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Introduction 

Research has been conducted in our country 
and abroad on the methods of teaching 
fundamental mathematical disciplines in higher 
education institutions using software-didactic 
complexes, person-centered education, 
contextual issues, problem issues, large, 
medium and small modular technologies, and 
using computer mathematical programs by D. 
Yunusova [1], M. Tojiyev [2], J.B. Ergashev [3], 
D.N. Ashurova [4], A.J. Khurramov [5], G.N. 
Goyibnazarova [6], D.Q. Durdiyev [7], I.V. 
Kuznetsova [8], J.I. Zaytseva [9], I.S. Novikova 
[10], Elizabeth Eckerman-Hicks [11] and other 
scientists. In the works of A. Hakimov, D. N. 
Ashurova and others, some innovative methods 
for calculating the limits of sequences and 

classes of functions have been developed [13-
16]. 

 
Discussion 

It is known that a number of studies have 
been conducted on the limits of sequences and 
functions, but the calculation of limits is not fully 
justified by lemmas and theorems. The main 
purpose of this article is to apply lemmas and 
theorems that facilitate the calculation of limits 
to the first and second great limits. The article 
focuses on the problems of improving the 
effectiveness of teaching the subject of 
calculating sequences and function limits and 
improving teaching methods in the process of 
training future mathematics teachers. 

 
Problem Statement And Conformal Mapping 

Lemma .  𝑥 = 𝑥0around the point 

 

 

 

Applying some lemmas and 
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lim
𝑥→𝑥0

𝑓(𝑥) = lim
𝑥→𝑥0

𝜑(𝑥) = 0 

if done , then following attitude appropriate 

lim
𝑥→𝑥0

𝑎𝑓(𝑥) − 𝑎𝜑(𝑥)

𝑥 − 𝑥0
= 𝑞𝑙𝑛𝑎   (𝑎 > 0, 𝑎 ≠ 1). 

Here  

lim
𝑥→𝑥0

𝑎𝜑(𝑥)(𝑎𝑓(𝑥)−𝜑(𝑥) − 1)

𝑓(𝑥) − 𝜑(𝑥)
= 𝑙𝑛𝑎 ,      𝑞 = lim

𝑥→𝑥0

𝑓(𝑥) − 𝜑(𝑥)

𝑥 − 𝑥0
 

Proof . 

      lim
𝑥→𝑥0

𝑎𝑓(𝑥) − 𝑎𝜑(𝑥)

𝑥 − 𝑥0
= lim

𝑥→𝑥0

𝑎𝜑(𝑥)(𝑎𝑓(𝑥)−𝜑(𝑥) − 1)

𝑥 − 𝑥0
= lim

𝑥→𝑥0

𝑎𝜑(𝑥)(𝑎𝑓(𝑥)−𝜑(𝑥) − 1)

𝑓(𝑥) − 𝜑(𝑥)
lim

𝑥→𝑥0

𝑓(𝑥) − 𝜑(𝑥)

𝑥 − 𝑥0

= 𝑞𝑙𝑛𝑎.  
Based on the above lemma following theorems easily proof possible . 
Theorem 1.  𝑥 = 𝑥0around the point𝑓(𝑥),   𝜑(𝑥),   𝑔(𝑥)  functions for 

lim
𝑥→𝑥0

𝑓(𝑥) = lim
𝑥→𝑥0

𝜑(𝑥) = lim
𝑥→𝑥0

𝑔(𝑥) = 0  (𝑎 > 0, 𝑎 ≠ 1) 

conditions if done , then following attitude appropriate 

lim
𝑥→𝑥0

𝑎𝑓(𝑥) − 𝑎𝜑(𝑥)

𝑔(𝑥)
= 𝑞𝑙𝑛𝑎.                                                                                  (1) 

Here 𝑞 = lim
𝑥→𝑥0

𝑓(𝑥)−𝜑(𝑥)

𝑔(𝑥)
. 

