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ABSTRACT

The article discusses the issues of simplifying the calculation of some non-standard
sequences and limits of functions using linear substitutions, lemmas, and theorems.

Software and didactic complex, limit calculation methods,
Keywords: . . . L .
calculating limits using lemmas, calculation of limits, Lopital's rule.
Introduction Discussion

In higher educational institutions, the
fundamental sciences of mathematics are built
on the basis of program-didactic complexes,
student-centered learning, contextual issues,
problematic issues, large, medium and small
modular technologies and teaching methods
using computer mathematical programs in our
country and abroad. Yunusova [1], Todzhiev M.
[2], Ergashev Zh.B. [3], Ashurova D.N. [4],
Goyibnazarova G.N. [6], Durdyev D.V. [7],
Kuznetsova I.V. Research was carried out by J.1.
Zaitseva [9], LS. Novikova [10], Elizabeth
Ackerman-Hicks [11] and other scientists and
other scientists conducted research. In the
works of A. Khakimov, S.X.Abjalilov, D. N.
Ashurova and others, some innovative methods
for calculating the limit of classes of sequences
and functions were developed [13-17].

This article presents theoretical and
practical applications of calculating the limits
of certain classes of sequences and functions
using simple substitutions.

It is known that a number of studies have
been carried out on the limits of sequences and
functions, but the calculation of limits using
lemmas and theorems is not entirely justified.
The main purpose of this article is devoted to
the use of lemmas and theorems that facilitate
the calculation of the limits of the first and
second miraculous limits. The article is devoted
to the problems of increasing the effectiveness
of teaching the subject “Calculation of
sequences and limits of functions” in the
process of training future mathematics
teachers and improving teaching methods.

Eurasian Journal of Physics, Chemistry and Mathematics

www.geniusjournals.org
Page |27


mailto:abdusalom_xakimov@gmail.com
mailto:abjalilovsanaqul72@gmail.com
mailto:abjalilovsanaqul72@gmail.com
mailto:abjalilovsanaqul72@gmail.com
mailto:abjalilovsanaqul72@gmail.com
mailto:abjalilovsanaqul72@gmail.com
mailto:dilfuz_2007@mail.ru

Volume 37| December 2024 ISSN: 2795-7667
PROBLEM STATEMENT

Lemma. To the district point. X=X, if completed
lim f(x)=lim p(x)=0

then the following relation is suitable

f(x) _ qo(x)
im2 % _pg(a>0,a=1)
X—>Xg X=X,
Here
f(x)-p(x) _ _
p= Iim(a—ljﬂna, q = lim M
=0l f(x)-gp(x) =x - g(x)
f(x) _ q0(x) o(x)(q F(x)-o(x) _ o(x) (4 f(x)-o(x) _ _
proot, fim & =2 _ i a"(e 1)_ i 2™ ) _ i £0=0(x) _ 0q
=% X—X, X% X— X, ox F(x)-o(x) % X=X,
o(x)(5 f(x)-0(x) _ _
p:Iima (a 1)zlna,qzlingo(x).
000 S
Based on the above lemma, it is easy to prove the following theorems.
Theorem 1. For the function f(x),¢(x), g(x)around the point x = x,
lim f(x)=lim ¢(x) = lim g(x)=0,(a>0, a=#1)
If the conditions are met, then the following relation is appropriate
af) _ qem
lim —————=1pq. (1)
n o g(x)
Proof.
af(x) _ a¢(x) a@(x) af (x)=o(x) _1 « af(x)’W(X) _1 f X) — X . .
lim ~ Jim 2 ) _ lim a*® lim [ TX)=0( ) _ 0 This one is
=% g(X) x>y 9(x) oxox F(X)—e(X) 9(x)
on the ground
a'®et _q f(X) — p(x
p=lim & t-ina, g=fim -2,
=% F(X)—o(X) % g(X)

The theorem is proven.
Theorem 2. X = X, Around

lim f(X) = lim @(X) = lim g(x)=0 and g'(x,) #0

If the relation is satisfied, then the equality (b >0,b=1,a>0,a#1),
f(X) _ po(x)
Iim—a b =plha-qlinb.
X—>Xg g(X)
Proof.
y af® _prk i af®_1 i b?™ _1 ’ af®_1 i f(X)
m =1m — m =1m - 1m -
X—>Xg g (X) X—>Xq g (X) X—>Xg g (X) X—>Xg f (X) X—>Xg g (X)
b?™ —1 X
= lim “lim o )=plna—qlnb,
X—>Xg g(X) X—>Xq g(X)
f(x X
Here p = fim 2 q= fim 20,
% g(x) e g(X)
Now let us look at questions related to the above topic:
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ax _ asinx 5|nX(ax —sin x _1) a.x—sinx _1
0 - - .
Llim———=lim = —.
X—0 X X—0 X x=>0 X—SINn X
X —sin X sin x
lim =lha:lim|1-— |=Iha-(1-1) =0
x—0 X x—0 X
o . asinx _ atgx - tgx (asm X—tgx _1) ) asin X—tgx _1 Sin X —th
2 . Ilm 3 = Ilm 3 = - * 3 =
x—0 X x—=0 X x—=01 SIN X—th X
asin X—tgx -1
=lim—————=Ina.
x-0 Sin X —tgx
sin? %
sinx—tgx _ sinx(cosx—1) .osinx . 1 1 1
im————=lim————=—2lim -lim 5 lim =-2-1—1=——
x—0 X x—0 X° COS X x>0 X x-0(x 4 x—0 COS X 4 2
2
sin x _atgx 1
So, im————=——-Ina.
x—0 X3 2
a.Inx _ bsin(x—l) aInx _1 bsin(x—l) _1
3 lim——————=1im —lim =
x—1 Xx—1 x»1 X—1 x—1 Xx—-1
In x sin(x-1) H
a -1 In x b -1 sin(x—1 a
=lim -lim —1lim -lim ( )Ina-l—lnb-lzln—.
x>1 Inx  xs1Xx=1 xs18in(x-=1) x»1 x-1 b

