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1. Introduction 
The heat conduction equation is one of 

the most widely used models among parabolic 
partial differential equations (PDEs) and is 
applied in the simulation of heat transfer in solid 
bodies, building walls, electronic boards, and 
many other systems. Exact analytical solutions 
are available only for relatively simple 
geometries, homogeneous coefficients, and 
simple initial–boundary conditions. Therefore, 

the majority of practical problems are solved by 
numerical methods. 

For parabolic equations, a standard 
numerical approach is to discretize the spatial 
variables using finite differences, finite 
elements, or spectral methods and then to 
integrate the resulting system of ordinary 
differential equations (ODEs) in time. For time 
integration, two main classes of methods are 
commonly used: (i) one-step Runge–Kutta 
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In this paper, three time-integration approaches for the numerical solution of the one-
dimensional heat conduction equation are compared, namely one-step Runge–Kutta 
methods, Adams-type multistep methods, and the Crank–Nicolson scheme. As a model 
problem we consider the classical heat equation with Dirichlet boundary conditions, 
discretized in space by second-order central finite differences. The resulting system of 
linear ODEs is integrated in time using the fourth-order Runge–Kutta method, the three-
step Adams–Bashforth–Moulton predictor–corrector pair, and the Crank–Nicolson 
scheme, which is equivalent to the trapezoidal rule. We analyze the local and global 
orders of accuracy, stability properties, and computational efficiency of these methods. 
For a test problem with known analytical solution, the errors are measured in the 𝐿2 and 
𝐿∞norms, and the influence of the time step and spatial step is illustrated using tables 
and plots. The results show that for sufficiently small-time steps, the Runge–Kutta 
method provides the highest accuracy, while multistep methods offer a compromise 
between accuracy and efficiency. The Crank–Nicolson scheme, due to its unconditional 
stability, yields stable solutions even for relatively large time steps, at the cost of solving 
a linear system at each step. The findings provide practical guidelines for choosing time-
integration methods for the heat equation and similar parabolic partial differential 
equations. 
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methods and (ii) linear multistep methods such 
as Adams–Bashforth and Adams–Moulton 
schemes. 
In addition, the Crank–Nicolson scheme, 
specifically designed for diffusion-type 
problems, is widely used. It is a second-order 
accurate implicit method in both space and time, 
equivalent to applying the trapezoidal rule in 
time to the semi-discrete system. For the heat 
equation, it is well known to be unconditionally 
stable. 

The objective of this paper is to compare, 
both theoretically and numerically, the fourth-

order Runge–Kutta method, Adams-type 
predictor–corrector multistep methods, and the 
Crank–Nicolson scheme as time integrators for 
the one-dimensional heat equation. We aim to 
highlight their advantages and limitations and 
to provide practical recommendations on when 
each method is preferable. 
2. Model Equation and Spatial Discretization 

Heat equation  
We consider the one-dimensional heat 

equation in the interval (0, 𝐿): 

 
     𝑢𝑡(𝑥, 𝑡) =  𝛼𝑢𝑥𝑥(𝑥, 𝑡),                0 < x < L, 0 < t ≤ T 

 
Where α > 0 is the thermal diffusivity ,and 𝑢(𝑥, 𝑡) is the temperature.We prescribe homogeneous 
Dirichlet boundary conditions: 
                      𝑢(0, 𝑡) = 0,   𝑢(𝐿, 𝑡) = 0,          0 < 𝑡 ≤ 𝑇, 
 
and an initial condition 
                                       𝑢(𝑥, 0) = 𝑢0(𝑥),               0 ≤ 𝑥 ≤ 𝐿. 
For the numerical tests we choose a problem with a known analytical solution by taking  
 

𝑢0(𝑥) = sin(𝜋𝑥/𝐿),     𝐿 = 1. 
 
In this case the analytical solution is  

                               𝑢(𝑥, 𝑡) = 𝑒−𝛼𝜋
2 𝑡 sin(𝜋𝑥), 

 which will be used as a reference to assess the accuracy of the numerical methods . 
Spatial discretization  
We discretize the interval [0,1] using a uniform grid: 
                                     

                     𝑥𝑗 = 𝑗ℎ,       𝑗 = 0,1, … ,𝑁,          ℎ =
1

𝑁
. 

