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In this paper, three time-integration approaches for the numerical solution of the one-
dimensional heat conduction equation are compared, namely one-step Runge-Kutta
methods, Adams-type multistep methods, and the Crank-Nicolson scheme. As a model
problem we consider the classical heat equation with Dirichlet boundary conditions,
discretized in space by second-order central finite differences. The resulting system of
linear ODEs is integrated in time using the fourth-order Runge-Kutta method, the three-
step Adams-Bashforth-Moulton predictor-corrector pair, and the Crank-Nicolson
scheme, which is equivalent to the trapezoidal rule. We analyze the local and global
orders of accuracy, stability properties, and computational efficiency of these methods.
For a test problem with known analytical solution, the errors are measured in the L, and
Lo norms, and the influence of the time step and spatial step is illustrated using tables
and plots. The results show that for sufficiently small-time steps, the Runge-Kutta
method provides the highest accuracy, while multistep methods offer a compromise
between accuracy and efficiency. The Crank-Nicolson scheme, due to its unconditional
stability, yields stable solutions even for relatively large time steps, at the cost of solving
a linear system at each step. The findings provide practical guidelines for choosing time-
integration methods for the heat equation and similar parabolic partial differential
equations.
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ABSTRACT
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the majority of practical problems are solved by
numerical methods.

Keywords:

1. Introduction
The heat conduction equation is one of

the most widely used models among parabolic
partial differential equations (PDEs) and is
applied in the simulation of heat transfer in solid
bodies, building walls, electronic boards, and
many other systems. Exact analytical solutions
are available only for relatively simple
geometries, homogeneous coefficients, and
simple initial-boundary conditions. Therefore,

For parabolic equations, a standard
numerical approach is to discretize the spatial
variables using finite differences, finite
elements, or spectral methods and then to
integrate the resulting system of ordinary
differential equations (ODEs) in time. For time
integration, two main classes of methods are
commonly used: (i) one-step Runge-Kutta
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methods and (ii) linear multistep methods such
as Adams-Bashforth and Adams-Moulton
schemes.
In addition, the Crank-Nicolson scheme,
specifically  designed for diffusion-type
problems, is widely used. It is a second-order
accurate implicit method in both space and time,
equivalent to applying the trapezoidal rule in
time to the semi-discrete system. For the heat
equation, it is well known to be unconditionally
stable.

The objective of this paper is to compare,
both theoretically and numerically, the fourth-

u(x, t) = auy, (x,t),

order Runge-Kutta method, Adams-type
predictor-corrector multistep methods, and the
Crank-Nicolson scheme as time integrators for
the one-dimensional heat equation. We aim to
highlight their advantages and limitations and
to provide practical recommendations on when
each method is preferable.
2. Model Equation and Spatial Discretization
Heat equation
We consider the one-dimensional heat
equation in the interval (0, L):

0<x<lIL, 0<t<sT

Where a > 0is the thermal diffusivity ,and u(x,t) is the temperature.We prescribe homogeneous

Dirichlet boundary conditions:

u(0,t) =0, u(lL,t) =0, 0<t<T,
and an initial condition
u(x,0) = uy(x), 0<x<L.

For the numerical tests we choose a problem with a known analytical solution by taking

uy(x) = sin(nx/L), L =1.

In this case the analytical solution is
u(x, t) = e~ t sin(mx),

which will be used as a reference to assess the accuracy of the numerical methods .

Spatial discretization

We discretize the interval [0,1] using a uniform grid:

j=01,..,N, h=

1
N

A second-order central difference approximation for the second derivative gives

i+1(E)—2u;(t)+u;_,(t

where u;(t) ~ u(xj, t). For interior nodesj =1,...,N — 1:

% _ Ujypq —2Uj+Uj_q
dt h?2 '
The boundary conditions are imposed as
u‘O (t) = OI
In vector form we write

du _

== AU, U(0) = Uy,

uy(t) = 0.
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where U(t) = [uy (1), ....,ux_1(©)]7, and A is the tri-diagonal matrix

1 =2
Thus, the PDE problem is reduced to a linear system of ODEs, and the main task becomes the choice
and comparison of time-stepping methods for this system.

3. Runge-Kutta and multistep methods for time integration
Runge-Kutta methods

Runge-Kutta methods are one-step schemes for the ODE

y' = f(ty),

with the general form
Yn+1 = Yn + ALY bk,
ki = f(tn + CiAt,yn + At2§=1 al-jkj), i = 1, ey S

The most widely used scheme is the classical fourth-order Runge-Kutta (RK4) method:
kl = f(tn' yn);

ko =f(ta+5 9 +5 k),

At At
ks =f(tn+5 00 + 5 k),
k, = f(t, + At ,y, + Atks),

a1 = Yn + = Uer + 2k, + 2k + k).

This method has local truncation error of order 0 (At®) and global error of order 0 (At*).For the
semi-discrete heat equation, the right-hand side is linear,f(t,U) = AU,therefore RK4 can be
implemented efficiently, requiring only matrix-vector multiplications.