Theorem 2 : 𝑥 = 𝑥0in the vicinity 

lim
𝑥→𝑥0

𝑓(𝑥) = lim
𝑥→𝑥0

𝜑(𝑥) = lim
𝑥→𝑥0

𝑔(𝑥) = 0  𝑣𝑎  𝑔′(𝑥0) ≠ 0 

attitude appropriate if , then following equality appropriate ( 𝑏 > 0, 𝑏 ≠ 1, 𝑎 > 0, 𝑎 ≠ 1), 

lim
𝑥→𝑥0

𝑎𝑓(𝑥) − 𝑏𝜑(𝑥)

𝑔(𝑥)
= 𝑚𝑙𝑛𝑎 − 𝑛𝑙𝑛𝑏.     

this on the ground   

𝑚 = lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
;   𝑛 = lim

𝑥→𝑥0

𝜑(𝑥)

𝑔(𝑥)
.       

This theorems based on the above lemma is proven . 
Now above to theorems related practical issues seeing let's go out : 

10 .      lim
𝑥→0

𝑎𝑥 − 𝑎𝑠𝑖𝑛𝑥

𝑥
=  lim

𝑥→0

𝑎𝑠𝑖𝑛𝑥(𝑎𝑥−𝑠𝑖𝑛𝑥 − 1)

𝑥
= lim

𝑥→0

𝑎𝑥−𝑠𝑖𝑛𝑥 − 1

𝑥 − 𝑠𝑖𝑛𝑥
. 

lim
𝑥→0

𝑥 − 𝑠𝑖𝑛𝑥

𝑥
= 𝑙𝑛𝑎 ∙ lim

𝑥→0
(1 −

𝑠𝑖𝑛𝑥

𝑥
) = 𝑙𝑛𝑎 ∙ (1 − 1) = 0 

20 .      lim
𝑥→0

𝑎𝑠𝑖𝑛𝑥 − 𝑎𝑡𝑔𝑥

𝑥3
=  lim

𝑥→0

𝑎𝑠𝑖𝑛𝑥−𝑡𝑔𝑥 − 1

𝑠𝑖𝑛𝑥 − 𝑡𝑔𝑥
∙ lim

𝑥→0

𝑠𝑖𝑛𝑥(𝑐𝑜𝑠𝑥 − 1)

𝑥3𝑐𝑜𝑠𝑥
=

= 𝑙𝑛𝑎 ∙ (−2 lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥
∙ lim

𝑥→0

𝑠𝑖𝑛2 𝑥
2

(
𝑥
2)

2

4
∙ lim

𝑥→0

1

𝑐𝑜𝑠𝑥
) = −

1

2
𝑙𝑛𝑎. 

30 .      lim
𝑥→1

𝑎𝑙𝑛𝑥 − 𝑏sin(𝑥−1)

𝑥 − 1
=  lim

𝑥→1

𝑎𝑙𝑛𝑥 − 1

𝑥 − 1
−  lim

𝑥→1

1 − 𝑏sin(𝑥−1)

1 − 𝑥
= 𝑙𝑛𝑎 ∙ 1 − 𝑙𝑛𝑏 ∙ 1 = 𝑙𝑛

𝑎

𝑏
 

Practical issue and examples solution process facilitator following theorem Let's prove it . 
Theorem 3 : 𝑥 = 𝑎For functions around a point𝑓(𝑥), 𝜑(𝑥) 

𝜑′(𝑥) ≠ 0andlim
𝑥→𝑎

𝑓(𝑥) = 𝑎, lim
𝑥→𝑎

𝜑(𝑥) = 0 , 𝑎 > 0, 𝑎 ≠ 1   

if , then following attitude appropriate 

lim
𝑥→𝑎

𝑎𝑓(𝑥) − 𝑓(𝑥)𝑎

𝜑(𝑥)
= 𝑎𝑎 𝑙𝑛

𝑎

𝑒
  lim
𝑥→𝑎

𝑓(𝑥) − 𝑎

𝜑(𝑥)
                                                 (2) 
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Proof . Theorem. proof in the process complicated not happened following replacement Let's do it : 

𝑎𝑓(𝑥) − 𝑓(𝑥)𝑎

𝜑(𝑥)
= −

(1 − 𝑎𝑓(𝑥)−𝑎)𝑎𝑎

𝜑(𝑥)
=

𝑎𝑎 (1 − (1 +
𝑓(𝑥) − 𝑎

𝑎
)

𝑎

)

𝜑(𝑥)
. 

