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1. Introduction. 

In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of 
integral equations. They are named in honor of Erik Ivar Fredholm.  
 The operator 𝑇 acting in the Hilbert space 𝐿2[−𝜋; 𝜋] as 

(𝑇𝑓)(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡                                                (1)

𝜋

−𝜋

 

is called a Fredholm integral operator, where the function 𝐾(∙,∙) is defined on [−𝜋; 𝜋]2 and called the 
kernel function of the Fredholm integral operator.  
 The simplest kernels are separable (degenerate), which have the form: 

𝐾(𝑥, 𝑦) = ∑ 𝑣𝑖(𝑥)𝑣𝑖(𝑦)

𝑛

𝑖=1

.                                           (2) 

 It is easy to see that the function 𝐾(𝑥, 𝑦) is a finite sum of separated products. 
 More complicated kernels are non-separable. Here are spme examples of such kernel functions: 

1) 𝐾(𝑥, 𝑦) =
1

𝑥−𝑦
 – Hilbert transform: 

2) 𝐾(𝑥, 𝑦) = 𝑒−𝑖𝑥𝑦- Fourier transform; 
3) 𝐾(𝑥, 𝑦) = 𝑒−𝑥𝑦- Laplace transform. 

In models of solid state physics [1,2] and also in lattice quantum field theory [3], one considers 
two-particle Schroedinger operators, which are lattice analogs of the two-particle Schroedinger 
operators in the continuous space. In most cases, Friedrichs models corresponding to the two-particle 
discrete Schroedinger operators are studied. In this case, the non-perturbed operator of the Friedrichs 
model is the multiplication operator. And the perturbation operator is a Fredholm integral operator 
with a kernel function of the form (2). In the paper [4] two Friedrichs models with rank two 
perturbation are considered and using the spectrum of these models the conditions for the existence 
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of the eigenvalues of the lattice three-particle model Hamiltonian are found. In the paper [5] the 
Friedrichs model with rank two perturbation, related with the two quantum particle system on 3D 
integer lattice is considered and the number and location of the eigenvalues of this model is 
investigated. In the papers [6,7] using the spectral properties of the Friedrichs model with finite rank 
perturbation the essential and discrete spectrum of the lattice model operator associated with the 
system of three particles are studied. 

In the present paper we consider the Fredholm integral operator with a kernel function of the 
form (2). We describe its numerical range. 

 
2. Fredholm integral operator and its spectrum. 

In the Hilbert space 𝐿2[−𝜋; 𝜋] we consider the operator of the form 

(𝑇𝑖𝑓)(𝑥) = 𝑣𝑖(𝑥) ∫ 𝑣𝑖(𝑡)𝑓(𝑡)𝑑𝑡

𝜋

−𝜋

                                          (3) 

for 𝑖 = 1,2, … , 𝑛. Here the functions 𝑣𝑖(∙),𝑖 = 1,2, … , 𝑛 are real-valued continuous and linearly 
independent functions defined on [−𝜋; 𝜋].  
 We note that the scalar product of the two elements 𝑓 and 𝑔 from 𝐿2[−𝜋; 𝜋] is defined by  

(𝑓, 𝑔) = ∫ 𝑓(𝑡)𝑔(𝑡)̅̅ ̅̅ ̅̅

𝜋

−𝜋

𝑑𝑡. 

 Analogously, the norm of the element 𝑓 ∈ 𝐿2[−𝜋; 𝜋] is defined by 

‖𝑓‖ = ( ∫ |𝑓(𝑥)|2𝑑𝑥

𝜋

−𝜋

)

1
2

 

 Using these formulas and corresponding definitions one can show that the operator 𝑇 acting in 
the Hilbert space 𝐿2[−𝜋; 𝜋] as  

𝑇 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛 
is linear, bounded and self-adjoint.  
 By the construction the equality 

(𝑇𝑓)(𝑥) = ∑ 𝑣𝑖(𝑥) ∫ 𝑣𝑖(𝑡)

𝜋

−𝜋

𝑓(𝑡)𝑑𝑡

𝑛

𝑖=1

 

holds. 
 Recall that the number 𝜆 = 0 is an eigenvalue of the operator 𝑇 with infinite multiplicity; an 
infinite set of (orthogonal) eigenfunctions 𝑓𝑚 (𝑚 = 1,2, … ) characterized by  

0 = (𝑓𝑚, 𝑣𝑖) = ∫ 𝑣𝑖(𝑥)𝑓𝑚(𝑥)𝑑𝑥

𝜋

−𝜋

,        𝑖 = 1,2, … , 𝑛. 