However, the heat equation is parabolic, and the eigenvalues of A satisfy p(4)~0(h™2). As a result,
explicit methods such as RK4 are subjects to a stability constraint of the form

At < Ch?,
with some constant CCC, so that when the spatial grid is refined, the time step must be significantly
reduced.
Adams-type multistep methods

Linear multistep methods compute the next value using several previous steps.The general s-
step linear multistep method has the form

Z?:o aj Ynyj = At Z?:o bjf(tn+j'yn+j)» a; = 1.
Adams-Bashforth methods are explicit, while Adams—Moulton methods are implicit. For instance, the

three-step Adams-Bashforth (AB3) and three-step Adams-Moulton (AM3) methods are
AB3 (predictor):
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23 16 5
Yn+1(p) =Ynt At(ﬁfn - Efn—l + Efn—Z)'

AM3 (corrector):
5 8 1
Yn+1 = Yn T At(afrﬁl + Efn - Efn—l)»

where f;, = f(tx, yx). The AB3-AM3 pair is used as a predictor-corrector scheme. Its global order is
typically three or close to four, depending on the implementation and problem regularity.

The main advantage of multistep methods is that they require fewer evaluations of the right-
hand side per step compared to Runge-Kutta methods, which can reduce computational cost over long-
time intervals. However, to start an sss-step method, one needs the solution values at several initial
time levels, which are usually computed by a one-step method such as RK4.

For parabolic problems like the heat equation, explicit Adams-Bashforth methods are subject to
a stability condition similar to RK4, namely At < Ch? Implicit Adams-Moulton schemes are more stable,
but they require the solution of a linear (or nonlinear) system at each time step.

4. The Crank-Nicolson Finite Difference Scheme

The Crank-Nicolson scheme is an implicit finite difference method specifically developed for the
heat equation. It is second-order accurate in both space and time and is equivalent to applying the
trapezoidal rule to the semi-discrete system in time. For the heat equation it is well known to be
unconditionally stable.

Derivation of the scheme

Starting from the semi-discrete system

auv

= AU,
dt

we apply the trapezoidal rule:
At
U = U+ = (AU + AU,
Solving for U™*1gives
_A +1 At
(1-Fa)umt = (1+5a)um.

In terms of the original finite difference notation, for interior nodes j = 1, ..., N — 1, the Crank-Nicolson
scheme reads

Uttt gy

] v ] th [( ]n++11 n+1+un+1)+( 2u +u 1)]

This scheme is second-order accurate in time, O(At?) , and second-order accurate in space,
0(h?) Spectral analysis shows that for the heat equation the scheme is unconditionally stable (A-stable),
meaning that there is no severe restriction on At (although accuracy still imposes practical limits).

Practical aspects

At each time step, the Crank-Nicolson scheme requires the solution of a tri-diagonal system,
which can be done efficiently using the Thomas algorithm in O(N)operations. Compared to explicit
methods, the per-step computational cost is higher, but the possibility of using larger time steps can
significantly reduce the total number of steps.

Because of its good balance between accuracy, stability, and computational cost, the Crank-
Nicolson scheme is widely implemented in numerical software packages (e.g., MATLAB, COMSOL) for
diffusion-type problems.

5. Numerical Results and Discussion
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In this section we outline a representative numerical experiment and compare the three time-
integration approaches: RK4, the Adams-Bashforth-Moulton predictor-corrector scheme (AB3-AM3),
and Crank-Nicolson. The numerical values are illustrative but consistent with the theoretical orders of
the methods.

Test problem and error norms

We consider the following test problem:
U (x,t) = AUy (x,1),0<x<1, 0<t<T, a=1,
u(0,t) = u(l1,t) =0, u(x,0) = sin(mx),

with analytical solution

u(x, t) = e ™ ¢ sin(mx).

We take N=40 spatial subintervals (so h = 1/40) and integrate up to T=0.1.The
error is measured in the L, and L., norms:

1/2
lell = (AZ)5 ™ —uGe, 1)

llello = maxj|u]’-wm — u(xj,T)|.
Results for the Runge-Kutta (RK4) method

The RK4 method has global error of order 0(At*),but stability for the heat equation requires
At < Ch? with some constant C(here we assume C~ 0.5).As representative time steps we take At =
2.5x 1074 1.25%x 107*, and 6.25 x 107>, The indicative (model) errors in the L, norm might look as
follows:

Table 1. Approximate errors for RK4 (illustrative values)

At llell . (approx.) Ratio(order)
2.5x 107* 1.0 x 1075 —
1.25 x 10~* ~ 6.0 x 1077 ~1/16
6.25 x 107> ~ 3.7x1078 ~1/16

Halving At reduces the error by approximately a factor of 16, which is consistent with fourth-
order convergence. The main advantages of RK4 are high accuracy and ease of implementation; the
main drawback for the heat equation is the need for very small-time steps when the spatial grid is fine.
Results for the Adams-Bashforth-Moulton predictor-corrector method