Here limit to calculate grass 

lim
𝑥→𝑎

𝑎𝑓(𝑥) − 𝑓(𝑥)𝑎

𝜑(𝑥)
= 𝑎𝑎 lim

𝑥→𝑎

1 − 𝑎𝑓(𝑥)−𝑎

𝑎 − 𝑓(𝑥)
∙ lim

𝑥→𝑎

𝑓(𝑥) − 𝑎

𝜑(𝑥)
= 𝑎𝑎−1 lim

𝑥→𝑎

1 − (1 +
𝑓(𝑥) − 𝑎

𝑎
)

𝑎

(𝑓(𝑥) − 𝑎)𝑎
∙ lim

𝑥→𝑎

𝑓(𝑥) − 𝑎

𝜑(𝑥)

= 𝑎𝑎 lim
𝑥→𝑎

𝑓(𝑥) − 𝑎

𝜑(𝑥)
(𝑙𝑛𝑎 − 𝑙𝑛𝑒) = 𝑎𝑎𝑙𝑛

𝑎

𝑒
 lim
𝑥→𝑎

𝑓(𝑥) − 𝑎

𝜑(𝑥)
.                                                            (3) 

Theorem in proof [12] cited following from relationships used  

lim
𝑥→𝑎

(1−(𝑎−𝑓(𝑥)))𝜇

𝑓(𝑥)−𝑎
= 𝜇,lim

𝑥→𝑎

1−𝑎𝑓(𝑥)−𝑎

𝑎−𝑓(𝑥)
= 𝑙𝑛𝑎 

(2) formula practical for example Let's use it . 
If𝜑′(𝑥) ≠ 0 condition if done , then 

lim
𝑥→𝑒

𝑓(𝑥)𝑒 − 𝑒𝑓(𝑥)

𝜑(𝑥)
= 0 

of relationships appropriate that come [ 13-14 ]. 

10 .  lim
𝑥→𝑎

𝑥𝑎 − 𝑎𝑥

sin (𝑎 − 𝑥)
= lim

𝑥→𝑎

𝑎𝑎(1 − 𝑎𝑥−𝑎)

sin (𝑎 − 𝑥)
+ lim

𝑥→𝑎

𝑎𝑎 ((1 +
𝑥 − 𝑎

𝑎 )
𝑎

− 1)

𝑎 − 𝑥
𝑎

= 

= 𝑎𝑎 lim
𝑥→𝑎

1 − 𝑎𝑥−𝑎

𝑎 − 𝑥
∙ lim

𝑥→𝑎

𝑎 − 𝑥

sin(𝑎 − 𝑥)
− 𝑎𝑎 lim

𝑥→𝑎

(1 +
𝑥 − 𝑎

𝑎 )
𝑎

− 1

𝑥 − 𝑎
𝑎

∙ lim
𝑥→𝑎

𝑎 − 𝑥

asin(𝑎 − 𝑥)
= 

= 𝑎𝑎𝑙𝑛𝑎 −
𝑎𝑎 ∙ 𝑎

𝑎
= 𝑎𝑎(𝑙𝑛𝑎 − 1) = 𝑎𝑎𝑙𝑛

𝑎

𝑒
 

If 𝑎 = 𝑒so, 

lim
𝑥→𝑒

𝑥𝑒 − 𝑒𝑥

sin (𝑒 − 𝑥)
= lim

𝑥→𝑒

𝑥𝑒 − 𝑒𝑥

tg (𝑒 − 𝑥)
= lim

𝑥→𝑒

𝑥𝑒 − 𝑒𝑥

arcsin (𝑒 − 𝑥)
= lim

𝑥→𝑒

(𝑥𝑒 − 𝑒𝑥)

arctg(𝑒 − 𝑥)
= 0 

that come comes out . 

