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Introduction: Mathematical modeling of 
dynamic regulation and control processes in 
systems with distributed parameters is a 
rapidly developing area of applied mathematics, 
since it allows describing and analyzing 
complex systems where parameters change not 
only in time, but also in space. For such systems, 
methods of regulation and control are 
developed that use mathematical models to 
predict the behavior of the system and achieve 
the desired state by influencing it [1,3,10,12,]. 

There are numerous works devoted to 
the control of dynamic processes in systems 
with distributed parameters, applied to oil and 
gasfields,in particular, the determination of 
optimal modes of operation of various oil and 
gas production facilities, using the methods of 

optimal control theory, is considered [1-3]. The 
aim is to develop some techniques that make it 
possible to reasonably determine the optimal 
modes of periodic operation of injection wells. 
Existing mathematical models of hydrodynamic 
filtration processes and existing methods of 
optimal control theory, as well as modern 
methods of computational experiment based on 
numerical analysis methods, make such applied 
problems of software and optimal control 
solvable without any difficulties [4-7, 11]. 
 Problem statement: Suppose that the 
mathematical model of the liquid filtration 
process in a medium with non-uniform 
permeability has the form (in dimensionless 
form) [2,4,6,7]: 
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 Let be at the point 0 = an injection well is located. The injection pressure in it determines the 

pressure distribution over the entire length of the reservoir 
0 1   
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The control action is taken as a lumped function of a time variable ( )U  , which is the pressure at the 

point 0 = , i.e. 

                                                 
0

( , ) ( )./P U


  
=
=                                                (2) 

 Assume that the initial moment of the dynamic process under consideration coincides with the 
well start-up, i.e. the system is in an equilibrium state. Then you can set the following conditions: 

                                                    1
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The discharge pressure cannot exceed the maximum level for which the pump is designed, so 
there is a natural technological limitation, written in dimensionless form:  

                                                    0 ( ) 1.U                                                           (6) 

 Main part: Reservoir flooding is one of the main ways to maintain reservoir pressure. Therefore, 
the following can be taken as the management goal: 

                                     * 2

0

( ( , ) ( )) min
T

Z P T P d  = − → ,                                   (7) 

that is, it is required to select the control - discharge pressure in such a way that by the end of the period 
1T =   square of the root-mean-square deviation of the true pressure distribution ( , )P T  by layer 

from the specified one *( )P   was minimal. Moreover, the moment of time T, i.e. the duration of water 

injection, is also subject to determination. Therefore, the problem under consideration must be solved 
in the following sequence. 
 1. For a given T, find such a control ( )U  , which will satisfy constraint (6) and provide a 

minimum of functionality (7).     
2. Define the control ( )U  , according to condition (6), so that in the minimum time the 

functional satisfies the inequality Z  , where 0  the specified number.  

 So, first we consider the following problem: for equation (1) satisfying conditions (2)-(5), choose 
a control function that is subject to constraint (6) and delivers a minimum to functional (7).  

The solution is carried out by the finite difference method of numerical analysis [8, 9]. 
Разобь Divide the time coordinate into steps  , and the coordinate with respect to the spatial 

variable in steps h , i.e. 

.; ; 1, ; 1,i jx ik t j i N j M= = = =
 

 On the grid  , , ( 1, ; 1, )ih jih j i N j MW x t = = = ==  let us construct an unconditionally stable 

implicit scheme, a finite-difference approximation of equation (1): 
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 Assuming 1j
i iP P+ = , equation (8) is written as: 
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where 
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Equation (9) is solved by the run-through method [8], where 
                                         

1 i iii
P AP B=
−

+
 

(10) 

                                            
1
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−
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0;A =     
2

jB U=                                                        (13) 

                                                0.
N
P =                                                             (14) The computational experiment is 

performed in the following sequence: 
1. According to formulas (11), (12), taking into account (13), the coefficients are determined 

, ;
i i
A B   

2. Using (14), formula (10) gives the values 
, , ..., .

1 2 1N N
P P P

− −  

Function values 
i
d known when 1,2j = . Indeed, the initial conditions are 

0
,( ,0) 0 0/PP




 =


= =


 

equivalent to: 1 20, 0.i iP P= =  Therefore, at the first iteration, the values of the function on the 3rd time 

layer are determined by the run method. Then, if necessary 3 2,i iP P   defined by 4
iP  and so on until 

.j M=  

 The solution by the method of successive approximations is carried out according to the usual 
scheme. 

