑝1 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐷2

|𝐷2|    
if   𝑛 + 𝑠2 ≥ 𝑚 + 𝑝1  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠2 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 𝑜𝑓 𝐷2 𝑎𝑛𝑑 𝑝1 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐷1
min   {|𝐷1|, |𝐷2|},                                 if 𝑚 + 𝑠1 = 𝑛 + 𝑝2 and  𝑛 + 𝑠2 = 𝑚 + 𝑝1
|𝑆| 𝑤ℎ𝑒𝑟𝑒 𝑆 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑚𝑢𝑚 𝑠𝑒𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 S ∩ V(𝐺1) ≠ ∅and S ∩ V(𝐺2) ≠ ∅and 

𝑁(𝑣𝑖) ∩ 𝑉 − 𝑆 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 ∀𝑣𝑖 ∈ S and deg(𝑣) ≥ deg(𝑢)∀𝑣 ∈ 𝑆𝑎𝑛𝑑 𝑢 ∈ 𝑉 − 𝑆

 

Proof. 
There are three cases as follows. 
Case 1. For 𝐺1 ≡ 𝐺2 , and according to definition of (𝐺1 + 𝐺2) every vertex in 𝐺1 is adjacent to all 
vertices in 𝐺2 and vice versa , then 𝛾𝑒𝑛(𝐺1 + 𝐺2)-set ={𝑣, 𝑢} such that  𝑣 ∈ V(𝐺1) and it has largest 
degree in 𝐺1, as well as 𝑢 ∈ 𝑉(𝐺2 ) and it has largest degree in 𝐺2 and 𝑣 is a correspondent to vertex  𝑢, 
therefore  𝛾𝑒𝑛

𝑠 (𝐺1 + 𝐺2) = 2. 
Case 2. If 𝐺1 and 𝐺2 have SENDS, then  𝐷1𝑏𝑒 𝛾𝑒𝑛

𝑠 (𝐺1 )-set  and  𝐷2 𝑏𝑒  𝛾𝑒𝑛
𝑠 (𝐺2 )–set. And if 𝐺1 and 𝐺2 have 

no SENDS, then 𝐷1 = 𝐺1  and 𝐷2 = 𝐺2, then 𝐷1 and 𝐷2 are SENDS of (𝐺1+ 𝐺2),   There are three 
subcases of MSENDS of (𝐺1+𝐺2) depending on whether 𝐺1 and 𝐺2 have SENDS or not, as follows. 
If 𝑚+ 𝑠1 ≥ 𝑛 + 𝑝2, then deg(𝑣1) ≥ deg(𝑣2) ∀𝑣1 ∈ 𝐷1𝑎𝑛𝑑 ∀𝑣2 ∈ 𝐷2, since  𝐷1 and 𝐷2 are SENDS of (𝐺1+ 
𝐺2),  therefore   𝛾𝑒𝑛

𝑠 (𝐺1 + 𝐺2) = |𝐷1|. 
 If 𝑛 + 𝑠2 ≥ 𝑚 + 𝑝1, then deg(𝑣2) ≥ deg(𝑣1) ∀𝑣1 ∈ 𝐷1𝑎𝑛𝑑 ∀𝑣2 ∈ 𝐷2, since  𝐷1 and 𝐷2 are SENDS of 
(𝐺1+ 𝐺2),  therefore   𝛾𝑒𝑛

𝑠 (𝐺1 + 𝐺2) = |𝐷2|. 
If  𝑚 + 𝑠1 = 𝑛 + 𝑝2 and  𝑛 + 𝑠2 = 𝑚 + 𝑝1, then is clear  𝛾𝑒𝑛

𝑠 (𝐺1 + 𝐺2) = min {|𝐷1|, |𝐷2|} 
Case 3. Since 𝑆 is minimum subset of  (𝐺1 + 𝐺2) such that has some vertices from 𝐺1 and some 
vertices from 𝐺2  and since (𝑣𝑖) ∩ 𝑉 − 𝐷 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 ∀𝑣𝑖 ∈ S and deg(𝑣) ≥ deg(𝑢) ∀𝑣 ∈ 𝑆 𝑎𝑛𝑑 𝑢 ∈ 𝑉 − 𝑆, 
then 𝑆 is SENDS and strong according definition of the operation of join of two graphs and Definition 
2.1. Therefore,  𝛾𝑒𝑛

𝑠  (𝐺1+𝐺2) = |S| in this case. 
Assuming that all or some cases are fulfilled, then  𝛾𝑒𝑛

𝑠 (𝐺1 + 𝐺2) =  min  { 𝑐𝑎𝑠𝑒. 1, 𝑐𝑎𝑠𝑒. 2, 𝑐𝑎𝑠𝑒. 3}. Thus 
the proof is done. 
 
