



# Limit calculation technology using linear substitutions

**Abdusalom Khakimov** <sup>1, a)</sup>

*Navoi State Pedagogical Institute*  
<sup>a)</sup> [abdusalom\\_khakimov@gmail.com](mailto:abdusalom_khakimov@gmail.com)

**Sanakul Abjalilov** <sup>2, b)</sup>

*Navoi State Pedagogical Institute*  
<sup>b)</sup> [abjalilovsanaqul72@gmail.com](mailto:abjalilovsanaqul72@gmail.com)

**Dilfuza Ashurova** <sup>3, c)</sup>

*Navoi State Pedagogical Institute*  
<sup>c)</sup> [dilfuz\\_2007@mail.ru](mailto:dilfuz_2007@mail.ru)

## ABSTRACT

The article discusses the issues of simplifying the calculation of some non-standard sequences and limits of functions using linear substitutions, lemmas, and theorems.

## Keywords:

Software and didactic complex, limit calculation methods, calculating limits using lemmas, calculation of limits, Lopital's rule.

## Introduction

In higher educational institutions, the fundamental sciences of mathematics are built on the basis of program-didactic complexes, student-centered learning, contextual issues, problematic issues, large, medium and small modular technologies and teaching methods using computer mathematical programs in our country and abroad. Yunusova [1], Todzhiev M. [2], Ergashev Zh.B. [3], Ashurova D.N. [4], Goyibnazarova G.N. [6], Durdyev D.V. [7], Kuznetsova I.V. Research was carried out by J.I. Zaitseva [9], I.S. Novikova [10], Elizabeth Ackerman-Hicks [11] and other scientists and other scientists conducted research. In the works of A. Khakimov, S.X. Abjalilov, D. N. Ashurova and others, some innovative methods for calculating the limit of classes of sequences and functions were developed [13-17].

## Discussion

This article presents theoretical and practical applications of calculating the limits of certain classes of sequences and functions using simple substitutions.

It is known that a number of studies have been carried out on the limits of sequences and functions, but the calculation of limits using lemmas and theorems is not entirely justified. The main purpose of this article is devoted to the use of lemmas and theorems that facilitate the calculation of the limits of the first and second miraculous limits. The article is devoted to the problems of increasing the effectiveness of teaching the subject "Calculation of sequences and limits of functions" in the process of training future mathematics teachers and improving teaching methods.

## PROBLEM STATEMENT

**Lemma.** To the district point.  $x = x_0$  if completed

$$\lim_{x \rightarrow x_0} f(x) = \lim_{x \rightarrow x_0} \varphi(x) = 0$$

then the following relation is suitable

$$\lim_{x \rightarrow x_0} \frac{a^{f(x)} - a^{\varphi(x)}}{x - x_0} = pq \quad (a > 0, a \neq 1).$$

Here

$$p = \lim_{x \rightarrow x_0} \left( \frac{a^{f(x)-\varphi(x)} - 1}{f(x) - \varphi(x)} \right) = \ln a, \quad q = \lim_{x \rightarrow x_0} \frac{f(x) - \varphi(x)}{g(x)}.$$

$$\begin{aligned} \mathbf{Proof.} \quad \lim_{x \rightarrow x_0} \frac{a^{f(x)} - a^{\varphi(x)}}{x - x_0} &= \lim_{x \rightarrow x_0} \frac{a^{\varphi(x)}(a^{f(x)-\varphi(x)} - 1)}{x - x_0} = \lim_{x \rightarrow x_0} \frac{a^{\varphi(x)}(a^{f(x)-\varphi(x)} - 1)}{f(x) - \varphi(x)} = \lim_{x \rightarrow x_0} \frac{f(x) - \varphi(x)}{x - x_0} = pq \\ p &= \lim_{x \rightarrow x_0} \frac{a^{\varphi(x)}(a^{f(x)-\varphi(x)} - 1)}{f(x) - \varphi(x)} = \ln a, \quad q = \lim_{x \rightarrow x_0} \frac{f(x) - \varphi(x)}{x - x_0}. \end{aligned}$$

Based on the above lemma, it is easy to prove the following theorems.