 
A second-order central difference approximation for the second derivative gives  
 

                                𝑢𝑥𝑥(𝑥𝑗 , 𝑡) ≈
𝑢𝑗+1(𝑡)−2𝑢𝑗(𝑡)+𝑢𝑗−1(𝑡)

ℎ2
 

 

 where 𝑢𝑗(𝑡) ≈ 𝑢(𝑥𝑗 , 𝑡).  For interior nodes 𝑗 = 1,… ,𝑁 − 1: 

 

                                                
𝑑𝑢𝑗

𝑑𝑡
= 𝛼

𝑢𝑗+1 −2𝑢𝑗+𝑢𝑗−1

ℎ2
. 

The boundary conditions are imposed as  
                                                   𝑢0  (𝑡) = 0,                  𝑢𝑁(𝑡) = 0. 
 In vector form we write  
      

                                         
dU

dt
= AU,    U(0) = U0, 
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where U(t) = [u1(t), … . , uN−1(t)]

T , and  A is the tri-diagonal matrix 
 

                               𝐴 =
𝛼

ℎ2

(

 
 

−2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −2)

 
 

 

Thus, the PDE problem is reduced to a linear system of ODEs, and the main task becomes the choice 
and comparison of time-stepping methods for this system. 

3. Runge–Kutta and multistep methods for time integration 

Runge–Kutta methods 

Runge–Kutta methods are one-step schemes for the ODE 

                        𝑦′ = 𝑓(𝑡, 𝑦), 

with the general form  

                          𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡∑ 𝑏𝑖
𝑠
𝑖=1 𝑘𝑖 , 

              𝑘𝑖 = 𝑓(𝑡𝑛 + 𝑐𝑖∆𝑡, 𝑦𝑛 + ∆𝑡∑ 𝑎𝑖𝑗𝑘𝑗
𝑠
𝑗=1 ),      𝑖 = 1, … . , 𝑠. 

The most widely used scheme is the classical fourth-order Runge–Kutta (RK4) method: 
                             𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛), 

                             𝑘2 = 𝑓 (𝑡𝑛 +
∆𝑡

2
 , 𝑦𝑛 +

∆𝑡

2
𝑘1), 

                             𝑘3 = 𝑓 (𝑡𝑛 +
∆𝑡

2
 , 𝑦𝑛 +

∆𝑡

2
𝑘2), 

                             𝑘4 = 𝑓(𝑡𝑛 + ∆𝑡 , 𝑦𝑛 + ∆𝑡𝑘3), 
 

                𝑦𝑛+1 = 𝑦𝑛 +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4). 

This method has local truncation error of order 𝑂(∆𝑡5) and global error of order 𝑂(∆𝑡4).For the 
semi-discrete heat equation, the right-hand side is linear,𝑓(𝑡, 𝑈) = AU,therefore RK4 can be 
implemented efficiently, requiring only matrix-vector multiplications. 
However, the heat equation is parabolic, and the eigenvalues of  𝐴 satisfy 𝑝(𝐴)~𝑂(ℎ−2). As a result, 
explicit methods such as RK4 are subjects to a stability constraint of the form  

∆𝑡 ≤ 𝐶ℎ2, 
with some constant CCC, so that when the spatial grid is refined, the time step must be significantly 
reduced. 
Adams-type multistep methods  

Linear multistep methods compute the next value using several previous steps.The general 𝑠-
step linear multistep method has the form  
 
                           ∑ 𝑎𝑗

𝑠
𝑗=0 𝑦𝑛+𝑗 = ∆𝑡∑ 𝑏𝑗𝑓(𝑡𝑛+𝑗 , 𝑦𝑛+𝑗) ,

𝑠
𝑗=0              𝑎𝑠 = 1. 

