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ABSTRACT

The paper considers an applied problem of regulating dynamic flooding processes in the
development of oil fields. Mathematical models, computational algorithms, and the
results of a computational experiment are presented.
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Introduction: Mathematical modeling of
dynamic regulation and control processes in
systems with distributed parameters is a
rapidly developing area of applied mathematics,
since it allows describing and analyzing
complex systems where parameters change not
only in time, but also in space. For such systemes,
methods of regulation and control are
developed that use mathematical models to
predict the behavior of the system and achieve
the desired state by influencing it [1,3,10,12,].
There are numerous works devoted to
the control of dynamic processes in systems
with distributed parameters, applied to oil and
gasfields,in particular, the determination of
optimal modes of operation of various oil and
gas production facilities, using the methods of
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optimal control theory, is considered [1-3]. The
aim is to develop some techniques that make it
possible to reasonably determine the optimal
modes of periodic operation of injection wells.
Existing mathematical models of hydrodynamic
filtration processes and existing methods of
optimal control theory, as well as modern
methods of computational experiment based on
numerical analysis methods, make such applied
problems of software and optimal control
solvable without any difficulties [4-7, 11].

Problem statement: Suppose that the
mathematical model of the liquid filtration
process in a medium with non-uniform
permeability has the form (in dimensionless
form) [2,4,6,7]:

(1)

Let be at the point & =0an injection well is located. The injection pressure in it determines the

pressure distribution over the entire length of the reservoir

0<é&<]
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The control action is taken as a lumped function of a time variable U(7), which is the pressure at the

point £ =0, i.e.
P.0)/ _ =U(). (2)

Assume that the initial moment of the dynamic process under consideration coincides with the
well start-up, i.e. the system is in an equilibrium state. Then you can set the following conditions:

PE.0)/,_ =0, 3)
PE.n)/ =0, (4)
oP(,7) ) _

— / =0 (5)

The discharge pressure cannot exceed the maximum level for which the pump is designed, so
there is a natural technological limitation, written in dimensionless form:
0<U(r)<l. (6)
Main part: Reservoir flooding is one of the mainways to maintainreservoirpressure. Therefore,
the following can be taken as the management goal:

Z=[(P(ET)~P (&) dé - min, )

thatis,itisrequired to select the control - discharge pressure in such a way that by the end of the period
T =1 square of the root-mean-square deviation of the true pressure distribution P(&,T) by layer

from the specifiedone P"(£) was minimal. Moreover, the moment of time T, i.e. the duration of water

injection, is also subject to determination. Therefore, the problem under consideration must be solved
in the following sequence.
1. For a given T, find such a control U(7), which will satisfy constraint (6) and provide a

minimum of functionality (7).
2. Define the control U(7), according to condition (6), so that in the minimum time the

functional satisfies the inequality Z <y, where ¥ > 0 the specified number.

So, first we considerthe following problem: for equation (1) satisfying conditions (2)-(5),choose
a control function that is subject to constraint (6) and delivers a minimum to functional (7).

The solution is carried out by the finite difference method of numerical analysis [8, 9].

Pa3o06b Divide the time coordinate into steps 7, and the coordinate with respect to the spatial
variable in steps /, i.e.

x, =ik;t, = jr;i=1,N;j =1, M.

On the grid Wen = {xi = ih,tj =jr,i=1,N;j= l,M)} let us construct an unconditionally stable

implicit scheme, a finite-difference approximation of equation (1):

BBl R apl pi (AR BB 2P P

P T’ RE Th?
Pj+1_2Pj+1 Pj+1
—7, i—1 hlz tlin =0. (8)

. j+1 _ . . . .
Assuming P’" = P, ,equation (8) is written as:
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af_=bf +cB, =—d,; (9)
where
=Ll Rl - LR 12 2 R
Equation (9) is solved by the run-through method [8], where
P_-A4AF+B, (10)
4. =a/(b—-cA._) (11)
B =(F_ +bB_)/(b—cA_,) (12)
A4,=0, B,=U’ (13)
PN =0. (14) The computational experimentis

performed in the following sequence:
1. According to formulas (11), (12), taking into account (13), the coefficients are determined
A4.B;
2. Using (14), formula (10) gives the values
P, . Py ,..H