**Theorem 1.** For the function  $f(x), \varphi(x), g(x)$  around the point  $x = x_0$

$$\lim_{x \rightarrow x_0} f(x) = \lim_{x \rightarrow x_0} \varphi(x) = \lim_{x \rightarrow x_0} g(x) = 0, \quad (a > 0, a \neq 1)$$

If the conditions are met, then the following relation is appropriate

$$\lim_{x \rightarrow x_0} \frac{a^{f(x)} - a^{\varphi(x)}}{g(x)} = pq. \quad (1)$$

**Proof.**

$$\lim_{x \rightarrow x_0} \frac{a^{f(x)} - a^{\varphi(x)}}{g(x)} = \lim_{x \rightarrow x_0} \frac{a^{\varphi(x)}(a^{f(x)-\varphi(x)} - 1)}{g(x)} = \lim_{x \rightarrow x_0} a^{\varphi(x)} \lim_{x \rightarrow x_0} \left( \frac{a^{f(x)-\varphi(x)} - 1}{f(x) - \varphi(x)} \right) \cdot \left( \frac{f(x) - \varphi(x)}{g(x)} \right) = pq, \text{ This one is}$$

on the ground

$$p = \lim_{x \rightarrow x_0} \frac{a^{f(x)-\varphi(x)} - 1}{f(x) - \varphi(x)} = \ln a, \quad q = \lim_{x \rightarrow x_0} \frac{f(x) - \varphi(x)}{g(x)}.$$

The theorem is proven.

**Theorem 2.**  $x = x_0$  Around

$$\lim_{x \rightarrow x_0} f(x) = \lim_{x \rightarrow x_0} \varphi(x) = \lim_{x \rightarrow x_0} g(x) = 0 \text{ and } g'(x_0) \neq 0$$

If the relation is satisfied, then the equality ( $b > 0, b \neq 1, a > 0, a \neq 1$ ),

$$\lim_{x \rightarrow x_0} \frac{a^{f(x)} - b^{\varphi(x)}}{g(x)} = p \ln a - q \ln b.$$

**Proof.**

$$\begin{aligned} \lim_{x \rightarrow x_0} \frac{a^{f(x)} - b^{\varphi(x)}}{g(x)} &= \lim_{x \rightarrow x_0} \frac{a^{f(x)} - 1}{g(x)} - \lim_{x \rightarrow x_0} \frac{b^{\varphi(x)} - 1}{g(x)} = \lim_{x \rightarrow x_0} \frac{a^{f(x)} - 1}{f(x)} \cdot \lim_{x \rightarrow x_0} \frac{f(x)}{g(x)} - \\ &\quad - \lim_{x \rightarrow x_0} \frac{b^{\varphi(x)} - 1}{g(x)} \cdot \lim_{x \rightarrow x_0} \frac{\varphi(x)}{g(x)} = p \ln a - q \ln b, \end{aligned}$$

Here  $p = \lim_{x \rightarrow x_0} \frac{f(x)}{g(x)}$ ;  $q = \lim_{x \rightarrow x_0} \frac{\varphi(x)}{g(x)}$ .

Now let us look at questions related to the above topic:

$$1^0. \lim_{x \rightarrow 0} \frac{a^x - a^{\sin x}}{x} = \lim_{x \rightarrow 0} \frac{a^{\sin x} (a^{x-\sin x} - 1)}{x} = \lim_{x \rightarrow 0} \frac{a^{x-\sin x} - 1}{x - \sin x}.$$

$$\lim_{x \rightarrow 0} \frac{x - \sin x}{x} = \ln a \cdot \lim_{x \rightarrow 0} \left( 1 - \frac{\sin x}{x} \right) = \ln a \cdot (1 - 1) = 0$$

$$2^0. \lim_{x \rightarrow 0} \frac{a^{\sin x} - a^{\operatorname{tg} x}}{x^3} = \lim_{x \rightarrow 0} \frac{a^{\operatorname{tg} x} (a^{\sin x - \operatorname{tg} x} - 1)}{x^3} = \lim_{x \rightarrow 0} \left( \frac{a^{\sin x - \operatorname{tg} x} - 1}{\sin x - \operatorname{tg} x} \cdot \frac{\sin x - \operatorname{tg} x}{x^3} \right) =$$

$$= \lim_{x \rightarrow 0} \frac{a^{\sin x - \operatorname{tg} x} - 1}{\sin x - \operatorname{tg} x} = \ln a.$$