1. Under the given conditions (2)-(5), equation (1) was integrated and determined by ( ,1).KP    

2. The functional value is calculated using formula (7). If 
1 ,K KZ Z −− 

 
then the invoice process ends, if not, then step 3 is executed. 

3. Based on the search results ( ,1)KP   taking into account (2)-(6), the conjugate equation (1) 

is integrated. 

4. Using the formula 
2

2 3

(0, ) (0, )Z f f

U

 
 

  

 
 
 

  
= − +

   
 the functional gradient is calculated. 

5. Improved control is being built [2,11]: 

1 .K K
j j

j

Z
U U

U
+ 

= +


  

The calculations are repeated starting from point 1. The above method determines the 
duration of exposure and optimal control of the injection pressure for focal injection wells.  
 The heterogeneity of the reservoir caused the fact that water was pumped into the focal injection 
wells periodically. Changes in reservoir pressure in producing wells lead to the fact that the operation 
of injection wells must be regulated according to the current situation. 
 Calculation of technological parameters of periodic operation of injection wells was carried out 
at the following values:                                     

3 14 2
1; ;900 / 0,1 ; 9 10aP кг м П c K м −== =  
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14 2 3
2 1 2; ;9 16 0,3; 0,05; 86,4 10M cK м M M −= = = =   

          
15 10 1 10; ;8,64 10 ; 0,5 10 10cPT c Пa Пa  −− − −=  =  =  

         
6 11

max; ; ; 20 ;0,4 10 10 200м м Me L P Пa− −=  = = =  

         
; ; 0, 4.0,03 0,01  = = =  

 At the first stage of the solution, various time points were set T and calculated the corresponding 
controls ( )U  , delivering a minimum to the functional (7). At the second stage, according to Table 1, 

the minimum time for which the functional reached a value less than 0.3 was determined and the 
optimal value was chosen 1T =  (in dimensions T =10 days). Analysis of the results of a computational 
experiment allows us to draw the following conclusions: 

1) the type of optimal discharge pressure is the same for any T ; 
2) time management T  it has characteristic areas of growth and decline, and the maximum 

injection pressure of subsequent growth is higher than the previous one. 
Based on the physical concepts of periodic water injection, it can be assumed that these pressure 

fluctuations will intensify the flow processes.  
Convergence of functional values Table 1. 

Iteration 
number 

of the 
functional 

value at T=0.5 

Iteration 
number 

of the 
functional 

value at T=0.8 

Iteration 
number 

of the 
functional 

value at T=0,9 
2 6.0432 2 3.0115 2 3.6614 
5 3.7866 5 1.3688 5 1.6476 
9 3.5286 10 0.5500 10 0.6237 
  15 0.5206 17 0.5451 
    18 0.5152 

at T=1 at T=1,2   
2 4.2582 2 4.0452   
5 2.1873 5 2.5451   

10 1.3450 10 1.5658   
15 0.9328 15 1.0731   
20 0.6845 20 0.7593   
25 0.4988 24 0.5664   

29 0.3152 25 0.5157   
30 0.2862 27 0.3800   

  28 0.3527   
 

 In practice, it is important to specify the cycle duration value for each injection well. To solve this 
problem using the above method, it would be necessary to additionally study the reservoir structure 
for individual injection wells, which is very difficult. Therefore, it is advisable to develop 
recommendations for adjusting the cycle duration based on current fishing information. 
 It is known that the flow rate and injection pressures are systematically measured for individual 
injection wells, and the flow rate is the most informative factor, since any changes in the reservoir will 
necessarily affect it. 
 It is assumed, similarly, to build a mathematical model of the injection well operation using linear 

identification methods. The input is taken as the discharge pressure ( )P t , and per output expense ( )q t . 

The definition of the mathematical model of such an object is based on the relationship between the 
mutual correlation function of the input and output signals qpR  with the input correlation function ppR  

[11]. As a result of statistical processing of the average daily flow rate and injection pressure values for 
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wells, the following values were obtained: 
ppR , 

qpR . For the specified type of correlation function, the 

object's differential equation is 
2

2

d q dq
d b q cp
dt dt

+ + =  .                                           (15) 

The coefficients of equation (15) are determined from the existing standard albums of linear 
identification[11]. Numerical values of the coefficients are shown in Table 2.  