There are 𝑛 non-zero eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 which are zeros of the function  

Δ(𝜆) ≔ det (𝜆𝛿𝑖𝑗 − (𝑣𝑖 , 𝑣𝑗))
𝑖,𝑗=1

𝑛

, 

where 

𝛿𝑖,𝑗 ≔ {
1,      𝑖𝑓    𝑖 = 𝑗,
0,       𝑖𝑓     𝑖 ≠ 𝑗.

 

 Usually the function ∆(∙) is called a Fredholm determinant associated with the operator 𝑇. 
 For the discrete spectrum of the operator 𝑇 we have the following equality  

𝜎disc(𝑇) = {𝜆 ≠ 0:  ∆(𝜆) = 0}. 
 Also for the essential spectrum of 𝑇 we have  

𝜎ess(𝑇) = {0}. 
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 For the sake of convenience in our further research, we require the condition 

(𝑣𝑖 , 𝑣𝑗) = 0, 𝑖 ≠ 𝑗,   𝑖, 𝑗 = 1,2, … , 𝑛                                (4)  

to be fulfilled. Then the function ∆(∙) can be rewritten as a product of the form  
∆(𝜆) = (𝜆 − ‖𝑣1‖2)(𝜆 − ‖𝑣2‖2) … … … (𝜆 − ‖𝑣𝑛‖2). 

Therefore 
𝜎disc(𝑇) = { ‖𝑣1‖2, ‖𝑣2‖2, … , ‖𝑣𝑛‖2}, 

𝜎(𝑇) = 𝜎pp(𝑇) = {0, ‖𝑣1‖2, ‖𝑣2‖2, … , ‖𝑣𝑛‖2}. 

 Simple calculations show that 
𝜎(𝑇𝑖) = 𝜎pp(𝑇𝑖) = {0, ‖𝑣𝑖‖

2},    𝑖 = 1,2, … , 𝑛. 

Therefore, if the condition (4) is fulfilled, then we obtain the equality 
𝜎(𝑇) = 𝜎(𝑇1) ∪ 𝜎(𝑇2) ∪ … ∪ 𝜎(𝑇𝑛) 

for the spectrum of 𝑇. 
 
3. The numerical range of 𝑻. 
 In the spectral theory of linear operators, the concept of spectrum is important. In many cases, 
we are faced with the problem of determining not the spectrum of a linear operator, but the domain 
where it is located. It is well known from the course of functional analysis that the spectrum of a linear 
operator lies in the complex plane. If the linear operator 𝐴 defined in the Hilbert space 𝑋 is bounded, 
then the spectrum of the operator 𝐴 lies in a closed circle with radius || 𝐴|| centered at the origin. If 𝐴 
is a self-adjoint operator, then its spectrum lies in the section [−||𝐴||; ||𝐴||]. 

 In order to further improve these results, the concept of the numerical representation of a 
linear operator is introduced. For the reader's convenience when reading the text of the article, we 
provide some information related to the introduction and study of the concept of digital image. 
 Let 𝐴 be the linearly bounded operator defined in the Hilbert space 𝑋. The symbols || ∙ || and (∙,∙
)denote norm and scalar product in the Hilbert space 𝑋, respectively. 
 The set of the form 

𝑊(𝐴) ≔ {(𝐴𝑥, 𝑥): 𝑥 ∈ 𝑋: ||𝑥|| = 1} 

is called the numerical range of the operator 𝐴. This concept was introduced for the first time in 1918 
by Tioplitz in the article [8] for matrices, and it was proved that all the eigenvalues of the matrix, that 
is, its spectrum, lie in the numerical range of the given matrix, and the boundary of the numerical 
range is a convex line. In his article [9], Hausdorff showed that a numerical range is convex as a set. To 
make it more understandable to the reader, we give an example of the numerical range of the matrix 
from a geometric point of view [10]. In the following picture the numerical range of the matrix 