$$\lim_{x \rightarrow 0} \frac{\sin x - \operatorname{tg} x}{x^3} = \lim_{x \rightarrow 0} \frac{\sin x (\cos x - 1)}{x^3 \cos x} = -2 \lim_{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim_{x \rightarrow 0} \frac{\frac{\sin^2 x}{2}}{\left(\frac{x}{2}\right)^2 4} \cdot \lim_{x \rightarrow 0} \frac{1}{\cos x} = -2 \cdot 1 \cdot \frac{1}{4} \cdot 1 = -\frac{1}{2}$$

$$\text{So, } \lim_{x \rightarrow 0} \frac{a^{\sin x} - a^{\operatorname{tg} x}}{x^3} = -\frac{1}{2} \ln a.$$

$$3^0. \lim_{x \rightarrow 1} \frac{a^{\ln x} - b^{\sin(x-1)}}{x-1} = \lim_{x \rightarrow 1} \frac{a^{\ln x} - 1}{x-1} - \lim_{x \rightarrow 1} \frac{b^{\sin(x-1)} - 1}{x-1} =$$

$$= \lim_{x \rightarrow 1} \frac{a^{\ln x} - 1}{\ln x} \cdot \lim_{x \rightarrow 1} \frac{\ln x}{x-1} - \lim_{x \rightarrow 1} \frac{b^{\sin(x-1)} - 1}{\sin(x-1)} \cdot \lim_{x \rightarrow 1} \frac{\sin(x-1)}{x-1} \ln a \cdot 1 - \ln b \cdot 1 = \ln \frac{a}{b}.$$

Let us prove the following theorem, which facilitates the process of solving practical problems and examples.

**Theorem 3.** If the following conditions are satisfied  $\varphi'(x) \neq 0$  for functions  $f(x)$ ,  $\varphi(x)$  around a point:  $x = a$  and  $\lim_{x \rightarrow a} f(x) = a$ ,  $\lim_{x \rightarrow a} \varphi(x) = a$

In this case, the following relation is appropriate

$$\lim_{x \rightarrow a} \frac{a^{f(x)} - f(x)^a}{\varphi(x)} = a^a p \ln \frac{a}{e}, \quad (a > 0, a \neq 1) \quad (2)$$

**Proof.** In the process of proving the theorem, we will make the following rather complicated substitution:

$$\frac{a^{f(x)} - f(x)^a}{\varphi(x)} = \frac{(a^{f(x)-a} - 1)a^a}{\varphi(x)} - a^a \left( \left( 1 + \frac{f(x)-a}{a} \right)^a - 1 \right).$$

To calculate the limit, subtract  $a^a$  from its image, then add and replace

$$\frac{a^{f(x)} - f(x)^a}{\varphi(x)} = \frac{(a^{f(x)-a} - 1)a^a}{\varphi(x)} - \frac{a^a \left( \left( 1 + \frac{f(x)-a}{a} \right)^a - 1 \right)}{\varphi(x)}.$$

Let's start calculating the limit here

$$\lim_{x \rightarrow a} \frac{a^{f(x)} - f(x)^a}{\varphi(x)} = a^a \lim_{x \rightarrow a} \frac{a^{f(x)-a} - 1}{f(x) - a} \cdot \lim_{x \rightarrow a} \frac{f(x) - a}{\varphi(x)} - a^{a-1} \lim_{x \rightarrow a} \frac{\left( 1 + \frac{f(x)-a}{a} \right)^a - 1}{(f(x) - a)a} \cdot \lim_{x \rightarrow a} \frac{f(x) - a}{\varphi(x)} =$$

$$= a^a p \ln a - a^a p = a^a p (\ln a - \ln e) = a^a p \ln \frac{a}{e}.$$

$$p = \lim_{x \rightarrow a} \frac{f(x) - a}{\varphi(x)} \quad (3)$$

To prove the theorem, the following relations were used, given in [12]

$$\lim_{x \rightarrow a} \frac{(1 + (f(x) - a))^a}{f(x) - a} = \mu, \lim_{x \rightarrow a} \frac{a^{f(x)-a} - 1}{f(x) - a} = \ln a.$$

Let us apply formula (2) to a practical example.

