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Initial-boundary value problems for equations of a hyperbolic type are widely used in
mathematical physics, technical science and other fields. For instance, describing a large
class of natural phenomena: solving of wave equations, concepts of the classical and
generalized suolution, as well as their difference and existence is given the target thesis
For the different types of equations constructing of boundary conditions and their types,
Cauchy problems with initial-boundary value problems are covered for the mixed issues.
Classical mathematical physics problems are presented brought solving boundary value
problems for second-order particular derivative differential equations. In the
circumstance, finding and learning the initial-boundary value problems for the higher-
order particular derivative mixed equations have become an urgent problem. Existence
of the solutions of particular derivative mixed problems constructing with initial-
boundary value conditions and researched finding of them. When none of the classical
solution in the given problem, might be find generalized solution with the generalized
functions corresponding to that. funksiyalar bilan umumlashgan yechimni topish
mumkKin.
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1. Uniqueness of solution. Let some D be a bounded field in 7 —dimensional space R (
x=(x,,...,x,) —point of the space). Look a bounded cylinder Q, = {x eD,0<t< T} with height
T>0in (n + 1) —dimensional space R ,, = R X {—oo <t< +oo} .Let us denote by I'; lateral surface
{x eoD,0<t< T} of cylinder Q,, and through D_ —the section {x eD,t= T} of this cylinder plane
t =7; in particular, the upper rolling of cylinder Q, is D, = {x eD,t= T}, and its lower base -
D, :{xeD,tzo}.

In cylinder O, atsome 7' >0 we consider the hyperbolic equation

Lu=u,—divik(x)Vu)+a(x)= f(x,1), (1D
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which k(x) e C'(D), a(x) e C(D), k(x) >k, = const > 0.

The function u(x,?) belonging to the space CZ(QT)ﬂ ﬂCl(QT ur, UEO) satisfying in Q, the

equation (1) on D, the initial conditions
ul_ =0, 2)

ul_,=v, (3)

and I';. on one of the boundary conditions

or

:Z’

Iy

e
—+ou
on

where o — is some continuous function on I', is called the (classical) solution of the first or,

correspondingly, the third mixed problem for the equation (1).

Since the case of non-homogeneous boundary conditions is easily reduced to the case of homogeneous
boundary conditions, then in the future we will consider homogeneous boundary conditions

ul =0, (4)

Iz

(5o
—+ou
on

Let us assume that the coefficient a@(x) in equation (1) is non-negative in Q,, and the function o in

and

=0. (5)

Iy

the boundary condition (5) depends only on x, 0 = ¢(x), and is non-negative in I',..

Let the function #(x,?) be a solution to one of the problems (1) - (4) or (1), (2), (3), (5), and the right
side f(x,t) of the equation (1) belongs to L,(Q, ). Let's take an arbitrary 6, 0 <6 <T . We multiply

(1) by the function U(x,?) belonging to C' (QT_(S) and satisfying the condition

v =0, (6)

DT—&

and integrate the obtained equality over cylinder () ;. Since u L= =(utu)t—utl)t, a

vdiv(kVu) = div(kvoVu) — kVuV v, then, considering the initial condition (3) and condition (6) using
the Ostrogradskian formula, we obtain

j fudxdt = j (), — div(koVu))dxdt +
0

QT—5 T-6
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+ j (KVuV o+ auv —u,v,)dxdt =
Or-s

= | uodx— | uodx— ka—uudet+
J wode—[upds— [ =

Dr_s Dy I'r_s

+ j (kVuV v + auv —u,v, )dxdt = — j wodx — j ko 2™ dsr +
Or_s Dy on

rT—J

+ [ (eVuv v+ auv—up,)dxd. (7)
Or-s

If u(x,t) is the solution of the third (or second) mixed problem, then, due to (5), it follows from the last
equality that ©(x,?) satisfies the integral identity
[ evuvv+auv—up)dsdt+ | kouvdSdt= | fodsdt+ [ yods,
r

Or_s j Or_s Dy

forall v(x,?) from C' (QHS) for which condition (6) is satisfied, and consequently, for all U(x,?) from
H'(Q,._,) for which condition (6) is satisfied.

A function belonging to space H : (Q;) is called a generalized solution in Q. of the first mixed problem
(1) - (4), if it satisfies the initial condition (2), boundary condition (4), and identity

[ &VuV o+ auw—up,)dxdt = [ yods+ | fodxdt, 9)
QT DO QT

forall v e HI(QT) for which conditions (4) and condition

v|, =0, (10)

DT
are satisfied.

The function i belonging to the space H'(Q,) is called the generalized solution in Q. of the third
(second for o = 0) mixed problem (1), (2), (3), (5) if it satisfies the initial condition (2) and the identity

[ eV v+ auv —up,)dsdt + [ kouvdSdt = [ yodx+ | fodsdt (11)

QT rT DO QT
forall v e HI(QT) for which condition (10) is satisfied.

Lemma 1. If the generalized solution of the problem (1) - (4) or the problem (1), (2), (3), (5) belongs to
the space H? (Q;), then it is the solution of the corresponding problem. If the generalized solution of
the problem (1) - (4) or the problem (1), (2), (3), (5) belongs to C” 0N C' o, ur,u 50), then it
is a classical solution of the corresponding problem.
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Theorem 1. Each of the problems (1) - (4) and (1), (2), (3), (5) can have more than one generalized
solution.