𝑀 ≔ (

0      0       1       0
0      0       0       1

−2  − 1       𝑖      5𝑖
−1 − 2 − 5𝑖     𝑖

) 

is given: 
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Then the properties listed above are valid not only for matrices, but also for an arbitrary linear 
bounded operator, and the spectrum of a linear bounded operator 𝐴 defined in the Hilbert space 𝑋 lies 
in the closure of its numerical range, i.e. the validity of the relation 𝜎(𝐴) ⊂ 𝑊(𝐻)̅̅ ̅̅ ̅̅ ̅̅  was excellently 
proved in the article [11]. 
 We describe another important property of the numerical range of a linearly bounded 
operator: 

𝑊(𝐴) ⊂ {𝑥 ∈ 𝑋: ||𝑥|| ≤ ||𝐴||}. 

 It can be seen that the closure of the numerical range of a linearly bounded operator 𝐴 is a set 
“smaller” than the circle {𝑥 ∈ 𝑋: ||𝑥|| ≤ ||𝐴||} containing its spectrum. 

 Two main problems can be distinguished from the above considerations. First, under what 
conditions is the numerical range of a linearly bounded operator a closed set? Second, in what cases 
do the numerical range and the spectrum of a linearly bounded operator overlap? In the article [12] 
for the Friedrichs model with two-dimensional perturbation, and in the article [13] for the generalized 
Friedrichs model, the conditions where the numerical range and the spectrum overlap were found. In 
addition, there are cases where the numerical range is a closed set. The methods of the theory of 
threshold phenomena were used in the conducted studies. 
 Let us formulate the first result of the paper. 
 Theorem 1. Let 𝑘 ∈ {1,2, … , 𝑛}. For the numerical range 𝑊(𝑇𝑘) of the operator 𝑇𝑘 we have 

𝑊(𝑇𝑘) = [0; ‖𝑣𝑘‖2]. 
 Proof. As it is shown in Section 2, the number 𝜆0 = 0 is an eigenvalue of 𝑇𝑘 with infinite 
multiplicity and the number 𝜆𝑘 = ‖𝑣𝑘‖2 is a simple eigenvalue of 𝑇𝑘. We denote by 𝑓0 ∈ 𝐿2[−𝜋; 𝜋] and 
𝑓𝑘 ∈ 𝐿2[−𝜋; 𝜋] the corresponding normed eigenfunction associated with the eigenvalue 𝜆0 and 𝜆𝑘, 
respectively. For any 𝑓 ∈ 𝐿2[−𝜋; 𝜋] with ‖𝑓‖ = 1 we have  

(𝑇𝑘𝑓, 𝑓) ≥ inf
||𝑓||=1

(𝑇𝑘𝑓, 𝑓) = (𝑇𝑘𝑓0, 𝑓0) = 𝜆0(𝑓0, 𝑓0) = 𝜆0||𝑓0||2 = 𝜆0 = 0 

(𝑇𝑘𝑓, 𝑓) ≤ sup
||𝑓||=1

(𝑇𝑘𝑓, 𝑓) = (𝑇𝑘𝑓𝑘, 𝑓𝑘) = 𝜆𝑘(𝑓𝑘, 𝑓𝑘) = 𝜆𝑘||𝑓𝑘||2 = 𝜆𝑘 

that is, 
𝜆0 = 0 ≤ (𝑇𝑘𝑓, 𝑓) ≤ 𝜆𝑘 = ‖𝑣𝑘‖2. 

 By the definition of the set 𝑊(𝑇𝑘) we obtain the equality 𝑊(𝑇𝑘) = [0; ‖𝑣𝑘‖2]. Theorem 1 is 
completely proved. 
 Now we formulate the next result of the paper. 
 Theorem 2. There exist indices 𝑖1, 𝑖2, … , 𝑖𝑛 ∈ {1,2, … , 𝑛} such that 

𝑊(𝑇𝑖1
) ⊂ 𝑊(𝑇𝑖2

) ⊂ ⋯ ⊂ 𝑊(𝑇𝑖𝑛
). 

 Proof. For the numbers  ‖𝑣1‖2, ‖𝑣2‖2, … , ‖𝑣𝑛‖2 there exist indices 𝑖1, 𝑖2, … , 𝑖𝑛 ∈ {1,2, … , 𝑛} such 
that  

‖𝑣𝑖1
‖

2
≤ ‖𝑣𝑖2

‖
2

≤ ⋯ ≤ ‖𝑣𝑖𝑛
‖

2
. 