Table 2. 
Linear identification results 

Well number 74.65*108d/c/ 8.64*104b/c/ 10*cм3/мПа 

1 28.57 5.50 0.63 
2 22.12 5.39 0.51 
3 34.97 3.12 0.32 
4 31.65 1.19 0.75 
5 34.36 4.10 0.58 

 
 In case of periodic impact on the deposit, the flooding process can be regulated by selecting the 
cycle duration and injection pressure. Using the example of well No. 1, we will consider the following 

problem. Sets the time when the process will continue 1T , it is required to select the discharge pressure, 

the duration of exposure in this way bT  and the duration of the stop 0T  so that during this time 1T  

pump the maximum amount of water: 
1

0

( ) max
T

q t dt→ .  

It is assumed that at the start of the review process:  

0 ,(0) (0) 0,q q q= =
 

and at the end point in time: 
1 10,( ) ( ) 0.q T q T= =  

The discharge pressure must satisfy the natural constraint: 

max .0 ( )P t P   

Existing methods of the mathematical theory of optimal processes allow us to solve this 
problem[12]. We write down the problem statement in terms of the theory of optimal processes. Let's 
transform (15): 

1

2

2
,

d q dq
d T Tq ap
dt dt

+ + =
 

where                                           
1, , .

1b c
T T a

d d d
== =

 
 For control, we will take the discharge pressure: 

( ) ( ).U t P t=  

Let's denote: 1( ) ( );t q tx =   1
2 ( ) ;t

dx
x

dt
=   

1

0

3 1( ) ( ) ;

T

t t dtx x= −  

                                        0

0
1 ;x q=   0

2 0;x =  max

1 .V P=
 

 The following problem is considered. In phase space X  two points are given 0 0
1 2,x x . 

Among all valid piecewise continuous controls ,( ) 0U t t T  find one that satisfies the constraint: 
1,0 ( )V t V   

and brings up the system: 
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1

2
1 1 2

2 1

2

,

,T T

dx
x f

dt

dx
x x U f

dt





 − − +


= =

= =

                                          (16) 

from the position:  
                                          

1 2

0 0
1 2(0) , (0) ;x x x x= =                                                (17) 

to the position: 

                                        
1 2

1 1( ) 0; ( ) 0x T x T= =                                                  (18) 

so, what 

1

0

( ) min
T

x t dt− → .                                                                    

Let's add anew equation to system(16): 

3

1.
dx

x
dt

= −
 

Using the equations of system (16), we make equations for coprime variables: 

                                   

31 1 2
1 2 3 1 2 3

1 1 1

32 1 2
1 2 3 1 2

2 2 2

3 31 2
1 2 3

3 3 3

,

,

0.

fd f f
T

dt x x x

fd f f
T

dt x x x

d ff f

dt x x x


    


    


  

  
  

 


 
  

 


 


 
  

 
= − + + = +

  

 
= − + + = +

  

 
= − + + =

  

                  (19) 

Finding the values 2   and 3 , 3 0, =  

                                             
2

2 2
1 22

0.
d d

T T
dt dt

 
+ == −                                            (20) 

The characteristic equation for (20) for the corresponding values of the coefficients has two 
roots: 

1,2 0,0965 0,1607 ,iK i  ==  
 

therefore: 

2 1 2( ) exp( )cos exp( )sin .t C t t C t t    = +
 

Let's make up the Hamiltonian: 

1 2 2 1 2 2 3 1( ) ,H x T x Tx U x   + − − + −=
 

in order for the Hamiltonian to have a maximum value, as it is called by the Pontryagin maximum 
principle, it is necessary: 

1
2

2,

, ( ) 0,

0 ( ) 0.

if

if

u t
U

t










=


 

 Let's analyze at what values t   function 2( )t  changes the sign. Converting it 2( )t : 

                                 
2 2

2 1 2( ) exp( )sin( ),t C C t t   += +
                             (21)

 

