
Volume 43| May  2025                                                                                                                                       ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 15  

 
 

The asymptotic theory of ordinal 
statistics deals with the distribution of 
appropriately normalized (and centered) 

quantities r n   at n→ . At the first stage, it 

is usually assumed that r n   is the rth ordinal 

statistic in a random sample of volume n from a 

distribution with a distribution function ( )x . 

However, as we will see later, many types of 

dependence between , ,...,
1 2, n   . Cp do 

not violate the type of marginal distributions. 
This feature makes the theory in question much 
more useful. If r n  →  n→ then 
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significantly different results are obtained for 
the cases 0 0, 1    = = . In the first 

case, 
n




is a sample quantile and (under 

certain regularity conditions) has an 
asymptotically normal distribution. The second 

case includes the extreme values of 
n




, 

n n  and, generally speaking, the mth 

extremes at a fixed t. These values have an 
abnormal marginal distribution. 

We have often referred to asymptotic 
results in previous chapters. In particular, the 
asymptotic estimation of the limiting number of 
quantiles arises in the problems of "optimal 
choice of ordinal statistics". In the next section, 
we present a theory of distributions that 
justifies this application, and, following 
Mosteller (1946), establish the joint asymptotic 
normality of quantiles. 

In the rest of the chapter, we deal with 
the theory of extreme values and the asymptotic 
distribution of linear functions of ordinal 

statistics, as well as their use in asymptotic 
estimation. Here, more than anywhere else in 
this book, we limit ourselves to a brief summary 
of the very extensive available literature, 
providing evidence for only some of the main 
results. 

The most remarkable result of the theory 
of extreme values is now a classic one: if the 

value : ,Xnn  properly normalized, has a limiting 

distribution, then it must be a distribution of 
one of the three types given by the relation. 
There are many applications of extreme value 
distributions. For example, the simple 
assumption that a chain is no stronger than its 
weakest link leads us to interpret the value of 

: ,1
X n , to the strength of the chain (consisting of 

n links), and hence to an impressive theory of 
tensile strength. Liblein (1954 b) traces this idea 
back to Chaplin's 1860 work. The most useful 
distribution describing tensile strength is the 
so-called Weibull distribution, which has a 
distribution function 

( ) ( )1 exp .
y

F y y



  



  
  

   

−
= − −        

Here,   can be interpreted as a 

guaranteed minimum strength, and   is a scale 

factor. Obviously, ( )Y   = − −  has a 

( )
2
x , the Weibull distribution is simply the 

second of the three types, but only for the 
smallest, not for the largest value of. In life 
expectancy tests, y can indicate the time until 
death. Further, the distribution of floods or 
other extreme meteorological events often has 
the form 

3
 . We refer the reader to Gumbel's 

book (1965), which contains other appendices 
and various references. 

Gumbel also discusses in detail various 
methods for estimating parameters such as   

and   in and it is assumed that the data 
represent a set of n (not necessarily large) 
observed maxima or minima. Graphical 
methods are widely used, especially probability 
diagrams is a distribution that depends (for a 
fixed a) on the shift and scale parameters, their 
estimation using ordinal statistics is also 
possible. In this regard, we can mention the 
work of Maritz and Munro (1967), in which all 
three parameters of the generalized distribution 
of extreme values are estimated using ordinal 
statistics: 

( )
( )1

exp ,
y

F y






 
 
 
 
 

− −
= −  

Here 
, 0,

0

y agar

y agar

  

  

−  + 

+   
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Putting 0 + = , we get 
1

  for 1 = ,  = − and 
1

  for 1 = ,  = . For 

( )x y  = − and  → , we get ( )
3
x . 

Other works complementing Gumbel's 
book are his article on the assessment of tensile 
strength in the book by Sarkhan and Greenberg 
(1970), as well as Gumbel's (1961) work on 
tensile strength and fatigue, Gumbel's (1963) 
work on drought forecasting, Pike's (1966) 
work on cancer, considered as a breakthrough 
of the weakest link. Barnett and Lewis (1967) on 
the probabilities of low temperatures, Epstein 
(1967) on the moments of bacterial extinction, 
and Mann (1968) on estimation procedures. 

In the final section of this chapter, 
estimates are derived that are asymptotically 
optimal for a distribution that depends only on 
the scale and shift parameters. Closely related to 
this issue are methods for obtaining estimates, 
which, although not necessarily optimal for the 
most interesting distributions, have good 
properties over the entire selected set of 
distributions. Such robust estimates were 
discussed in section although mainly for small 
samples. 

