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The theory of commutative and associative 
algebras is a well-developed branch of algebra. 
At the same time, in many problems of 
geometry, it becomes necessary to use certain 
concepts from linear algebra [1]. Therefore, the 
problem of classifying the entire set of 
associative and commutative algebras is of 
particular interest. In the present work, this 
problem is solved for four-dimensional algebras 
with a radical R(A4) of dimension 0 and 1. 
In the classification of four-dimensional 
algebras over the field of real numbers, well-
known theorems of linear algebra are used [2], 
[3]. 
Theorem 1. If a commutative and associative 
algebra A is semisimple, then it decomposes into 
a direct sum of a certain number of algebras of 
complex numbers C and real numbers R. 
Theorem 2. If R(A) is the radical of an 
associative algebra А, then the factor algebra 
A/R(A) is semisimple. 
Theorem 3. In an arbitrary associative algebra 
A there exists a semisimple subalgebra U 
complementary to the maximal nilpotent ideal 
R(A).       

Let Ckij – be the structure constants of the 
algebra A. The multiplication law of the basis 
vectors εk in the algebra A is given by the 
formula: 

   
        εiεj = Ckijεk .                                                        

(1) 
The conditions of commutativity and 
associativity of algebra A are respectively 
equivalent to the identities  

,k k m s m s

ij ji ij mk jk miC C C C C C= =  

which these structural constants satisfy. These 
relations are equivalent to the relations 

, ( ) ( )i j j i i j k i j k         = = .                       

(2) 
Let's consider a four-dimensional commutative 
and associative algebra A4 с with basis {ε1, ε2, ε3, 
ε4}. If the algebra A4 полупростой, is 
semisimple, then this algebra does not have a 
radical of dimension different from zero. 
Therefore, for a semisimple algebra,  
dimR(A4)=0 and there are three possible cases:       
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I. 4A C C=  ;      II. 4A C R R=   ;          III. 

4A R R R R=    .  

The multiplication tables of the basis vectors of these algebras are respectively written in the form: 

I)   

1 1 1 1 2 2 1 2 1 3 3 1 1 4 4 1

2 2 1 2 3 3 2 2 4 4 2

3 3 3 3 4 4 3 4 4 4 3

, , 0, 0,

, 0, 0,

, , .

               

          

          

= = = = = = =

= − = = = =

= = = = −
 

II) 

1 1 1 1 2 2 1 2 1 3 3 1 1 4 4 1

2 2 1 2 3 3 2 2 4 4 2

3 3 3 3 4 4 3 4 4 4

, , 0, 0,

, 0, 0,

, 0, .

               

          

         

= = = = = = =

= − = = = =

= = = =
 

III) 
1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 2 2 2

2 3 3 2 2 4 4 2 3 3 3 3 4 4 3 4 4 4

, 0, ,

0, , 0, .

                 

                 

= = = = = = = =

= = = = = = = =
 

Using formula (1), the structure constants of the above-mentioned algebras I-III are determined.   
The structure constants for an algebra of type I are defined as: 

1 2 3 4 1 2 3 4

1 1 1 11 1 11 2 11 3 11 4 11 11 11 11

2 2 1 1 3 3 4 4

1 2 2 1 2 12 21 12 21 12 21 12 21

1 1 2 2 3 3 4 4

1 3 3 1 13 31 13 31 13 31 13 31

1 1 2

1 4 4 1 14 41 14 4

1, 0,

1, 0,

0 0,

0

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C

      

    

   

   

= = + + +  = = = =

= =  = = = = = = = =

= =  = = = = = = = =

= =  = = = 2 3 3 4 4

1 14 41 14 41

1 2 3 4

2 2 1 22 22 22 22

1 1 2 2 3 3 4 4

2 3 3 2 23 32 23 32 23 32 23 32

3 1 2 4

3 3 3 33 33 33 33

4 4 1 1 2 2 3 3

3 4 4 3 4 34 43 34 43 34 43 34 43

0,

1, 0,

0 0,

1, 0,

1,

C C C C

C C C C

C C C C C C C C

C C C C

C C C C C C C C

  

   

  

    

= = = = =

= −  = − = = =

= =  = = = = = = = =

=  = = = =

= =  = = = = = = = =

3 1 2 4

4 4 3 44 44 44 44

0,

1, 0.C C C C  = −  = − = = =

 

Similarly, for algebra II, the structure constants have the form: 

1 2

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0
, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ij ijC C

   
   

−   = =
   
   
   

 

3 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
, .

