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1. Uniqueness of solution. Let some D  be a bounded field in n − dimensional space nR (

1( ,..., )nx x x= − point of the space). Look a bounded cylinder  ,0TQ x D t T=     with height 

0T   in ( )1n + −dimensional space  1n nR R t+ =  −   + . Let us denote by T  lateral surface 

 ,0x D t T    of cylinder TQ , and through D − the section  ,x D t  =  of this cylinder plane 

t = ; in particular, the upper rolling of cylinder TQ  is  ,TD x D t T=  = , and its lower base -

 0 , 0D x D t=  = . 

In cylinder TQ  at some 0T   we consider the hyperbolic equation  

ℒ ( ( ) ) ( ) ( , )ttu u div k x u a x f x t −  + = ,     (1) 
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which 
1( ) ( )k x C D , ( ) ( )a x C D , 0( ) 0k x k const =  . 

The function ( , )u x t  belonging to the space 
2( )TC Q 1

0( )T TC Q D  satisfying in TQ  the 

equation (1) on 0D  the initial conditions  

0t
u 

=
= ,            (2) 

0t t
u 

=
= ,      (3) 

and T  on one of the boundary conditions 

T

u 

=  

or 

T

u
u

n
 



 
+ = 

 
, 

where  −  is some continuous function on T  is called the (classical) solution of the first or, 

correspondingly, the third mixed problem for the equation (1).  

Since the case of non-homogeneous boundary conditions is easily reduced to the case of homogeneous 
boundary conditions, then in the future we will consider homogeneous boundary conditions  

0
T

u

= ,      (4) 

and 

0

T

u
u

n




 
+ = 

 
.      (5) 

Let us assume that the coefficient ( )a x  in equation (1) is non-negative in TQ , and the function   in 

the boundary condition (5) depends only on x , ( )x = , and is non-negative in T . 

Let the function ( , )u x t  be a solution to one of the problems (1) - (4) or (1), (2), (3), (5), and the right 

side ( , )f x t  of the equation (1) belongs to 2 ( )TL Q . Let's take an arbitrary  , 0 T  . We multiply 

(1) by the function ( , )x t  belonging to 
1( )TC Q −  and satisfying the condition  

0
TD 


−

= ,        (6) 

and integrate the obtained equality over cylinder TQ − . Since ttu  =  ( )t t tt
u u = − , a 

( ) ( )div k u div k u k u   =  −   , then, considering the initial condition (3) and condition (6) using 

the Ostrogradskian formula, we obtain  

(( ) ( ))

T T

t t

Q Q

f dxdt u div k u dxdt

 

  

− −

= −  +   
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( )

T

t t

Q

k u au u dxdt



  

−

+   + − =  

0T T

t t

D D

u
u dx u dx k dSdt

n
 

  

− −


= − − +

    

0

( )

T T

t t

Q D

u
k u au u dxdt dx k dSdt

n
 

    

− −


+   + − = − − +

    

( )

T

t t

Q

k u au u dxdt



  

−

+   + − .  (7) 

If ( , )u x t  is the solution of the third (or second) mixed problem, then, due to (5), it follows from the last 

equality that ( , )u x t  satisfies the integral identity  

0

( )

T T T

t t

Q Q D

k u au u dxdt k u dSdt f dxdt dx

  

      

− − −

  + − + = +    ,  

for all ( , )x t  from 
1( )TC Q −  for which condition (6) is satisfied, and consequently, for all ( , )x t  from 

1( )TH Q −  for which condition (6) is satisfied. 

A function belonging to space 
1( )TH Q  is called a generalized solution in TQ  of the first mixed problem 

(1) - (4), if it satisfies the initial condition (2), boundary condition (4), and identity  

0

( )

T T

t t

Q D Q

k u au u dxdt dx f dxdt      + − = +   ,   (9) 

for all 
1( )TH Q  for which conditions (4) and condition  

0
TD

 = ,      (10) 

are satisfied. 

The function i belonging to the space 
1( )TH Q  is called the generalized solution in TQ  of the third 

(second for 0 = ) mixed problem (1), (2), (3), (5) if it satisfies the initial condition (2) and the identity  

0

( )

T T T

t t

Q D Q

k u au u dxdt k u dSdt dx f dxdt      


  + − + = +      (11) 

for all 
1( )TH Q  for which condition (10) is satisfied. 

Lemma 1. If the generalized solution of the problem (1) - (4) or the problem (1), (2), (3), (5) belongs to 

the space 
2( )TH Q , then it is the solution of the corresponding problem. If the generalized solution of 

the problem (1) - (4) or the problem (1), (2), (3), (5) belongs to 
2 1

0( ) ( )T T TC Q C Q D , then it 

is a classical solution of the corresponding problem. 
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Theorem 1. Each of the problems (1) - (4) and (1), (2), (3), (5) can have more than one generalized 
solution.  

Consequence 1. Each of the problems (1) - (4) and (1), (2), (3), (5) cannot have more than one classical 
solution. 

Consequence 2. Each of the problems (1) - (4) and (1), (2), (3), (5) can have no more than one solution 
to the problem. 