If  $\varphi'(x) \neq 0$  necessary if done then

$$\lim_{x \rightarrow e} \frac{e^{f(x)} - f(x)^e}{\varphi(x)} = 0,$$

It follows that the relations corresponding to [13-14].

$$\begin{aligned} 1^0. \lim_{x \rightarrow a} \frac{a^x - x^a}{\sin(x-a)} &= \lim_{x \rightarrow a} \frac{a^a(a^{x-a} - 1)}{\sin(x-a)} - \lim_{x \rightarrow a} \frac{a^a \left( \left(1 + \frac{x-a}{a}\right)^a - 1 \right)}{\frac{x-a}{a}} = \\ &= a^a \lim_{x \rightarrow a} \frac{a^{x-a} - 1}{x-a} \cdot \lim_{x \rightarrow a} \frac{x-a}{\sin(x-a)} - a^a \lim_{x \rightarrow a} \frac{\left(1 + \frac{x-a}{a}\right)^a - 1}{\frac{x-a}{a}} \cdot \lim_{x \rightarrow a} \frac{x-a}{a \sin(x-a)} = \\ &= a^a \ln a - \frac{a^a \cdot a}{a} = a^a (\ln a - 1) = a^a \ln \frac{a}{e} \end{aligned} \quad (4)$$

From (4)  $a = e$  it follows that  $\lim_{x \rightarrow e} \frac{e^x - x^e}{\sin(x-e)} = \lim_{x \rightarrow e} \frac{e^x - x^e}{\operatorname{tg}(x-e)} = \lim_{x \rightarrow e} \frac{e^x - x^e}{\arcsin(x-e)} = \lim_{x \rightarrow e} \frac{e^x - x^e}{\operatorname{arctg}(x-e)} = 0$

$$2^0. \lim_{x \rightarrow 2} \frac{2^{\frac{2 \sin \frac{\pi x}{4}}{4}} - \left(2 \sin \frac{\pi x}{4}\right)^2}{x^2 - 4} = 2^2 p \ln \frac{2}{2} \quad (5)$$

Let us use (3) to prove relation (5):

$$\begin{aligned} p &= \lim_{x \rightarrow 2} \frac{f(x) - f(2)}{\varphi(x)} = \lim_{x \rightarrow 2} \frac{2 \sin \frac{\pi x}{4} - 2}{x^2 - 4} = 2 \lim_{x \rightarrow 2} \frac{\sin \frac{\pi x}{4} - 1}{x^2 - 4} = -4 \lim_{x \rightarrow 2} \frac{\sin^2 \left( \frac{\pi}{8}(x-2) \right)}{x^2 - 4} = \\ &= -4 \lim_{x \rightarrow 2} \frac{\sin^2 \left( \frac{\pi}{8}(x-2) \right)}{\left( \frac{\pi}{8}(x-2) \right)^2} \cdot \frac{\left( \frac{\pi}{8}(x-2) \right)^2}{x-2} = -4 \left( \frac{\pi}{4} \right)^2 \lim_{x \rightarrow 2} (x-2) = 0. \end{aligned}$$

So,

$$\lim_{x \rightarrow 2} \frac{2^{\frac{2 \sin \frac{\pi x}{4}}{4}} - \left(2 \sin \frac{\pi x}{4}\right)^2}{x^2 - 4} = 0$$

3<sup>0</sup>.  $\lim_{x \rightarrow x_0} f(x) = a$ ,  $\lim_{x \rightarrow x_0} \varphi(x) = a$ ,  $\lim_{x \rightarrow x_0} g(x) = 0$  Then calculate the next limit.

$$\begin{aligned} \lim_{x \rightarrow x_0} \frac{f(x)^{\varphi(x)} - \varphi(x)^{f(x)}}{g(x)} &= \lim_{x \rightarrow x_0} \frac{a^{f(x) \log_a \varphi(x)} - a^a}{g(x)} = \\ &= a^a \left( \lim_{x \rightarrow x_0} \frac{a^{\varphi(x) \log_a f(x) - a} - 1}{g(x)} - \lim_{x \rightarrow x_0} \frac{a^{f(x) \log_a \varphi(x) - a} - 1}{g(x)} \right) = \end{aligned}$$