Asymptotic distribution of the 
extreme value 

Asymptotic behavior of 
( )n

  (the largest 

observation in a sample of size n from a 
distribution with a distribution function. 

( )x


was a task that challenged many major experts 
in mathematical statistics. The most notable 
contributions to this field were made by Dodd 
(1923), von Mises (1923, 1936), Frechet (1927), 
Fischer and Tippett (1928), de Finetti (1932), 
and Gu.mbel (since 1933) and ending with the 
final work of 1958) and, finally, Gnedenko 
(1943), who conducts the most complete and 
rigorous study of this issue. We can also 
mention the work of Barandoff Nielsen (1963), 
which briefly outlines these and related issues, 
and the work of Dwass (1964) and Lamperty 
(1964), which discusses an approach related to 
stochastic processes if there is a limit 
distribution, then this distribution must belong 
to one of three types 

( )
( )

( )
( )

( ) ( )( ) ( )

0, 0, 0

1 exp , 0

exp , 0, 0

2 01,

exp exp .
3

agar x
x

x agar x

x agar x
x

agar x

x x x












  
   



 
 =

−  

− −  
 =

 

 = − − −  

 

The above can be formulated in the form of the following theorem (Gnedenko): The class of 

propositions for ( )n a x bn n + where 0an  and bn  are appropriately selected constants, contains 

only laws of types ( ) ( )1,2,3x k
k

 = . 

We will not prove this theorem, but instead present an ingenious key idea already used earlier 
by Fischer and Tippett. Since the largest observation in a sample of volume m n  can be considered as 
the largest member in a sample of volume n, consisting of the maximum members of samples of volumes 

m , and since in the case of the existence of a limiting distribution ( )x , both of these distributions will 

tend to ( )x at m→ , then ( )x must satisfy the ratio 

( ) ( ),n a x b xn n + =  

that is, the largest Observation in the sample of volume n from the distribution of the distribution 

function ( )x should, after appropriate normalization, itself have a limiting distribution function L. 

Solving this functional equation with respect to ( )x gives us all possible limiting types. 
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Further, if in 1an  , then denoting ( )1
0
x b an n= − , we get 

0 0
x a x bn n= + and therefore 

( ) ( )0 0
n x x = , ( ) 0

0
x = or 1. Provided that that ( )x exists, 

0
x  must be a constant that can be 

set to zero without detracting from generality. Then, due to the fact that 0
0
x = implies 0b

n
= , the 

solutions fall into the following three classes: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 0, 0, , 0

2 , 0, 1, 0

3 ,

nx agar x a x x agar xn
n a x x agar x x agar xn
n x b xn

 =   =   

 =    =  

 + = 

 

        These classes obviously correspond to the cases 1an  , 1an  , аnd 1an = . It follows from 

standard mathematical reasoning that the only solutions to functional equations (1)-(3) are the 

expressions ( ) ( ) ( ), .
1 2 3
x x and x   respectively. 
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Now let's take a closer look at ( ).
3
x  Since it stands out from other types, it is often referred to 

as an extreme value distribution, although, of course, this term applies to all three types. It is easy to see 

that the maximum observation in a sample of volume n from the distribution ( ).
3
x  has a value that 

differs from ( ).
3
x only by an offset of bn  Right, where bn  is determined by the equation 

( )exp exp ,
x bnxne e

 
 
 

 
 
 
 

− −
− = −  

that is, logb nn = . example ( )  exp
3

xA x x e = − − is shown in picture-1. Using our generating 

function of cumulants, it is easy to show that  =  (Euler's constant) 

21
0,5772..., 1,6449..., 1,2986..., 5,4

2 1 22 61n n


  


= = = = = =

=
 

Gnedenko (1943) obtained the necessary and sufficient conditions for the distribution of ( )P x

to belong to the "region of attraction" of each of the following two limiting laws: 
(1) ( )P x belongs to the domain of attraction Ax(x) if and only if 
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( )

( )
1

lim
1

x
k

x kx
−

=
→ −

 

for each 0k  . 

(2) ( )P x belongs to the domain of attraction, ( ).
2
x ) if and only if 

(a) there exists 
0

  such that 

( ) ( )1, 1 for optional 0
0 0
x x   =  −    

 

(b)         
( )
( )

1
0lim

0 1
0

kx x
k

x x x


− +

=
→− − +

   

for each 0k   
It is easy to see that ( )P x is not bounded on 

the right in the first case and bounded in the 

second by). Gnedenko points out that ( ).
3
x

can be the limiting distribution in both cases. 
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