1 2

2 2 2 2
1 2 1 2

; .sin cos
C C

C C C C
 

+ +

= =

 
Let's put 1 20, 1C C= =  to 0 = . Since (21) includes a sine, the control switching points will 

satisfy the equation: 
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                                           sin 0,kt =  i.e. ,kt k



=  1,2,...,.k =  

При 420.8,64 10 ( )0,1607, k k ct   = . It follows that the optimal value of the exposure duration is 

420 8,64 10 ( )b cT  = , duration of the stop 
4

0 20 8,64 10 ( )cT  =  (Fig. 1). Let's calculate the total 

volume of water for well No.1 at such a CEC, if 
                       1 4 30 1

1,8 64 10 60( ); 100( ); 16( )aT c x m U MП=  = = .                      (22) 

 At the moment 0t =   the conditions (19) must bemet, and the control of 1( )U t U= , therefore, 

the change in the flow rate at the first exposure satisfies the relation: 

1 21( ) exp( )cos exp( )sin ,x t C t t C t t aU     = − + − +  
                             
 

 
   

 
Figure 1. Dependence of the optimal control on the conjugate function.   

where                 1 2

0
0 1
1

)
,

4

( /x aU
C x aU C




 
 
 

−
  = − =  .                                (23) Converting it 1

( )x t   
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                      2 2

1 1 2( ) ( ) ( ) exp( )sin( ) ,x t C C t t aU    = + − + +                          (24) 

                    

1

2 2

1 2

sin ;
( ) ( )

C

C C



=

 +
    

2

2 2

1 2

cos .
( ) ( )

C

C C



=

 +
                               (25) 

Integrating exp( )sin( )t t  − + , twice in parts, we get: 

2

0

1
(exp( ) 1)(sin cos )

exp( )sin( ) ;

1

t t dt





 
  

  
  





− + +

− + =
 

+  
 

  

Taking into account (22) - (25), we determine the volume of water injected during the first cycle: 

2 2 1 2
1 2 2 2 2 2

1 2 1 2

1 2

3

1
( ) ( ) exp 1

( ) ( ) ( ) ( )

1

703( ).

C C
C C

C C C C
Q

aU m

 


  









    
 +  − + +      + +  = +

 
+  
 

+ =
 

 Start time of the second cycle 
2

2
;t




=  the end of the second cycle coincides with the time of 

reviewing the process 
1

3

3
.T t




= =  Since T1 relations (20) must be fulfilled at the final time T 120, the 

law of flow rate change in the second cycle will be:  

                 2 2

1 1 2( ) ( ) ( ) exp( )sin( ) ,x t C C t t aU    = +  − + +                             (26) 

                              1
1 2

,
3

exp

aU C
C C







 
 = =

 
− 
 

   

To get the download volume in the second cycle, integrate (26) from 
2

2
t




= , before  

3

3
t




=  . 

2 2 1 2
1 2 2 2 2 2

1 2 1 2

2 2

3

1 3 2
( ) ( ) exp exp

( ) ( ) ( ) ( )

1

244( ).

C C
C C

C C C C
Q

aU m

  
 

   









      
 +  − + − +         + +      = +

 
+  
 

+ =

The total consumption for two cycles will be: 
3947( )Q m= . 

When solving the same problem for 
injection wells No. 1,2,3,4, the following values 

for the duration of exposure and shutdown 
were obtained: 

for well # 1, Tb = T0 = 31 * 8,64 * 104 (c);  
for well No. 2, Tb = T0 = 20 * 8,64 * 104 (c); 
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for well No. 3, Tb = T0 = 20 * 8,64 * 104 (c); 
for well No. 4, Tb = T0 = 20 * 8,64 * 104 (c). 

 The pressure must be maintained at the 
highest possible level during the entire 
discharge time. 
 
Conclusion. The proposed recommendations 
on choosing the optimal values for the duration 
of exposure and stopping during periodic 
operation of injection wells were included in the 
"Technology for regulating periodic exposure to 
the productive reservoir of an oil field”, which is 
being implemented in the development of oil 
fields.  
 It is known that in some cases direct 
methods of monitoring injection wells are 
difficult. In addition, during periodic operation 
of injection wells, it is advisable to have 
information about the future injectivity values 
of those injection wells that have been stopped 
by the time the process is considered. In this 
regard, the task of predicting the injectivity of 
injection wells becomes urgent. 
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