$$\begin{aligned}
&= a^a \left( \lim_{x \rightarrow x_0} \frac{a^{\varphi(x) \log_a f(x) - a} - 1}{\varphi(x) \log_a f(x) - a} \cdot \frac{\varphi(x) \log_a f(x) - a}{g(x)} - \lim_{x \rightarrow x_0} \frac{a^{f(x) \log_a \varphi(x) - a} - 1}{f(x) \log_a \varphi(x) - a} \right. \\
&\quad \left. \cdot \frac{f(x) \log_a \varphi(x) - a}{g(x)} \right) = a^a \ln a \left( \lim_{x \rightarrow x_0} \frac{\varphi(x) \log_a f(x) - a}{g(x)} - \lim_{x \rightarrow x_0} \frac{f(x) \log_a \varphi(x) - a}{g(x)} \right) \\
&\quad \left( 2x - a \right)^{\frac{x^2}{a}} - \left( \frac{x^2}{a} \right)^{2x-a} \\
40. \text{ Calculate. } \lim_{x \rightarrow a} \frac{x^2 - a^2}{x^2 - a^2}. \quad (6)
\end{aligned}$$

(6) The limit can be calculated in two ways. In this case, the desired result is obtained using Theorem 3, and the application of such theorems to problem solving creates some convenience for students.

**Method 1:** Calculate the limit using Lopital's rule

$$\begin{aligned}
\lim_{x \rightarrow a} \frac{(2x - a)^{\frac{x^2}{a}} - \left( \frac{x^2}{a} \right)^{2x-a}}{x^2 - a^2} &= \lim_{x \rightarrow a} \frac{\left( (2x - a)^{\frac{x^2}{a}} \right)' - \left( \left( \frac{x^2}{a} \right)^{2x-a} \right)'}{(x^2 - a^2)'} = \\
\lim_{x \rightarrow a} \frac{\frac{2x}{a} (2x - a)^{\frac{x^2}{a}} \left( \ln(2x - a) + \frac{x}{2x - a} \right) - 2 \left( \frac{x^2}{a} \right)^{2x-a} \left( \ln \frac{x^2}{a} + \frac{2x - a}{x} \right)}{2x} &= \frac{2a^a (\ln a + 1) - 2a^a (\ln a + 1)}{2a} = 0.
\end{aligned}$$

**Method 2:** Use Theorem 3 to calculate the limit. We use the formula

$$\begin{aligned}
\lim_{x \rightarrow x_0} \frac{f(x)^{\varphi(x)} - \varphi(x)^{f(x)}}{g(x)} &= a^a \ln a \left( \lim_{x \rightarrow x_0} \frac{\varphi(x) \log_a f(x) - a}{g(x)} - \lim_{x \rightarrow x_0} \frac{f(x) \log_a \varphi(x) - a}{g(x)} \right) \\
\ln a \cdot \lim_{x \rightarrow a} \frac{\frac{x^2}{a} \log_a (2x - a) - (2x - a) \log_a \frac{x^2}{a}}{x^2 - a^2} &= \\
a^a \ln a \cdot \left[ \lim_{x \rightarrow a} \frac{\frac{x^2}{a} \log_a (2x - a) - a \log_a (2x - a)}{x^2 - a^2} - \lim_{x \rightarrow a} \frac{(2x - a) \log_a \frac{x^2}{a} - a \log_a \frac{x^2}{a}}{x^2 - a^2} + \lim_{x \rightarrow a} \frac{a \log_a (2x - a) - a \log_a \frac{x^2}{a}}{x^2 - a^2} \right] &1) \\
\lim_{x \rightarrow a} \frac{\frac{x^2}{a} \log_a (2x - a) - a \log_a (2x - a)}{x^2 - a^2} &= \lim_{x \rightarrow a} \frac{\left( \frac{x^2}{a} - a \right) \log_a (2x - a)}{x^2 - a^2} = \lim_{x \rightarrow a} \frac{\log_a (2x - a)}{a} = \frac{1}{a}
\end{aligned}$$