1

Function values d knownwhen j=1,2.Indeed, the initial conditions are P(£,0)=0, Z—P/ .= 0
T =

equivalentto: P' =0, P> =0. Therefore, at the firstiteration, the values of the function on the 3rd time
layer are determined by the run method. Then, if necessary P’, P> defined by P* and so on until
j=M.

The solution by the method of successive approximations is carried out according to the usual
scheme.

1. Under the given conditions (2)-(5), equation (1) was integrated and determined by P* (&,1).
2. The functional value is calculated using formula (7). If
VAEVANEY
then the invoice process ends, if not, then step 3 is executed.
3. Based on the search results P*(&,1) taking into account (2)-(6), the conjugate equation (1)
is integrated.

2
4. Using the formula g—g = —(7/2 0 gég;r) +7, afg)é )
5. Improved control is being built [2,11]:

J the functional gradient is calculated.

oz
J

The calculations are repeated starting from point 1. The above method determines the
duration of exposure and optimal control of the injection pressure for focal injection wells.

The heterogeneity of the reservoir caused the fact that waterwas pumped into the focal injection
wells periodically. Changes in reservoir pressure in producing wells lead to the fact that the operation
of injection wells must be regulated according to the current situation.

Calculation of technological parameters of periodic operation of injection wells was carried out
at the following values:

P=900xe/ m’; u=0,111,-c; K, =910 m?;
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K,=9-16"n*;M,=0,3;M,=0,05;7,, =86,4-10°¢;
T=8,64-10¢c;a, =0,5-10"Ila™"; B, =107 I1a™";
e=0,4-10°m;a =10";L=200:; P, =20MI]a;
£=0,03;0=0,01;7=0,4.
Atthe firststage of the solution, various time pointswere set 7" and calculated the corresponding
controls U(7), delivering a minimum to the functional (7). At the second stage, according to Table 1,

the minimum time for which the functional reached a value less than 0.3 was determined and the
optimal value was chosen 7' =1 (indimensions T =10 days). Analysis of the results of a computational
experiment allows us to draw the following conclusions:

1) the type of optimal discharge pressure is the same forany 7';

2) time management 7 it has characteristic areas of growth and decline, and the maximum

injection pressure of subsequent growth is higher than the previous one.

Based on the physical concepts of periodic water injection, it can be assumed that these pressure

fluctuations will intensify the flow processes.
Convergence of functional values Table 1.

[teration of the Iteration of the [teration of the
number functional number functional number functional
value at T=0.5 value at T=0.8 value at T=0,9

2 6.0432 2 3.0115 2 3.6614

5 3.7866 5 1.3688 5 1.6476

9 3.5286 10 0.5500 10 0.6237

15 0.5206 17 0.5451

18 0.5152

atT=1 atT=1,2

2 4.2582 2 4.0452
5 2.1873 5 2.5451
10 1.3450 10 1.5658
15 0.9328 15 1.0731
20 0.6845 20 0.7593
25 0.4988 24 0.5664
29 0.3152 25 0.5157
30 0.2862 27 0.3800
28 0.3527

In practice, itis importantto specify the cycle duration value for each injection well. To solve this
problem using the above method, it would be necessary to additionally study the reservoir structure
for individual injection wells, which is very difficult. Therefore, it is advisable to develop
recommendations for adjusting the cycle duration based on current fishing information.

[tis known that the flow rate and injection pressures are systematically measured forindividual
injection wells, and the flow rate is the mostinformative factor, since any changes in the reservoir will
necessarily affect it.

[tisassumed,similarly, to build a mathematicalmodel of the injectionwell operationusing linear
identificationmethods.Theinput is taken as the discharge pressure P(Z),and per output expense g(?).