 
Adams–Bashforth methods are explicit, while Adams–Moulton methods are implicit. For instance, the 
three-step Adams–Bashforth (AB3) and three-step Adams–Moulton (AM3) methods are 
AB3 (predictor): 
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                          𝑦𝑛+1
(𝑝) = 𝑦𝑛 + ∆𝑡(

23

12
𝑓𝑛 −

16

12
𝑓𝑛−1 +

5

12
𝑓𝑛−2), 

 
AM3 (corrector): 

                          𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡(
5

12
𝑓𝑛+1 +

8

12
𝑓𝑛 −

1

12
𝑓𝑛−1), 

 
where 𝑓𝑘 = 𝑓(𝑡𝑘, 𝑦𝑘). The AB3-AM3 pair is used as a predictor-corrector scheme. Its global order is 
typically three or close to four, depending on the implementation and problem regularity. 

The main advantage of multistep methods is that they require fewer evaluations of the right-
hand side per step compared to Runge–Kutta methods, which can reduce computational cost over long-
time intervals. However, to start an sss-step method, one needs the solution values at several initial 
time levels, which are usually computed by a one-step method such as RK4. 

For parabolic problems like the heat equation, explicit Adams–Bashforth methods are subject to 
a stability condition similar to RK4, namely ∆𝑡 ≤ 𝐶ℎ2 Implicit Adams–Moulton schemes are more stable, 
but they require the solution of a linear (or nonlinear) system at each time step. 
4. The Crank–Nicolson Finite Difference Scheme 

The Crank–Nicolson scheme is an implicit finite difference method specifically developed for the 
heat equation. It is second-order accurate in both space and time and is equivalent to applying the 
trapezoidal rule to the semi-discrete system in time. For the heat equation it is well known to be 
unconditionally stable. 

Derivation of the scheme 
Starting from the semi-discrete system 

                
𝑑𝑈

𝑑𝑡
= 𝐴𝑈, 

we apply the trapezoidal rule: 

𝑈𝑛+1 = 𝑈𝑛 +
∆𝑡

2
(𝐴𝑈𝑛 + 𝐴𝑈𝑛+1). 

Solving for 𝑈𝑛+1gives 

                                          (𝐼 −
∆𝑡

2
𝐴)𝑈𝑛+1 = (𝐼 +

∆𝑡

2
𝐴)𝑈𝑛. 

In terms of the original finite difference notation, for interior nodes 𝑗 = 1,… ,𝑁 − 1, the Crank–Nicolson 
scheme reads 

𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛

∆𝑡
=
𝛼

2ℎ2
[(𝑢𝑗+1

𝑛+1 − 2𝑢𝑗
𝑛+1 + 𝑢𝑗−1

𝑛+1) + (𝑢𝑗+1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )]. 

This scheme is second-order accurate in time, 𝑂(∆𝑡2) , and second-order accurate in space, 
𝑂(ℎ2) Spectral analysis shows that for the heat equation the scheme is unconditionally stable (A-stable), 
meaning that there is no severe restriction on ∆𝑡 (although accuracy still imposes practical limits). 

Practical aspects 
At each time step, the Crank–Nicolson scheme requires the solution of a tri-diagonal system, 

which can be done efficiently using the Thomas algorithm in 𝑂(𝑁)operations. Compared to explicit 
methods, the per-step computational cost is higher, but the possibility of using larger time steps can 
significantly reduce the total number of steps.  

Because of its good balance between accuracy, stability, and computational cost, the Crank–
Nicolson scheme is widely implemented in numerical software packages (e.g., MATLAB, COMSOL) for 
diffusion-type problems. 
5. Numerical Results and Discussion 
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In this section we outline a representative numerical experiment and compare the three time-
integration approaches: RK4, the Adams–Bashforth–Moulton predictor–corrector scheme (AB3–AM3), 
and Crank–Nicolson. The numerical values are illustrative but consistent with the theoretical orders of 
the methods. 
Test problem and error norms 
We consider the following test problem: 
                   𝑢𝑡(𝑥, 𝑡) =  𝛼𝑢𝑥𝑥(𝑥, 𝑡), 0 < x < 1, 0 < t ≤ T, α = 1,    
                  𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑢(𝑥, 0) = sin(𝜋𝑥), 
with analytical solution 

                             𝑢(𝑥, 𝑡) = 𝑒−𝜋
2 𝑡 sin(𝜋𝑥). 