Consequence 1. Each of the problems (1) - (4) and (1), (2), (3), (5) cannot have more than one classical
solution.

Consequence 2. Each of the problems (1) - (4) and (1), (2), (3), (5) can have no more than one solution
to the problem.

2. Existence of a generalized solution. Let us now proceed to the proof of the existence of solutions
to the problems (1) - (4) and (1), (2), (3), (5). For this, we use the Fourier method, which means that
the solution of the mixed problem is sought in the form of a series of eigenfunctions of the
corresponding elliptic boundary value problem..

Let U(x) — be the generalized eigenfunction of the first boundary value problem
div(kVv)—av=Av, xe D, (12)
0

U|8D -

or the third (when the second) boundary value problem

div(kVv)—av = Av, xeD,

Sre)
— 40U
on

(A — corresponding eigenvalue). This means that in the case of the first boundary value problem

=0 (13)

oD

ve H'(D) andforall n € H'(D)

I(kV vV n+avn)dx + ijundx =0, (14)
D D

and in the case of the third (second) boundary value problem v € H'(D) and foralln € H'(D)

I(kVUV?]+aU77)dx+ IkaundS+ﬂjundx:O, (15)
D ap D

Consider an orthonormal system v, U,,... in L,(D) consisting of all generalized eigenfunctions of the
problem (12) or, respectively, the problem (13); Let us assume that the initial functions ¢(x) and y(x)
in (2) and (3) belong to L,(D), and the function f(x,?)<€ L,(Q;). According to Fubini's theorem,
f(x,t) e L,(D) for almost everywhere ¢ € (0,7). Let us decompose the functions @(x) and y(x)
and the function f(x,?) for almost all values of € (0,7’) into Fourier series according to the system

v,(x), U,(x),... of generalized eigenfunctions of the problem (12), if the problem (1) - (4) is considered,
or the problem (13), if the problem (1), (2), (3), (5) is considered

P(x) =Y 0, (%), w(X) =D w,(x), f(x,0)= fu,(x), (16)
k=1 k=1 k=1
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where @, =(@,0,), (py, Wi =W,0,) (), and [, (¢) =J-f(x,t)l)kdx, k=1,2,.... Let us first take as
D

the initial functions in (2) and (3) the functions ¢,0,(x) and ¥, 0, (x) — k — e - "harmonics" from the
series (16), and as the function in the right-hand side of the equation (1) - the function f, (#)v,(x),
k >1. Consider the function

4, (x,0) = U, (00, (x), (17)

where

v, . 1 .
U,(t)=¢, cos -4 t+ SIN /At + —— 7)sin /-4, (t —7)dr; 18
(D=0, k \/% k \/%.([fk( ) . ( ) (18)

Obviously, the function U, (#) belongs to H?(0,T), satisfies the initial conditions U,(0)=9,
U,(0)=y, at =0, and for # €(0,7) is a solution to the equation

U -AU,=f, k=12,. (19)

We will show that if v, (x) and A, are generalized eigenfunctions and corresponding eigenvalues of

the problem (12) (or problem (13)), then the function u, (x,?) is a generalized solution of the first
(respectively third or second) mixed problem for the equation

u, —div(k(x)Vu) +au = f,(t)v,(x)
with initial conditions

u‘t=0 =P, (%), urL:o =y, (x).

Indeed, the function u, (x,t) € H'(Q,), on D, satisfies the initial condition (2) and in the case of the
first mixed problem - the boundary condition (4). We will show that the function u, (x,?) in the case of
the first mixed problem satisfies the integral identity

[ &Y,V 0+ auw —w,,)dxdt =y, [ v, (xdx+ [ £,()v, (x)vdxdt ©,)
Or Dy Or

for all v functions belonging to the space HI(QT) satisfying the conditions (4) and (10), and in the
case of the second and third mixed problems - the identity

I (kVu, Vv +au,v—u, v, )dxdt + j kou,vdSdt =

Or Iy

=y, j v, (x)vdx + j £.(O)v, (x)vdxdt (11,)
Dy Or
for all v satisfying the condition (10) from H 1(QT) . Obviously, it is sufficient to establish the validity

of the identities (9,) and (11,) only forall v functions that are continuously differentiable in QT and
satisfy the conditions (4) and (10), respectively, the condition (10).
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N N
If the partial sums of the series Zgokl)k (x) and ZWkUk (x) from (16) at some N are taken as the
k=1 k=1

N
initial functions in (2) and (3), and the partial sum of its Fourier series ka(t)l)k (x) is taken as the
k=1
function f in (1), then the generalized solution of the problem (1) - (4) ((1), (2), (3), (5)) will be the
function

Sy (50 = (50 = YU, (00, ().

Therefore, it is natural to expect that under certain assumptions relative to @, ¥ and f, the solution
of the problem (1) - (4) ((1), (2), (3), (5)) can be represented as a series

u(x,0)= 3 U, (00,(x), (20)

where U, U,,... — generalized eigenfunctions of the problem (12) (respectively (13)).
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