The definition of the mathematical model of such an object is based on the relationship between the
mutual correlation function of the input and outputsignals R , withthe input correlation function R |

[11]. As aresult of statistical processing of the average daily flow rate and injection pressure values for
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wells, the following values were obtained: Rpp , qu . For the specified type of correlation function, the

object's differential equation is
d’q . ,dg
d—=+b—=+qg=cp. 15
The coefficients of equation (15) are determined from the existing standard albums of linear
identification[11]. Numerical values of the coefficients are shown in Table 2.

Table 2.
Linear identification results
Well number 74.65*108d/c/ 8.64*10%b/c/ 10*cm3/mlla
1 28.57 5.50 0.63
2 22.12 5.39 0.51
3 3497 3.12 0.32
4 31.65 1.19 0.75
5 34.36 4.10 0.58

In case of periodic impact on the deposit, the flooding process can be regulated by selecting the
cycle duration and injection pressure. Using the example of well No. 1, we will consider the following

problem. Sets the time when the process will continue T itis required to select the discharge pressure,
the duration of exposure in this way 7, and the duration of the stop 7; so that during this time T'

pump the maximum amount of water:
1

T
[ q(t)dt — max.
0

[tis assumed that at the start of the review process:

q(0)=g,, ¢q(0)=0,

q(T")=0, ¢(T")=0.
The discharge pressure must satisfy the natural constraint:
0<P(t)<P,
Existing methods of the mathematical theory of optimal processes allow us to solve this
problem[12]. We write down the problem statementin terms of the theory of optimal processes. Let's
transform (15):

and at the end point in time:

ax *

d*q  dq
d—=+T—-+Tq=ap,
dt* 7 e
b 1 c
Tr=—"T==,a=—.
where d’' d d
For control, we will take the discharge pressure:
U(t) = P(2).

Let's denote: Xx,(¢¥) = q(?); X,(t)= %; X(t) = —J- X, (t)dt;

dt

x=q; x0=0,V'=P,_.
The following problem is considered. In phase space X two points are given xlo,xg.

Among all valid piecewise continuous controls U(#), 0<¢<T find one that satisfies the constraint:

0<V()<r,
and brings up the system:
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% =X, =/,
(16)
CZ -Tx,-Tx,+aU = f,,
from the position:
xl(O)leo, XZ(O)ZXS; (17)
to the position:
x](Tl):O; xz(Tl):O (18)

so, what
T
—I x,(¢t)dt — min.
0

Let's add anew equation to system(16):
& _
dt v
Using the equations of system (16), we make equations for coprime variables:

d 0
£:_|:8_§1W 6];21 ‘//2+a_f31//3} Ty, +ys,

dt
d
;{?:—_af(//] ale//z afSI//3} v, +Ty,, (19)

dys _ o, O, O, ],
di | Ty Y
Finding the values v, and v, v, =0,
d’y, dy
=-T—2+Ty,=0. 20
dtz d l//2 ( )
The characteristic equation for (20) for the corresponding values of the coefficients has two
roots:

K,,=B*y,=0,0965+0,1607i,
therefore:
w,(t)=C, exp(pft)cos yt+ C, exp(ft)sin yt.
Let's make up the Hamiltonian:
H =y, +y, (1%, - Tx, + aU) - y3x,,

in order for the Hamiltonian to have a maximum value, as it is called by the Pontryagin maximum

principle, it is necessary:
1 .
U:{u, it w,(t)>0,

09 lf‘ l//2 (t) < 0‘
Let's analyze at what values ¢ function ¥, (#) changes the sign. Converting it ¥, (?) :

w, () :W exp(Bt)sin(yt + @), (21)
sing =

G
w/ C2.C Jcc

Let's put C;,=0,C, =1 to @ =0. Since (21) includes a sine, the control switching points will

,COSx =

satisfy the equation:
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sinyt, =0, ie. 1, =2k, k=1,2,...,.
y