Corollary 3.2. 
𝐹𝑛= 𝑃𝑛+ 𝐾1  be a fan graph with order 𝑛 +  1, then  𝛾𝑒𝑛

𝑠  (𝐹𝑛) =1 ∀ 𝑛 ≥ 2  (For example see Fig .3(a) ) 
𝐶𝑛,𝑚= 𝐶𝑛+ 𝐾𝑚̅̅ ̅̅ be a cone graph with order n + m,  𝐾𝑚̅̅ ̅̅ ̅  ≡ 𝑁𝑚 then 

 𝛾𝑒𝑛
𝑠  (𝐶𝑛,𝑚) ={

 𝛾𝑒𝑛
𝑠 (𝐶𝑛) = ⌈

𝑛

3
⌉ ,       𝑖𝑓 𝑚 + 2 > 𝑛

𝑚 ,                              𝑖𝑓 𝑚 + 2 ≤ 𝑛
            (For example see Fig .3  (b,c) ) 

 
Figure 3: (a) SENDS in fan 𝑭𝟔    (b) SENDS in  cone  𝑪𝟒,𝟑   (c) SENDS in  cone 𝑪𝟔,𝟑 

Proposition 3.3. 

1. For ladder graph 𝐿𝑛,  𝛾𝑒𝑛
𝑠 (𝐿𝑛) = 𝛾𝑒𝑛(𝐿𝑛) = 2 ⌈

𝑛

3
⌉  𝑓𝑜𝑟 𝑛 ≥ 2. 

2. For helm graph 𝐻𝑛,  𝛾𝑒𝑛
𝑠 (𝐻𝑛) =𝑛  𝑖𝑓 𝑛 = 3,4  and 𝐻𝑛 ℎ𝑎𝑠 𝑛𝑜 𝑆𝐸𝑁𝐷𝑆 𝑖𝑓 𝑛 > 4. 

3. For barbell graph 𝐵𝑛,𝑛, 𝛾𝑒𝑛
𝑠  (𝐵𝑛,𝑛) = 2 . 

4. For a windmill graph𝑊𝑛
𝑚,  𝛾𝑒𝑛

𝑠 (𝑊𝑛
𝑚) = 1 for𝑚 ≥  3 and𝑛 ≥  2 
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Proof. 
1. According to definition of ladder graph𝐿𝑛 = 𝑃𝑛 × 𝑃2, 𝑓𝑜𝑟 𝑛 ≥ 2 and the product each vertex in the 

first path is associated with the corresponding vertex in second path, then 𝛾𝑒𝑛 (𝐿𝑛) =2 𝛾𝑒𝑛 (𝑃𝑛) = 2 ⌈
𝑛

3
⌉. 

Since deg(𝑣) = 3  ∀𝑣 ∈ 𝛾𝑒𝑛(𝐿𝑛) − 𝑠𝑒𝑡  and deg(𝑢) ≤ 3  ∀𝑢 ∉ 𝛾𝑒𝑛(𝐿𝑛) − 𝑠𝑒𝑡 , then  𝛾𝑒𝑛
𝑠 (𝐿𝑛) = 𝛾𝑒𝑛(𝐿𝑛) =

2 ⌈
𝑛

3
⌉.   (For example see Fig .4(a) ) 