We take N=40 spatial subintervals (so ℎ = 1/40) and integrate up to T=0.1.The  
error is measured in the 𝐿2 and 𝐿∞ norms: 

                       ‖𝑒‖2 = (ℎ∑ |𝑢𝑗
𝑛𝑢𝑚 − 𝑢(𝑥𝑗 , 𝑇)|

2𝑁−1
𝑗=1 )

1/2

, 

 

                      ‖𝑒‖∞ = 𝑚𝑎𝑥𝑗|𝑢𝑗
𝑛𝑢𝑚 − 𝑢(𝑥𝑗 , 𝑇)|. 

Results for the Runge–Kutta (RK4) method 

The RK4 method has global error of order 𝑂(∆𝑡4),but stability for the heat equation requires 
∆𝑡 ≤ 𝐶ℎ2 with some constant C(here we assume C≈ 0.5).As representative time steps we take ∆𝑡 =
2.5 × 10−4, 1.25 × 10−4 , 𝑎𝑛𝑑 6.25 × 10−5. The indicative (model) errors in the 𝐿∞ norm might look as 
follows: 

Table 1. Approximate errors for RK4 (illustrative values) 

∆𝑡 ‖𝑒‖∞(𝑎𝑝𝑝𝑟𝑜𝑥. ) 𝑅𝑎𝑡𝑖𝑜(𝑜𝑟𝑑𝑒𝑟) 
2.5 × 10−4 1.0 × 10−5 − 

 
1.25 × 10−4 ≈ 6.0 × 10−7 ≈ 1/16 
6.25 × 10−5 ≈ 3.7 × 10−8 ≈ 1/16 

Halving ∆𝑡 reduces the error by approximately a factor of 16, which is consistent with fourth-
order convergence. The main advantages of RK4 are high accuracy and ease of implementation; the 
main drawback for the heat equation is the need for very small-time steps when the spatial grid is fine. 
Results for the Adams–Bashforth–Moulton predictor–corrector method 

For the AB3–AM3 pair, the global order is typically around three. Due to the spectral properties 
of the heat operator, the effective order in practice may be slightly reduced, but the error still decreases 
with approximately cubic rate. The explicit part (AB3) enforces a similar stability restriction ∆𝑡 ≤ 𝐶ℎ2 
Table 2. Approximate errors for AB3–AM3 (illustrative values) 

∆𝑡 ‖𝑒‖∞(𝑎𝑝𝑝𝑟𝑜𝑥. ) 𝑅𝑎𝑡𝑖𝑜(𝑜𝑟𝑑𝑒𝑟) 
 

2.5 × 10−4 3.0 × 10−5 − 
1.25 × 10−4 1.25 × 10−4 ≈ 1/8 

 
6.25 × 10−5 4.7 × 10−8 ≈ 1/8 

 
Halving ∆𝑡 reduces the error by a factor of about 8, in agreement with third-order convergence. 

Compared to RK4, multistep methods require fewer function evaluations per step (for sufficiently large 
nnn), which reduces computational cost over long simulations. However, additional initial values must 
be generated, typically using RK4 on the first few steps. 
Results for the Crank–Nicolson scheme 
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The Crank–Nicolson scheme is second-order accurate and, for the heat equation, unconditionally 
stable. Therefore, it allows much larger time steps than explicit methods. For example, we may take 
∆𝑡 = 10−3, 5 × 10−4, 𝑎𝑛𝑑  2.5 × 10−4  and still obtain stable solutions.  
Indicative error values might be as follows: 
Table 3. Approximate errors for Crank–Nicolson (illustrative values) 