Mpu y =0,1607,¢, ~20.8,64-10* - k(c). It follows that the optimal value of the exposure duration is

T, =20-8,64-10*(c), duration of the stop 7, =20-8,64- 10%(c) (Fig. 1). Let's calculate the total
volume of water for well No.1 at such a CEC, if
T'=8,64-10"-60(c);x’ =100(m*);U"' =16(MI1). (22)
Atthe moment # =0 the conditions (19) must bemet, and the control of U(¢) =U", therefore,
the change in the flow rate at the first exposure satisfies the relation:

x,(t)=C/exp(—pt)cos yt +C, exp(—ft)sin yt +alU’,

w, (1)
120
100
80
60
40+
20
| | | | -
0 10 20 30 40 50 60 8 64-10%.c
=20
M
U(z)

v : : :

I i I

i | i

I i I

I i I

I | I

| ! | ! | | =
Figure 1. Dependence of the optimal control on the conjugate function.
0 4
x, —aU
where C'=x-aU', C, ZEMJ/}/ : (23) Converting itx, ()
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x, (1) = \/(Cl')2 + (C;)2 exp(=pt)sin(yt +a)+al’, (24)
C/ C,
o= "2 r\2 ) cosa = "2 N2 °
(G +(C) (C)+(C) 25)

Integrating exp(—/ft)sin(y¢+ ), twice in parts, we get:
1 :
—(exp(—/f z) +1)(sina + ;cos )

exp(—pft)sin(yt + a)dt = g 5
1+ (7j
B

Taking into account (22) - (25), we determine the volume of water injected during the first cycle:
1 ! !

\/(C{)z + (C;)Z '(exp(_ﬂﬂ-_i_ lj] ' 2C11 r\2 + 1 ’ 2C12 r\2

B p 4 (G +(C) BC) +(C) N

0 = p
1+(7j
p

+aU' % =703(m).
y

>

SR

2
Start time of the second cycle £, = ——; the end of the second cycle coincides with the time of

3z
reviewingthe process T' = t, =—. Since T relations (20) mustbe fulfilled atthe finaltime T 120, the

v
law of flow rate change in the second cycle will be:
x,(1) = \(C))* +(C2)* -exp(~f)sin(yt + a) + al’, (26)
14 aU’ 14 C”
Cl - 3 ’ C2 - lﬂ
T
exp(—ﬂ j Y
v
T kY2
To get the download volume in the second cycle, integrate (26) from ¢, = —, before 7, =—.
v
1 RY/4 27 C’ C)
\/(C’l”)2 +(C;)2 .(exp(_ﬁJ+eXp(_ﬂjj( N2 : "2 +1 "2 : ’ ZJ
_ p y y J)UC) +(G) B(C) +(C)
Q= 7 +
1+ (7j
B
T
+aU'—= 244(m3).
v
The total consumption for two cycles will be: for the duration of exposure and shutdown
Q — 947(m3). were obtained:
- - * * 104 .
When solving the same problem for ;gixgﬂ lﬁol'zT?r '_I‘% _3%() *8é6g4 *11004(8)'.
injection wells No. 1,2,3,4, the following values e b= 07 ’ ’
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forwellNo. 3, T =To=20*8,64 *10* (c);

for wellNo. 4, To = To =20 * 8,64 * 10* (c).

The pressure must be maintained at the
highest possible level during the entire
discharge time.

Conclusion. The proposed recommendations
on choosing the optimal values for the duration
of exposure and stopping during periodic
operationofinjection wells were included in the
"Technology for regulating periodic exposure to
the productive reservoir of an oil field”, which is
being implemented in the development of oil
fields.

It is known that in some cases direct
methods of monitoring injection wells are
difficult. In addition, during periodic operation
of injection wells, it is advisable to have
information about the future injectivity values
of those injection wells that have been stopped
by the time the process is considered. In this
regard, the task of predicting the injectivity of
injection wells becomes urgent.
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