2. Existence of a generalized solution. Let us now proceed to the proof of the existence of solutions 
to the problems (1) - (4) and (1), (2), (3), (5). For this, we use the Fourier method, which means that 
the solution of the mixed problem is sought in the form of a series of eigenfunctions of the 
corresponding elliptic boundary value problem.. 

Let ( )x −  be the generalized eigenfunction of the first boundary value problem  

( )div k a   − = ,  x D ,    (12) 

0
D



=  

or the third (when the second) boundary value problem  

( )div k a   − = ,  x D , 

0
D

n






 
+ = 

 
     (13) 

( − corresponding eigenvalue). This means that in the case of the first boundary value problem 

1( )H D  and for all 
1( )H D  

( ) 0
D D

k a dx dx      + + =  ,    (14) 

and in the case of the third (second) boundary value problem 
1( )H D  and for all

1( )H D  

( ) 0
D D D

k a dx k dS dx     


  + + + =   ,   (15) 

Consider an orthonormal system 1 , 2 ,...  in 2 ( )L D  consisting of all generalized eigenfunctions of the 

problem (12) or, respectively, the problem (13); Let us assume that the initial functions ( )x  and ( )x  

in (2) and (3) belong to 2 ( )L D , and the function 2( , ) ( )Tf x t L Q . According to Fubini's theorem, 

2( , ) ( )f x t L D  for almost everywhere (0, )t T . Let us decompose the functions ( )x  and ( )x  

and the function ( , )f x t  for almost all values of (0, )t T  into Fourier series according to the system 

1( )x , 2 ( ),...x  of generalized eigenfunctions of the problem (12), if the problem (1) - (4) is considered, 

or the problem (13), if the problem (1), (2), (3), (5) is considered 

1

( ) ( )k k

k

x x  


=

= ,  
1

( ) ( )k k

k

x x  


=

= ,  
1

( , ) ( )k k

k

f x t f x


=

= ,  (16) 
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where 
2 ( )( , )k k L D  = , 

2 ( )( , )k k L D  = , and ( ) ( , )k k

D

f t f x t dx=  , 1,2,...k = . Let us first take as 

the initial functions in (2) and (3) the functions ( )k k x   and ( )k k x  − k e−  - "harmonics" from the 

series (16), and as the function in the right-hand side of the equation (1) - the function ( ) ( )k kf t x , 

1k  . Consider the function 

( , ) ( ) ( )k k ku x t U t x= ,     (17) 

where 

0

1
( ) cos sin ( )sin ( ) ;

t

k
k k k k k k

k k

U t t t f t d


      
 

= − + − + − −
− −

        (18) 

Obviously, the function ( )kU t  belongs to 
2(0, )H T , satisfies the initial conditions (0)k kU = , 

(0)k kU  =  at 0t = , and for (0, )t T  is a solution to the equation  

k k k kU U f − = , 1,2,...k =      (19) 

We will show that if ( )k x  and k  are generalized eigenfunctions and corresponding eigenvalues of 

the problem (12) (or problem (13)), then the function ( , )ku x t  is a generalized solution of the first 

(respectively third or second) mixed problem for the equation  

( ( ) ) ( ) ( )tt k ku div k x u au f t x−  + =  

with initial conditions 

0
( )k kt

u x 
=
= ,  

0
( )t k kt

u x 
=
= . 

Indeed, the function 
1( , ) ( )k Tu x t H Q , on 0D  satisfies the initial condition (2) and in the case of the 

first mixed problem - the boundary condition (4). We will show that the function ( , )ku x t  in the case of 

the first mixed problem satisfies the integral identity  

0

( ) ( ) ( ) ( )

T T

k k kt t k k k k

Q D Q

k u au u dxdt x dx f t x dxdt         + − = +     (9 )k  

for all   functions belonging to the space 
1( )TH Q  satisfying the conditions (4) and (10), and in the 

case of the second and third mixed problems - the identity  

( )

T T

k k kt t k

Q

k u au u dxdt k u dSdt    


  + − + =   

0

( ) ( ) ( )

T

k k k k

D Q

x dx f t x dxdt    = +    (11 )k  

for all   satisfying the condition (10) from 
1( )TH Q . Obviously, it is sufficient to establish the validity 

of the identities (9 )k  and (11 )k  only for all   functions that are continuously differentiable in TQ  and 

satisfy the conditions (4) and (10), respectively, the condition (10). 
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If the partial sums of the series 
1

( )
N

k k

k

x 
=

  and 
1

( )
N

k k

k

x 
=

  from (16) at some N  are taken as the 

initial functions in (2) and (3), and the partial sum of its Fourier series 
1

( ) ( )
N

k k

k

f t x
=

  is taken as the 

function f  in (1), then the generalized solution of the problem (1) - (4) ((1), (2), (3), (5)) will be the 

function  

1 1

( , ) ( , ) ( ) ( )
N N

N k k k

k k

S x t u x t U t x
= =

= =  . 

Therefore, it is natural to expect that under certain assumptions relative to  ,   and f , the solution 

of the problem (1) - (4) ((1), (2), (3), (5)) can be represented as a series  

1

( , ) ( ) ( )k k

k

u x t U t x


=

= ,     (20) 

where 1 , 2 ,... − generalized eigenfunctions of the problem (12) (respectively (13)). 
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