20 .   lim
𝑥→2

2
2𝑠𝑖𝑛

𝜋𝑥
4 −(2𝑠𝑖𝑛

𝜋𝑥

4
)

2

x2−4
= 0  relationship prove . 

This We use (3) for : 

lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝜑(𝑥)
= lim

𝑥→2

2 − 2𝑠𝑖𝑛
𝜋𝑥
4

4 − x2
= 2 lim

𝑥→2

1 − 𝑠𝑖𝑛
𝜋𝑥
4

4 − x2
= −4 lim

𝑥→2

𝑠𝑖𝑛2 (
𝜋
8

(𝑥 − 2))

x2 − 4
=

= −4 lim
𝑥→2

𝑠𝑖𝑛2 (
𝜋
8

(𝑥 − 2))

(
𝜋
8

(𝑥 − 2))
2 ∙

(
𝜋
8

(𝑥 − 2))
2

𝑥 − 2
= −4 (

𝜋

4
)

2

lim
𝑥→2

(𝑥 − 2) = 0. 

So , 

lim
𝑥→2

22𝑠𝑖𝑛
𝜋𝑥
4 − (2𝑠𝑖𝑛

𝜋𝑥
4 )

2

x2 − 4
= 0 

will be That's it . 
30. lim

𝑥→𝑥0

𝑓(𝑥) = lim
𝑥→𝑥0

𝜑(𝑥) = 𝑎, lim
𝑥→𝑥0

𝑔(𝑥) = 0   if , then following limit count . 
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lim
𝑥→𝑥0

𝑓(𝑥)𝜑(𝑥) − 𝜑(𝑥)𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑥0

𝑎𝜑(𝑥) log𝑎 𝑓(𝑥) − 𝑎𝑓(𝑥) log𝑎 𝜑(𝑥)

𝑔(𝑥)
= 

= 𝑎𝑎 ( lim
𝑥→𝑥0

𝑎𝜑(𝑥) log𝑎 𝑓(𝑥)−𝑎 − 1

𝑔(𝑥)
− lim

𝑥→𝑥0

𝑎𝑓(𝑥) log𝑎 𝜑(𝑥)−𝑎 − 1

𝑔(𝑥)
) = 

= 𝑎𝑎 ( lim
𝑥→𝑥0

𝑎𝜑(𝑥) log𝑎 𝑓(𝑥)−𝑎 − 1

𝜑(𝑥) log𝑎 𝑓(𝑥) − 𝑎
∙

𝜑(𝑥) log𝑎 𝑓(𝑥) − 𝑎

𝑔(𝑥)
− lim

𝑥→𝑥0

𝑎𝑓(𝑥) log𝑎 𝜑(𝑥)−𝑎 − 1

𝑓(𝑥) log𝑎 𝜑(𝑥) − 𝑎
∙

𝑓(𝑥) log𝑎 𝜑(𝑥) − 𝑎

𝑔(𝑥)
) = 

 

= 𝑎𝑎 ln 𝑎 ( lim
𝑥→𝑥0

𝜑(𝑥) log𝑎 𝑓(𝑥) − 𝑎

𝑔(𝑥)
− lim

𝑥→𝑥0

𝑓(𝑥) log𝑎 𝜑(𝑥) − 𝑎

𝑔(𝑥)
) 

 

40.  Calculate lim
𝑥→𝑎

(
(2𝑥−𝑎)

𝑥2

𝑎 −(
𝑥2

𝑎
)

2𝑥−𝑎

𝑥2−𝑎2
).      

 limit two kind in a way calculation possible . 
Method 1: Hospital rule using we work 

lim
𝑥→𝑎

(
𝑥2

𝑎
)