2. According to definition of helm graph 𝐻𝑛= 𝑊𝑛 ∪ 𝑁𝑛  ∪ {𝑢𝑖𝑣𝑖  ∈ 𝐸(𝐻𝑛): for 𝑣𝑖 ∈ 𝐶𝑛 and 𝑢𝑖 ∈ 𝑁𝑛, ∀𝑖 =
1,2,3, … , 𝑛} . We have deg(𝑣𝑖) = 4 and deg(𝑝𝑖) = 1 ∀𝑝𝑖 ∈ 𝑁𝑛 we get the 𝛾𝑒𝑛 (𝐻𝑛) − 𝑠𝑒𝑡 = 𝐶𝑛  then if 
𝑛 ≥ 4 𝑑𝑒𝑔(𝑣) >  𝑑𝑒𝑔(𝑣𝑖) ∀𝑣𝑖 ∈ 𝐶𝑛  and 𝑣 is centre of 𝑊𝑛 and 𝑣 ∉ 𝛾𝑒𝑛 (𝐻𝑛) − 𝑠𝑒𝑡, but if n=3,4, then  
𝑑𝑒𝑔(𝑣) ≤  𝑑𝑒𝑔(𝑣𝑖). Thus the prove is done   
3. Since 𝐵𝑛,𝑛= 𝐾𝑛 ∪ 𝐾𝑛  ∪ {𝑢𝑣 ∈ 𝐸(𝐵𝑛,𝑛): for 𝑢 ∈ 𝐾𝑛

1  and 𝑣 ∈ 𝐾𝑛
2}, thenIt is clear γen

s  (𝐵𝑛,𝑛) − 𝑠𝑒𝑡 =
{𝑢, 𝑣}, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝑑𝑒𝑔(𝑣) = 𝑑𝑒𝑔(𝑣) = 𝑛, 𝑡ℎ𝑒𝑛  𝛾𝑒𝑛

𝑠  (𝐵𝑛,𝑛) = 2. 
4. According to definition of windmill graph we get 𝑛 copies of complete graph 𝐾𝑚are joining by one 
common vertex (𝑣), then deg(𝑣) = 𝑚(𝑛 − 1), then it is clear  𝛾𝑒𝑛

𝑠  (𝑊𝑛
𝑚) − 𝑠𝑒𝑡 = {𝑣} and  𝛾𝑒𝑛

𝑠  (𝑊𝑛
𝑚) = 1 

 
Figure 4: SENDS in (a) ladder graph 𝐿7 (b) helm graph 𝐻10 
(c) barbell graph 𝐵6,6 (d) in windmill graph 𝑊3

5 
4 SENDS of complement of certain graphs 
Proposition 3.1. 
1.  𝐶𝑛̅̅ ̅ 𝑎𝑛𝑑 𝑃�̅�  ∀𝑛 ≤ 3 has no SENDS 
2.   𝛾𝑒𝑛

𝑠  (𝑃�̅�) = 2, for 𝑛 ≥ 4. 
3. 𝛾𝑒𝑛

𝑠  (𝐶𝑛̅̅ ̅) = 2, for 𝑛 ≥ 4. 
Proof. 
1. Since 𝐶𝑛̅̅ ̅ 𝑎𝑛𝑑 𝑃�̅�  ∀𝑛 ≤ 3 has isolated vertex then has no ENDS and no SENDS. 
2.There are two pendants vertices in 𝑃𝑛 𝑣1 , 𝑎𝑛𝑑  𝑣𝑛, such that the vertex 𝑣1 is adjacent to all other 
vertices in the graph 𝑃�̅�, except the vertex 𝑣2 and 𝑣𝑛 is adjacent to all vertices in 𝑃�̅�, except 𝑣𝑛−1. Since 
deg( 𝑣1)=deg( 𝑣𝑛)=1 in   𝑃𝑛 , then deg( 𝑣1)=deg( 𝑣𝑛)=n-2 and { 𝑣1,  𝑣𝑛} is ENDS in 𝑃�̅�, but 𝑑𝑒𝑔( 𝑣𝑖) = 2   
∀1 < 𝑖 < 𝑛 in   𝑃𝑛, then 𝑑𝑒𝑔( 𝑣𝑖) = 𝑛 − 3  in 𝑃�̅�, then { 𝑣1,  𝑣𝑛} is SENDS in 𝑃�̅� 𝑎𝑛𝑑  𝛾𝑒𝑛

𝑠  (𝑃�̅�) = 2 
3. Since  𝐶𝑛 is 2-regular graph then  𝐶𝑛̅̅ ̅ is n-3-regular graph , then 𝛾𝑒𝑛 (𝐶𝑛̅̅ ̅) =  𝛾𝑒𝑛

𝑠  (𝐶𝑛̅̅ ̅) = 2 according to 
Theorem 1.3. The proof is done. 

