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Introduction 
In higher educational institutions, the 

fundamental sciences of mathematics are built 
on the basis of program-didactic complexes, 
student-centered learning, contextual issues, 
problematic issues, large, medium and small 
modular technologies and teaching methods 
using computer mathematical programs in our 
country and abroad. Yunusova [1], Todzhiev M. 
[2], Ergashev Zh.B. [3], Ashurova D.N. [4], 
Goyibnazarova G.N. [6], Durdyev D.V. [7], 
Kuznetsova I.V. Research was carried out by J.I. 
Zaitseva [9], I.S. Novikova [10], Elizabeth 
Ackerman-Hicks [11] and other scientists and 
other scientists conducted research. In the 
works of A. Khakimov, S.X.Abjalilov, D. N. 
Ashurova and others, some innovative methods 
for calculating the limit of classes of sequences 
and functions were developed [13-17]. 

Discussion 
This article presents theoretical and 

practical applications of calculating the limits 
of certain classes of sequences and functions 
using simple substitutions. 

It is known that a number of studies have 
been carried out on the limits of sequences and 
functions, but the calculation of limits using 
lemmas and theorems is not entirely justified. 
The main purpose of this article is devoted to 
the use of lemmas and theorems that facilitate 
the calculation of the limits of the first and 
second miraculous limits. The article is devoted 
to the problems of increasing the effectiveness 
of teaching the subject “Calculation of 
sequences and limits of functions” in the 
process of training future mathematics 
teachers and improving teaching methods. 
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PROBLEM STATEMENT 
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Based on the above lemma, it is easy to prove the following theorems. 
Theorem 1. For the function ( ) ( ) ( )xgxxf ,, around the point 0xx =   
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The theorem is proven. 
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Now let us look at questions related to the above topic: 
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Let us prove the following theorem, which facilitates the process of solving practical problems and 
examples. 

Theorem 3. If the following conditions are satisfied 0)(' x for functions )(),( xxf   around a 
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Let's start calculating the limit here 
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To prove the theorem, the following relations were used, given in [12] 
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Let us apply formula (2) to a practical example. 
If 0)(' x necessary if done then 
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Let us use (3) to prove relation (5): 
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 (6) The limit can be calculated in two ways. In this case, the desired result is obtained using 
Theorem 3, and the application of such theorems to problem solving creates some convenience for 
students. 

Method 1: Calculate the limit using Lopital's rule 

.0
2

)1(ln2)1(ln2

2

2
ln2

2
)2ln()2(

2

lim

)(

)2(

lim

)2(

lim

2
2

2

'22

'
2

2
'

22

2
2

2

'

2
2

=
+−+

=







 −
+








−









−
+−−

=
−























−














−

=
−









−−

−

→

−

→

−

→

a

aaaa

x

x

ax

a

x

a

x

ax

x
axax

a

x

ax

a

x
ax

ax

a

x
ax

aa

ax

a

x

ax

ax

a

x

ax

ax

a

x

ax

 Method 2: Use Theorem 3 to calculate the limit. We use the formula 

)
)(

)(log)(
lim

)(

)(log)(
lim(ln

)(

)()(
lim

000

)()(

xg

axxf

xg

axfx
aa

xg

xxf a

xx

a

xx

a
xfx

xx

−
−

−
=

−

→→→



 

.

log)2(log

lim

loglog)2(

lim

)2(log)2(log

limln

log)2()2(log

limln

22

2

22

22

22

2

22

22



















−

−−

+
−

−

−
−

−−−



=
−

−−−



→→→

→

ax

a

x
aaxa

ax

a

x
a

a

x
ax

ax

axaax
a

x

aa

ax

a

x
axax

a

x

a

aa

ax

aa

ax

aa

ax

a

aa

ax

1) 

( ) ( ) ( )
( )

aa

ax

ax

axa
a

x

ax

axaax
a

x

a

ax

a

ax

a

ax

12log
lim

2log

lim

2log2log

lim
22

2

22

2

=
−

=
−

−







−

=
−

−−−

→→→
 

2) 
( ) ( )

aax

a

x

ax

a

x
ax

ax

a

x
a

a

x
ax a

ax

a

ax

aa

ax

1
log2

lim

log2

lim

loglog2

lim

2

22

2

22

22

=
+

=
−

−

=
−

−−

→→→
 

3) 

( ) ( )

=
−









+−−

=
−

−

=
−









−−

→→→ 22

2

2

22

2

22

2

11
2

log

lim

2
log

lim

log2log

lim
ax

x

a

x

a

a
ax

x

aax
a

ax

a

x
axa a

ax

a

ax

aa

ax
 

=




















 −
−=

−






















−−

=
−

→→

22

1
2

22

2

1loglim

11log

lim
ax

a
ax

a

ax x

ax
a

ax

x

a

a  



Volume 37| December  2024                                                                                                                              ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                            www.geniusjournals.org 

       P a g e  | 32 

.00log11limlog
22

2222

2

1

2

1
11

==













=






















 −
+







 −
−=

−−−

→
aeea

x

ax

x

ax
a aa

a

axax

ax
a  

 
Theorem 4. ( ) ( ) ==

→→
xxu

xxxx


00

lim,1lim  When equality holds 

( ) vuu
xx

v

xx
1limexplim

00

−=
→→

 

Proof. ( )( )
( )

( ) vuuu
xx

vu

u
xx

v

xx
1limexp11limlim

000

1

1

1

−=







−+=

→

−

−
→→

 

Consider the following practical examples of theorem 4. [15]: 
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Conclusion 
Forming the dynamics of studying 

mathematics by students, analyzing the level of 
theoretical knowledge, practical skills and 
qualifications they have acquired, as well as 
studying the possibilities of mathematics in 
developing the level of mastery, increasing the 
efficiency of the educational process, the 
methodological basis of qualifications, 
independent learning of students is created. 

This knowledge is used to develop skills for 
independent study of the “Theory of Limits” 
section and analyze the level of mastered 
theoretical, practical skills and qualifications, 
improve the level of skill, as well as to study the 
capabilities of the “Theory of Limits” section. 
The “Theory of Limits" creates a 
methodological basis for increasing the 
effectiveness of practical training. 
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