$$\begin{aligned}
2) \lim_{x \rightarrow a} \frac{(2x - a) \log_a \frac{x^2}{a} - a \log_a \frac{x^2}{a}}{x^2 - a^2} &= \lim_{x \rightarrow a} \frac{2(x - a) \log_a \frac{x^2}{a}}{x^2 - a^2} = \lim_{x \rightarrow a} \frac{2 \log_a \frac{x^2}{a}}{x + a} = \frac{1}{a} \\
3) \lim_{x \rightarrow a} \frac{a \left( \log_a (2x - a) - \log_a \frac{x^2}{a} \right)}{x^2 - a^2} &= \lim_{x \rightarrow a} \frac{a \log_a \frac{(2x - a)a}{x^2}}{x^2 - a^2} = a \lim_{x \rightarrow a} \frac{\log_a \left( \frac{2a}{x} - \frac{a^2}{x^2} - 1 + 1 \right)}{x^2 - a^2} = \\
&= a \lim_{x \rightarrow a} \frac{\log_a \left( 1 - \left( \frac{a}{x} - 1 \right)^2 \right)}{x^2 - a^2} = a \lim_{x \rightarrow a} \log_a \left( 1 - \left( \frac{x - a}{x} \right)^2 \right)^{\frac{1}{x^2 - a^2}} =
\end{aligned}$$

$$= a \log_a \lim_{x \rightarrow a} \left[ \left( 1 - \frac{x-a}{x} \right)^{\frac{1}{x^2-a^2}} \cdot \left( 1 + \frac{x-a}{x} \right)^{\frac{1}{x^2-a^2}} \right] = a \log_a \left( e^{-\frac{1}{2a^2}} \cdot e^{\frac{1}{2a^2}} \right) = a \cdot 0 = 0.$$

**Theorem 4.**  $\lim_{x \rightarrow x_0} u(x) = 1, \lim_{x \rightarrow x_0} v(x) = \infty$  When equality holds

$$\lim_{x \rightarrow x_0} u^v = \exp \left\{ \lim_{x \rightarrow x_0} (u-1)v \right\}$$

$$\text{Proof. } \lim_{x \rightarrow x_0} u^v = \lim_{x \rightarrow x_0} \left( (1 + (u-1))^{\frac{1}{u-1}} \right)^{(u-1)v} = \exp \left\{ \lim_{x \rightarrow x_0} (u-1)v \right\}$$

Consider the following practical examples of theorem 4. [15]:

$$1. \lim_{x \rightarrow \infty} \left( \frac{a+x}{b+x} \right)^{kx} = e^{k(a-b)}.$$

$$\lim_{x \rightarrow \infty} \left( \frac{1+x}{2+x} \right) = \exp \left\{ \lim_{x \rightarrow \infty} x \left( \frac{1+x}{2+x} - 1 \right) \right\} = \exp \left\{ \lim_{x \rightarrow \infty} \frac{(-x)}{2+x} \right\} = e^{-1}.$$

$$2. \lim_{x \rightarrow 0} \left( \frac{1+x}{1+2x} \right)^{\frac{1}{x}} \cdot \lim_{x \rightarrow 0} u(x) = 1 \text{ and } \lim_{x \rightarrow 0} v(x) = \infty \text{ when } \lim_{x \rightarrow x_0} u^v = \lim_{x \rightarrow x_0} \left( (1 + (u-1))^{\frac{1}{u-1}} \right)^{(u-1)v} = \exp \left\{ \lim_{x \rightarrow x_0} (u-1)v \right\} \text{ we use the fact that}$$

$$\lim_{x \rightarrow 0} \left( \frac{1+x}{1+2x} \right)^{\frac{1}{x}} = \exp \left\{ \lim_{x \rightarrow 0} \frac{\frac{1+x}{1+2x} - 1}{x} \right\} = \exp \left\{ \lim_{x \rightarrow 0} \frac{(-1)}{1+2x} \right\} = e^{-1}.$$

## Conclusion

Forming the dynamics of studying mathematics by students, analyzing the level of theoretical knowledge, practical skills and qualifications they have acquired, as well as studying the possibilities of mathematics in developing the level of mastery, increasing the efficiency of the educational process, the methodological basis of qualifications, independent learning of students is created.

This knowledge is used to develop skills for independent study of the "Theory of Limits" section and analyze the level of mastered theoretical, practical skills and qualifications, improve the level of skill, as well as to study the capabilities of the "Theory of Limits" section. The "Theory of Limits" creates a methodological basis for increasing the effectiveness of practical training.