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

ij ijC C

   
   
   = =
   
   
   

 

The structure constants of an algebra of type III are written in the form:    
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1 2

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ij ijC C

   
   
   = =
   
   
   

 

3 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
, .

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

ij ijC C

   
   
   = =
   
   
   

 

   
If the algebra A4 is not semisimple, then there exists a non-zero radical R(A4).  
Let dimR(A4)=1 и ε4 – be a basis element in the radical R(A4). Then, according to Theorem 2, the factor 
algebra A4/R(A4) will be a three-dimensional semisimple algebra.   
 Hence, the following two cases are possible:   

1. In the case 4 4/ ( )A R A C R=  , according to Theorem 3, the multiplication law of the basis elements 

ε1, ε2, ε3, ε4 in the algebra A4 is given by:         

      

1 1 1 1 2 2 1 2 1 3 3 1 1 4 4 1 4

2 2 1 2 3 3 2 2 4 4 2 4

3 3 3 3 4 4 3 4 4 4

, , 0, ,

, 0, ,

, , 0,

                

           

         

= = = = = = =

= − = = = =

= = = =
       (3) 

where is , , R    .  

From the associativity condition (2) of the algebra A4, we obtain the following systems of equations: 

    
2 2 2, , , , 0, 0.         = = − = = = =  

The solution to this system of equations is: 

0,

0,

0







=


=
 =

     или     

0,

0,

1.







=


=
 =

 

At the same time, for the first case expression (3) is written in the form, 

1 1 1 1 2 2 1 2 1 3 3 1 1 4 4 1

2 2 1 2 3 3 2 2 4 4 2

3 3 3 3 4 4 3 4 4

, , 0,

, 0,

, 0,

               

          

        

= = = = = = =

= − = = = =

= = = =
      (4) 

and for the second case,   

1 1 1 1 2 2 1 2 1 3 3 1 1 4 4 1

2 2 1 2 3 3 2 2 4 4 2

3 3 3 3 4 4 3 4 4 4

, , 0,

, 0,

, , 0.

               

          

         

= = = = = = =

= − = = = =

= = = =
       (5) 

 
An algebra whose multiplication law of the basis elements is given in the form (4) is called an algebra 
of type IV. Similarly, an algebra of type V is defined by relations (5). 
The structure constants of the algebra of type IV have the form: 
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1 2

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0
, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ij ijC C

   
   

−   = =
   
   
   

 

3 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
, ,

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

ij ijC C

   
   
   = =
   
   
   

 

and for the type V, 

,

0000

0000

0001

0010

,

0000

0000

0010

0001

21





















=





















−
= ijij CC

 

.

0100

1000

0000

0000

,

0000

0100

0000

0000

43





















=





















= ijij CC
 

2. For this case 4 4/ ( )A R A R R R=    we write the multiplication law of the basis elements of the 

algebra as A4: 

1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 4

2 2 2 2 3 3 2 2 4 4 2 4

3 3 3 3 4 4 3 4 4 4

, 0, ,

, 0, ,

, , 0.

               

           

         

= = = = = = =

= = = = =

= = = =

                (6) 

From the associativity conditions of the algebra A4, we obtain the following systems of equations:  
2 2 2, , ,

0, 0, 0.

     

  

 = = =


= = =
 

This system of equations has the following solutions: 

2.1) 1 0;  =  = =  

2.2) 1 0;  =  = =  

2.3) 1 0;  =  = =  

2.4) 0, 0, 0.  = = =  

The multiplication table (6) of the basis elements of the algebra in case (2.1) is written in the form: 

 ε1     ε2 ε3  ε4 
ε1 ε1 0 0 ε4 
ε2 0 ε2 0 0 
ε3 0 0 ε3 0 
ε4 ε4 0 0 0 

 

 
 
                                (7)    
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In case (2.2), after substituting the basis elements according to the formulas:

1 2 2 1 3 3 4 4, , ,       = = = =  

…once again transforms the multiplication law (6) into table (7). Similarly, in case (2.3), after 
substituting the basis elements: 

1 3 2 2 3 1 4 4, , ,       = = = =  

…the multiplication law (6) is again reduced to table (7). In case (2.4), the multiplication law (6) is 
rewritten as follows: 
   

 ε1     ε2 ε3  ε4 
ε1 ε1 0 0 0 
ε2 0 ε2 0 0 
ε3 0 0 ε3 0 
ε4 0 0 0 0 

 

 
 
                                (8)    
                                   

Thus, the following theorem holds. 
Theorem. There exist seven pairwise non-
isomorphic four-dimensional commutative and 
associative algebras with a radical of dimension 
0 and 1. 
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