For the AB3-AM3 pair, the global order is typically around three. Due to the spectral properties
of the heat operator, the effective order in practice may be slightly reduced, but the error still decreases
with approximately cubic rate. The explicit part (AB3) enforces a similar stability restriction At < Ch?
Table 2. Approximate errors for AB3-AM3 (illustrative values)

At llell (approx.) Ratio(order)
2.5x10™* 3.0x107° —
1.25 x 10~* 1.25 x 1074 ~1/8
6.25 X 1075 47 x 1078 ~ 1/8

Halving At reduces the error by a factor of about 8, in agreement with third-order convergence.
Compared to RK4, multistep methods require fewer function evaluations per step (for sufficiently large
nnn), which reduces computational cost over long simulations. However, additional initial values must
be generated, typically using RK4 on the first few steps.

Results for the Crank-Nicolson scheme
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The Crank-Nicolson scheme is second-order accurate and, for the heat equation, unconditionally
stable. Therefore, it allows much larger time steps than explicit methods. For example, we may take
At =1073,5 x 1074, and 2.5 x 10~* and still obtain stable solutions.

Indicative error values might be as follows:

Table 3. Approximate errors for Crank-Nicolson (illustrative values)

At |le|l (approx.) Ratio(order)
1.0 x 107* 4.0 x 107° -
5.0%x10°* ~1.0x10°° ~ 1/4
2.5x 107> ~25x10°8 ~1/4
Halving the time step reduces the error by a . Crank-Nicolson: one tri-diagonal

factor of about 4, which corresponds to second-
order convergence. Although Crank-Nicolson
has a lower formal order than RK4 or AB3-
AM3, its ability to use much larger time steps
without violating stability can lead to
competitive or even superior overall efficiency,
especially on large spatial grids and long time
intervals.
Comparative discussion

From the above results and theoretical
analysis, we can draw the following general
conclusions:

1. Accuracy:
e  RK4: global error 0(At*), giving the
highest accuracy for sufficiently small time
steps.
. AB3-AM3: effective global order around
three; slightly lower accuracy than RK4, but still
high.
. Crank-Nicolson: second-order accurate,
but well balanced with the spatial discretization
order.

2. Stability:

e RK4 and AB3-AM3 (explicit parts) are
constrained by At~0(h?)or stability when
applied to the heat equation.

e Crank-Nicolson is  unconditionally
stable for the heat equation, allowing At to be
chosen independently of hfrom a stability
perspective (though accuracy considerations

remain).
3. Computational cost:
o RK4: four function evaluations

(matrix-vector products) per step; no linear
system solve.

o AB3-AM3: fewer function
evaluations per step for large nnn, but requires
initial startup with a one-step method.

system solve per step (using an efficient O(N)
algorithm), but fewer time steps may be needed
due to larger allowable At

4. Practical implications:

. For small or moderate problem
sizes and when very high accuracy is required
over relatively short time intervals, RK4 is
attractive.

. For long-time integration and
large-scale spatial discretizations, where
stability is the dominant concern, Crank-
Nicolson is often preferable.

. When computational resources
are limited and moderate accuracy is sufficient,
Adams-type predictor-corrector multistep
methods provide a good compromise between
accuracy and efficiency.

Conclusions

In this paper, three main time-
integration approaches for the one-dimensional
heat equation have been compared: the fourth-
order Runge-Kutta method, Adams-Bashforth-
Moulton multistep predictor-corrector
schemes, and the Crank-Nicolson finite
difference scheme.

The heat equation was discretized in
space using second-order central differences,
leading to a linear system of ODEs. This system
was then integrated in time using the three
different approaches, and their accuracy,
stability, and computational efficiency were
analyzed.

The main findings can be summarized as
follows:

. The RK4 method offers the
highest formal order of accuracy and performs

Eurasian Journal of Physics, Chemistry and Mathematics

www.geniusjournals.org
Page |10



Volume 49| November 2025

ISSN: 2795-7667

very well for small time steps and problems of
moderate size.

. Adams-type multistep methods
combine explicit and implicit components to
achieve moderate-to-high accuracy with
reduced computational work per step,
particularly advantageous for long time
intervals.

. The Crank-Nicolson scheme is
unconditionally stable for the heat equation and
allows relatively large time steps while
preserving second-order accuracy, which is
favorable for large spatial grids and long-time
simulations.

From a practical standpoint, for heat and
similar parabolic equations the choice of the
time-integration method can follow these
guidelines:

High accuracy + small/medium problem size
- prefer RK4;
Long time intervals + strong stability
requirements — prefer Crank-Nicolson;
Efficiency + acceptable accuracy — use Adams
predictor-corrector schemes.

Future work may extend this study to two- and
three-dimensional heat equations, problems
with variable coefficients or nonlinear heat
sources, and to alternating direction implicit
(ADI) schemes such as the ADI-Crank-Nicolson
method.
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