2𝑥−𝑎

− (2𝑥 − 𝑎)
𝑥2

𝑎

𝑎2 − 𝑥2
= lim

𝑥→𝑎

((
𝑥2

𝑎
)

2𝑥−𝑎

)

′

− ((2𝑥 − 𝑎)
𝑥2

𝑎 )

′

(𝑎2 − 𝑥2)′

= lim
𝑥→𝑎

2𝑥
𝑎

(2𝑥 − 𝑎)
𝑥2

𝑎 (ln(2𝑥 − 𝑎) +
𝑥

2𝑥 − 𝑎) − 2 (
𝑥2

𝑎
)

2𝑥−𝑎

(𝑙𝑛 (
𝑥2

𝑎
) +

2𝑥 − 𝑎
𝑥

)

2𝑥

=
2𝑎𝑎(𝑙𝑛𝑎 + 1) − 2𝑎𝑎(𝑙𝑛𝑎 + 1)

2𝑎
= 0 

Method 2: Limit We use Theorem 3 in the calculation . 

lim
𝑥→𝑥0

𝑓(𝑥)𝜑(𝑥)−𝜑(𝑥)𝑓(𝑥)

𝑔(𝑥)
= 𝑎𝑎 ln 𝑎( lim

𝑥→𝑥0

𝜑(𝑥) log𝑎 𝑓(𝑥)−𝑎

𝑔(𝑥)
− lim

𝑥→𝑥0

𝑓(𝑥) log𝑎 𝜑(𝑥)−𝑎

𝑔(𝑥)
)  

lim
𝑥→𝑎

(2𝑥 − 𝑎)
𝑥2

𝑎 − (
𝑥2

𝑎
)

2𝑥−𝑎

𝑥2 − 𝑎2
= 𝑎𝑎𝑙𝑛𝑎 ∙ lim

𝑥→𝑎

𝑥2

𝑎 log𝑎(2𝑥 − 𝑎) − (2𝑥 − 𝑎) log𝑎
𝑥2

𝑎
𝑥2 − 𝑎2

= 𝑎𝑎𝑙𝑛𝑎

∙ [lim
𝑥→𝑎

𝑥2

𝑎 log𝑎(2𝑥 − 𝑎) − 𝑎 log𝑎(2𝑥 − 𝑎)

𝑥2 − 𝑎2
−lim

𝑥→𝑎

(2𝑥 − 𝑎) log𝑎
𝑥2

𝑎 − 𝑎 log𝑎
𝑥2

𝑎
𝑥2 − 𝑎2

+ lim
𝑥→𝑎

𝑎 log𝑎(2𝑥 − 𝑎) − 𝑎 log𝑎
𝑥2

𝑎
𝑥2 − 𝑎2

]. 

1) lim
𝑥→𝑎

(
𝑥2

𝑎
log𝑎(2𝑥−𝑎)−𝑎 log𝑎(2𝑥−𝑎)

𝑥2−𝑎2
) = lim

𝑥→𝑎
(

(
𝑥2

𝑎
−𝑎) log𝑎(2𝑥−𝑎)

𝑥2−𝑎2
) = lim

𝑥→𝑎
(

log𝑎(2𝑥−𝑎)

𝑎
) =

1

𝑎
 

2) lim
𝑥→𝑎

(
(2𝑥−𝑎) log𝑎

𝑥2

𝑎
−𝑎 log𝑎

𝑥2

𝑎

𝑥2−𝑎2 ) = lim
𝑥→𝑎

(
2(𝑥−𝑎) log𝑎

𝑥2

𝑎

𝑥2−𝑎2 ) = lim
𝑥→𝑎

(
2 log𝑎

𝑥2

𝑎

𝑥+𝑎
) =

1

𝑎
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3) lim
𝑥→𝑎

(
𝑎(log𝑎(2𝑥−𝑎)−log𝑎

𝑥2

𝑎
)