 Therefore,  

[0; ‖𝑣𝑖1
‖

2
] ⊂ [0; ‖𝑣𝑖2

‖
2

] ⊂ ⋯ ⊂ [0; ‖𝑣𝑖𝑛
‖

2
] 

that is,  

𝑊(𝑇𝑖1
) ⊂ 𝑊(𝑇𝑖2

) ⊂ ⋯ ⊂ 𝑊(𝑇𝑖𝑛
). 

 Theorem 2 is completely proved. 
 Now we formulate the third result paper. 
 Theorem 3. If for any 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑛 the condition (4) is fulfilled, then there exists index 
𝑘 ∈ {1,2, … , 𝑛} such that  

𝑊(𝑇𝑘) = 𝑊(𝑇). 
 Proof. Let for any 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑛 the condition (4) be fulfilled. Then  

𝜎disc(𝑇) = 𝜎disc(𝑇1) ∪ 𝜎disc(𝑇2) ∪ … ∪ 𝜎disc(𝑇𝑛) 
and 
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𝜎(𝑇) = 𝜎pp(𝑇) = 𝜎disc(𝑇1) ∪ 𝜎disc(𝑇2) ∪ … ∪ 𝜎disc(𝑇𝑛) ∪ {0}. 

 Taking into account the last equality and the definition of the numerical range we have 
𝑊(𝑇) = 𝑊(𝑇1) ∪ 𝑊(𝑇2) ∪ … ∪ 𝑊(𝑇𝑛). 

 By theorem 2 there exist indices 𝑖1, 𝑖2, … , 𝑖𝑛 ∈ {1,2, … , 𝑛} such that  

𝑊(𝑇𝑖1
) ⊂ 𝑊(𝑇𝑖2

) ⊂ ⋯ ⊂ 𝑊(𝑇𝑖𝑛
). 

 Taking into account the last two relations and setting 𝑘 = 𝑖𝑛 we obtain the equality 𝑊(𝑇𝑘) =
𝑊(𝑇). Theorem 3 is completely proved. 
 Note that, the class of parameter functions 𝑣1(∙), 𝑣2(∙), … , 𝑣𝑛(∙) satisfying the condition (4) for 
any 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑛 is non empty. For example, if 𝑛 = 3 and 

𝑣1(𝑥) = {
sin 2𝑥,      𝑖𝑓       𝑥 ∈ [

𝜋

2
; 𝜋] 

0,            𝑖𝑓       𝑥 ∈ [−𝜋;
𝜋

2
]

; 

𝑣2(𝑥) = {
sin 2𝑥,      𝑖𝑓                       𝑥 ∈ [0;

𝜋

2
] 

0,            𝑖𝑓       𝑥 ∈ [−𝜋; 0] ∪ [
𝜋

2
; 𝜋]

; 

𝑣1(𝑥) = {
sin 2𝑥,      𝑖𝑓       𝑥 ∈ [−𝜋; 0] 

0,            𝑖𝑓       𝑥 ∈ [0; 𝜋]
; 

then these parameter functions are real-valued, continuous, linearly independent functions defined on 
[−𝜋; 𝜋], satisfying the condition (4) for any 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3.  
 We note that in the papers [14-17] the spectral properties of the Friedrichs model with finite 
rank perturbation using the Cramer method and methods of the Fredholm integral equations theory. 
 
Conclusion. This paper is devoted to the investigation of the numerical range of the Fredholm 
integral operator 𝑇 with, rank 𝑛, 𝑛 ∈ 𝑁 in the Hilbert space 𝐿2[−𝜋; 𝜋]. As the first step, the numerical 
range of each Fredholm integral operator 𝑇𝑘, 𝑘 = 1,2, … , 𝑛 of rank one is calculated. Then the 
numerical range of the Fredholm integral operator 𝑇 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛 is described by the 
numerical range of one of Fredholm integral operators 𝑇𝑘, 𝑘 = 1,2, … , 𝑛 under natural condition. That 

is, it is shown that there exists the index 𝑘 ∈ {1,2, … , 𝑛} such that 𝑊(𝑇𝑘) = 𝑊(𝑇) if (𝑣𝑖 , 𝑣𝑗) = 0 for all 

𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑛. At the end of the paper it is given an example of a class of parameter functions 
where this natural condition is fulfilled. 
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