## References

1. Yunusova D. Theoretical basis of continuous education system of mathematics teacher training // Monograph. - Tashkent, "Science and Technology". 2008. - P.160 (Uzbekistan)

2. Tojiev M. Practice and methodology of modular training in the continuing education system // Monograph. - Tashkent, 2016. - P. 208 (Uzbekistan)
3. Ergashev J. B. Improving the content of professional training of future mathematics teachers based on an integrative approach // Doctor of Philosophy (PhD) in Pedagogical Sciences, abstract. - Tashkent, 2018. - P. 48 (Uzbekistan)
4. Ashurova D.N. Improvement of teaching on the basis of innovative software-didactic complexes in the higher education system ("Algebra and number theory" as an example) // Doctor of Philosophy (PhD) in Pedagogical Sciences, abstract. - Tashkent, 2018. - P.52 (Uzbekistan)
5. Khurramov A.J. Improving the methodology of teaching by designing training sessions of the subject "Mathematics Teaching Methodology" // Doctor of Philosophy (PhD) in

Pedagogical Sciences, abstract. – Tashkent, 2019. – P.22 (Uzbekistan)

6. Goyibnazarova G.N. Analytical geometry structure, content and methods of teaching improvement // Abstract of the dissertation on the candidate of pedagogical sciences, abstract. – Tashkent, 2009. – P. 21 (Uzbekistan)

7. Durdiev D.Q., Khalikov S.H. Teaching first-order ordinary differential equations based on innovative technologies ("Case-Studu" example) // Pedagogical skills. Scientific-theoretical and methodical journal. 2020, –№ 4 , – P. 171-176 (Uzbekistan)

8. Kuznetsova I.V. Razvitiye methodicheskoy kompetentnosti budushchego uchitelya matematiki v procese obuchenia matematicheskim strukturam v setevyx soobshchestvax // Dissertation for the degree of candidate of pedagogical sciences. – Arkhangelsk, 2015. –P. 211 (Russian)

9. Zaitseva Zh.I. Methods of teaching higher mathematics using new information technologies: At a technical university // Dissertation for the degree of candidate of pedagogical sciences, abstract. – Elabuga, 2005. – P.123 (Russian)

10. Novikova I.S. Improving the teaching methodology of the section "linear differential equations with constant coefficients" in the system of professional training of specialists for the armed forces // Dissertation for the degree of candidate of pedagogical sciences, abstract. – Moskva, 2000. – P.20 (Russian)

11. Elizabeth Ackerman-Hicks. An Exploration of the Effect of the Development of Spatial Awareness as a Prerequisite Science, Technology, Engineering, and Math (STEM) Skill on the STEM Gender Achievement Gap:An Innovation Study // A Dissertation Presented to the faculty of the usc rossier school of education university of southern california In Partial Fulfillment of the Requirements for the Degree doctor of education May 2018. – 194 p.

12. Khakimov A., Chuliyev D., Ismailova Z. Application of theorems about generalized wonderful limits / Pedagogical skills. Scientific-methodological magazine. №3, 2013. – 64-66 p. (Uzbekistan)

13. Khakimov A., Tursunova E.M., Kodirova Sh.T. About one method for calculating non-standard, improper integrals / Bulletin of science and education. Scientific and methodological journal. Publishing house "Problems of Science". №7 (110). Part 3. April, 2021. 16-22 –p. (Russian)

14. Islikov S.X., Khakimov A., Ibdullayeva N.M. Proofs of Euler's formula and its applications / Bulletin of Gulistan State University, №4, 2016. 9-13 –p. (Uzbekistan)

15. Ashurova D.N., Kadirova Sh.T., Khasanov A.E. About an innovative method of calculating the limits of some classes of functions / Science knowledge. Scientific-methodical journal, № 4, 2020. 11-14 –p. (Uzbekistan).

16. Ashurova D.N. Innovative-didactic program complex as mean of implementing new education paradigm / Eastern european scientific journal (Gesellschaftswissenschaften): Düsseldorf (Germany): Auris Verlag 2018, № 3. P. 380-386

17. S.X. Abjalilov, B.X. Abjalilov, D. Xo'jamova, Analitik va yasash geometriyasida inversion almashtirishlar/ Eurasian journal of mathematical theory and computer sciences. Volume 3, Issue 4, april 2023, P. 19-23