𝑥2−𝑎2
) = lim

𝑥→𝑎
(

𝑎 log𝑎
(2𝑥−𝑎)𝑎

𝑥2

𝑥2−𝑎2 ) = 𝑎 lim
𝑥→𝑎

(
log𝑎(

2𝑎

𝑥
−

𝑎2

𝑥2−1+1)

𝑥2−𝑎2 ) = 𝑎 lim
𝑥→𝑎

(
log𝑎(1−(

𝑎

𝑥
−1)2)

𝑥2−𝑎2
) =

𝑎 lim
𝑥→𝑎

(log𝑎 (1 − (
𝑥−𝑎

𝑥
)2)

1

𝑥2−𝑎2
) = 𝑎 log𝑎 lim

𝑥→𝑎
((1 −

𝑥−𝑎

𝑥
)

1

𝑥2−𝑎2
∙ (1 +

𝑥−𝑎

𝑥
)

1

𝑥2−𝑎2
) = 𝑎 log𝑎 (𝑒

−
1

2𝑎2 ∙ 𝑒
1

2𝑎2) =

𝑎 ∙ 0 = 0 
So , using Theorem 3, intended result This was taken . theorem above similar theories and practical 

issues calculation and proof process somewhat makes it easier and time saves . 

Theorem 4. lim
𝑥→𝑥0

𝑢(𝑥) = 1,     lim
𝑥→𝑥0

𝑣(𝑥) = ∞     When , lim
𝑥→𝑥0

𝑢 𝑣 = 𝑒
( lim

𝑥→𝑥0
(𝑢−1)𝑣)

    the equality is done 

. 

Proof . lim
𝑥→𝑥0

𝑢 𝑣 = lim
𝑥→𝑥0

((1 + (𝑢 − 1))
1

𝑢−1)
(𝑢−1)𝑣

= 𝑒
( lim

𝑥→𝑥0
(𝑢−1)𝑣)

          

Regarding Theorem 4 following practical examples Let's look at [ 15]: 

1. lim
𝑥→∞

(
𝑎+𝑥

𝑏+𝑥
)

𝑘𝑥

= 𝑒𝑘(𝑎−𝑏). 

lim
𝑥→∞

(
1+𝑥

2+𝑥
)

𝑥

= 𝑒𝑥𝑝 { lim
𝑥→∞

𝑥(
1+𝑥

2+𝑥
− 1)} = 𝑒𝑥𝑝 { lim

𝑥→∞

(−𝑥)

2+𝑥
} = 𝑒−1. 

2. lim
𝑥→0

(
1+𝑥

1+2𝑥
)

1

𝑥
. lim

𝑥→𝑥0

𝑢(𝑥) = 1 and We use it when lim
𝑥→𝑥0

𝑣(𝑥) = ∞it lim
𝑥→𝑥0

𝑢𝑣 = lim
𝑥→𝑥0

((1 + (𝑢 −

1))
1

𝑢−1)
(𝑢−1)𝑣

= 𝑒𝑥𝑝 { lim
𝑥→𝑥0

(𝑢 − 1)𝑣}is. 

 lim
𝑥→0

(
1+𝑥

1+2𝑥
)

1

𝑥
= 𝑒𝑥𝑝 {lim

𝑥→0

1+𝑥

1+2𝑥
−1

𝑥
} = 𝑒𝑥𝑝 {lim

𝑥→0

(−1)

1+2𝑥
} = 𝑒−1. 

 
Conclusion 
The formation of the dynamics of students' 
learning of mathematics, the analysis of the level 
of their acquired theoretical knowledge, 
practical skills and competencies, and the study 
of the possibilities of mathematics in shaping 
the level of mastery, create a methodological 
basis for the development of students' 
independent learning skills, thereby increasing 
the effectiveness of the educational process. 

This knowledge creates a methodological 
basis for developing the skills of independent 
study of the "Theory of Limits" section, 
analyzing the level of theoretical and practical 
skills and qualifications learned, increasing the 
level of mastery, as well as exploring the 
possibilities of the "Theory of Limits" to 
increase the effectiveness of practical training. 
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