Proposition 4.2. 𝛾𝑒𝑛
𝑠 (𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ )= {

has no SENDS,        𝑖𝑓 𝑛 ≠ 𝑚
2 ,                      𝑖𝑓 𝑛 = 𝑚

. 

Proof. Let 𝑚 ≥ 𝑛,  since  𝐾𝑛,𝑚̅̅ ̅̅ ̅̅  and 𝐾𝑛  ∪ 𝐾𝑚are isomorphic graphs, then must be  𝛾𝑒𝑛(𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ ) = 𝑚 –  𝑛 +

 2 , and 𝛾𝑒𝑛(𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ ) − 𝑠𝑒𝑡  has one vertex from 𝐾𝑛 and 𝑚 − 𝑛 + 1  vertices from 𝐾𝑚,  according to 

Definition 1.1. and according to Proposition 1.2. then   
 If 𝑚 = 𝑛,  then  𝛾𝑒𝑛(𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ )  =2, since 𝑑𝑒𝑔(𝑣)  =  n-1 ∀𝑣 ∈  𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ , then  𝛾𝑒𝑛

𝑠 (𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ ) = 2  according to 

Definition 2.1.  
If  𝑚 > 𝑛 then deg(𝑣) > deg(𝑢)∀ 𝑣 ∈ 𝐾𝑛 𝑎𝑛𝑑 𝑢 ∈ 𝐾𝑚, then 𝛾𝑒𝑛(𝐾𝑛,𝑚̅̅ ̅̅ ̅̅ ) is not SENDS. Therefore  𝐾𝑛,𝑚̅̅ ̅̅ ̅̅  

has no SENDS. 
5 SENDS of the corona graphs 
 
Theorem 4.1. Let 𝐺1and 𝐺2are two graphs, then  
 𝛾𝑒𝑛
𝑠  (𝐺1⨀ 𝐺2) =  𝛾𝑒𝑛(𝐺1⨀ 𝐺2) = |𝐺1| 
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Proof. 
If  𝐺1 and  𝐺2 are two graphs of order 𝑛 ≥  2 and 𝑚 ≥ 1 respectively and since  𝛾𝑒𝑛(𝐺1⨀ 𝐺2) = |𝐺1| 
according to Theorem 1.3, then 𝑑𝑒𝑔(𝑣) ≥ 𝑚  𝑎𝑛𝑑 𝑑𝑒𝑔(𝑢) ≤ 𝑚 − 1 ∀ 𝑣 ∈ 𝐺1and  ∀ 𝑢 ∈  𝐺2 in (𝐺1⨀ 𝐺2), 
then  𝛾𝑒𝑛

𝑠  (𝐺1⨀ 𝐺2) =  𝛾𝑒𝑛(𝐺1⨀ 𝐺2) = |𝐺1|. 
Proposition 4.2. If 𝐺1and 𝐺2are two graphs of order 𝑛 ≥  2 and 𝑚 ≥ 1 respectively, then 
 𝛾𝑒𝑛
𝑠  (𝐺1⨀ 𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )=𝛾𝑒𝑛 (𝐺1⨀ 𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )=2 

Proof. 
Since𝐺1 and 𝐺2 are two graphs of order 𝑛 ≥  2 and 𝑚 ≥ 1 respectively, then we have every vertex in 
𝑖𝑡ℎcopy of 𝐺2 is adjacent to all the vertices of (𝐺1⨀ 𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) except 𝑖𝑡ℎ vertex 
in 𝐺1 and all other vertices in same copies of 𝐺2. Let 𝐷 = {𝑣, 𝑢: 𝑣 𝑖𝑛 𝑖𝑡ℎ copy of 𝐺2and 𝑢 in 
(𝑖 + 1)𝑡ℎ copy of 𝐺2, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 deg(𝑣) ≥ deg (𝑣𝑖 )∀ 𝑣𝑖 ∈ 𝑖𝑡ℎ copy of 𝐺2, 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 𝑢}, then  set 𝐷 is 𝛾𝑒𝑛

𝑠  
(𝐺1⨀ 𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) −set. Therefore,  𝛾𝑒𝑛

𝑠  (𝐺1⨀ 𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )=2 
 Conclusion.  
Throughout this paper, the modern and strong of this modern concept of domination have been 
defined. Many propositions, theorems, and corollary are proved. Also, for most the certain graphs this 
number is determined. Moreover, some operation on graphs are calculated as a complement, join, and 
corona. 
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