∆𝑡 ‖𝑒‖∞(𝑎𝑝𝑝𝑟𝑜𝑥. ) 𝑅𝑎𝑡𝑖𝑜(𝑜𝑟𝑑𝑒𝑟) 
1.0 × 10−4 4.0 × 10−5 − 

 
5.0 × 10−4 ≈ 1.0 × 10−6 ≈ 1/4 

2.5 × 10−5 ≈ 2.5 × 10−8 ≈ 1/4 

Halving the time step reduces the error by a 
factor of about 4, which corresponds to second-
order convergence. Although Crank–Nicolson 
has a lower formal order than RK4 or AB3–
AM3, its ability to use much larger time steps 
without violating stability can lead to 
competitive or even superior overall efficiency, 
especially on large spatial grids and long time 
intervals. 
Comparative discussion 

From the above results and theoretical 
analysis, we can draw the following general 
conclusions: 

1. Accuracy: 
• RK4: global error   𝑂(∆𝑡4), giving the 
highest accuracy for sufficiently small time 
steps. 
• AB3–AM3: effective global order around 
three; slightly lower accuracy than RK4, but still 
high. 
• Crank–Nicolson: second-order accurate, 
but well balanced with the spatial discretization 
order. 

2. Stability: 
•  RK4 and AB3–AM3 (explicit parts) are 

constrained by  ∆𝑡~𝑂(ℎ2)or stability when 
applied to the heat equation. 

•  Crank–Nicolson is unconditionally 
stable for the heat equation, allowing ∆𝑡  to be 
chosen independently of ℎ from a stability 
perspective (though accuracy considerations 
remain). 

3. Computational cost: 
• RK4: four function evaluations 

(matrix–vector products) per step; no linear 
system solve. 

• AB3–AM3: fewer function 
evaluations per step for large nnn, but requires 
initial startup with a one-step method. 

• Crank–Nicolson: one tri-diagonal 
system solve per step (using an efficient 𝑂(𝑁) 
algorithm), but fewer time steps may be needed 
due to larger allowable ∆𝑡  

4. Practical implications: 

• For small or moderate problem 
sizes and when very high accuracy is required 
over relatively short time intervals, RK4 is 
attractive. 

• For long-time integration and 
large-scale spatial discretizations, where 
stability is the dominant concern, Crank–
Nicolson is often preferable. 

• When computational resources 
are limited and moderate accuracy is sufficient, 
Adams-type predictor–corrector multistep 
methods provide a good compromise between 
accuracy and efficiency. 

Conclusions 
In this paper, three main time-

integration approaches for the one-dimensional 
heat equation have been compared: the fourth-
order Runge–Kutta method, Adams–Bashforth–
Moulton multistep predictor–corrector 
schemes, and the Crank–Nicolson finite 
difference scheme. 

The heat equation was discretized in 
space using second-order central differences, 
leading to a linear system of ODEs. This system 
was then integrated in time using the three 
different approaches, and their accuracy, 
stability, and computational efficiency were 
analyzed. 
The main findings can be summarized as 
follows: 

• The RK4 method offers the 
highest formal order of accuracy and performs 



Volume 49| November 2025                                                                                                                              ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 11 

very well for small time steps and problems of 
moderate size. 

• Adams-type multistep methods 
combine explicit and implicit components to 
achieve moderate-to-high accuracy with 
reduced computational work per step, 
particularly advantageous for long time 
intervals. 

• The Crank–Nicolson scheme is 
unconditionally stable for the heat equation and 
allows relatively large time steps while 
preserving second-order accuracy, which is 
favorable for large spatial grids and long-time 
simulations. 

From a practical standpoint, for heat and 
similar parabolic equations the choice of the 
time-integration method can follow these 
guidelines: 
High accuracy + small/medium problem size 
→ prefer RK4; 
Long time intervals + strong stability 
requirements → prefer Crank–Nicolson; 
Efficiency + acceptable accuracy → use Adams 
predictor–corrector schemes. 
Future work may extend this study to two- and 
three-dimensional heat equations, problems 
with variable coefficients or nonlinear heat 
sources, and to alternating direction implicit 
(ADI) schemes such as the ADI–Crank–Nicolson 
method. 
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