Let us prove the following theorem, which facilitates the process of solving practical problems and
examples.

Theorem 3. If the following conditions are satisfied ¢'(x) =0 for functions f(x), ¢(x) around a
point: x=a and |im f(X)=a, lime(x) =a

In this case, the following relation is appropriate
af®
|im—()_a pIn , (@>0,a=1) (2)
X—a (0( )

Proof. In the process of proving the theorem, we will make the following rather complicated
substitution:

f(x) f(X) (af(x)—a _l)aa _aa[(l_i_ f (a) _aja _1j

@(X) @(x) a

To calculate the limit, subtract a“from its image, then add and replace

af (%) (af(x)—a “Da® aa((l"‘f()()a_a))_l)

o(X) o(X) »(X)
Let's start calculating the limit here

f(x)—a)’

1 -1

™t Lo a™t il f(x)—a ... (+ a j _ f(x)-a
lim——————=a’lim -lim —a* " lim lim =N
x>a  o(X) xa f(x)—a xa (X) a  (f(x)-a)a x>a  (X) ere

=aaplna—aap:aap(lna—lne)=aapln%.

. f(x)-
p=Ilim M (3)
x—a q)(x)
To prove the theorem, the following relations were used, given in [12]
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PRNY” f(x)-a _

imEEF =) imd "=l s
x—a f (X) —a x—a f (X) —a

Let us apply formula (2) to a practical example.

If ¢'(X) # 0 necessary if done then

f(x) e
lim& ) _
X—e (D(X)
It follows that the relations corresponding to [13-14].

fers).

X_ a a x—a_
©him-2 =X _jim @ D
x-agin(x—a) x»a sin(x—a) x-a X—-a
a
x—a)
a’ -1 X — 1+ a -1 X—a
=a%lim -lim — —a’lim dim— =
x—a X —a xeasm(x_a) X—a X—a xaaasm(x_a)
a
—a*lha-2 'azaa(lna—l)zaalng (4)
e
. . eX_Xe eX_ e eX_ e eX_Xe
From (4) a=e it follows that Im——=lim——=lim—=lim— =
xesin(x—e) x-etg(x—e) x-oearcsin(x—e) x-earctg(x—e)
2 inﬁ 2
2" —(2sin ij 5
0 |; Y <
2.le212 N =2 pIn2 (5)

Let us use (3) to prove relation (5):

. T
p = lim =lim——4 — =2lim—4 = —4lim =
x—>a o(X) x>2 x> -4 x>2 X2 -4 X—2 X2 —4

sinz(”(x—z)j [”(x—z)j 2
= —4lim 8§ .8 =—4(£J lim(x—2) =0.
X—2 T X—2 4 ) x->2
5-2)

So,
25inﬂ 7iX 2
2 ¢ —[ZSin 4)
lim 5 =0
X—>2 X —4
3 lim f(x)=a, lim ¢(x)=a, lim g(x) =0 Then calculate the next limit.
X—>Xo X—>Xo X—>Xo
] f(x o(x) _ X f(x) ] af(X)logaw(X) —a?
im 097 —0()"® _ _
X=X g(x) X—Xg g(x)
al a(/’(x)loga f(x)-a -1 ] af(x) log, p(x)-a -1
=a’| lim — lim =
X=X g(x) X—>X%g g(x)
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aw(x) IOga f(x)-a _1 X IO f X)—a . a f(x) IoQa p(x)-a _1
p(9log, f()-a .

e T A 000 f(log,p00 -
. f (X) Ioga ¢(X) _ a) —a%ln a( lim gO(X) Ioga f (X) —a — lim f (X) Ioga ¢(X) — a)
g(x) x% 9(x) x%o 9(x)
(2x - a)% - ()‘:]

(6)

(6) The limit can be calculated in two ways. In this case, the desired result is obtained using
Theorem 3, and the application of such theorems to problem solving creates some convenience for

students.
Method 1: Calculate the limit using Lopital's rule

(2x—a)§ —[ij h [(2x—a)aJ _{();j J
) _lim

490, Calculate. lim >
X—a X —a

lim

X—a X2 — a2 X—>a (XZ _ az)'
ﬁ 2 2x-a 2 _
2X(2x—a)a(ln(2x—a)+ X j—Z X Inx—+2X a
lim 2 2x—a a a X :2ae‘(lna+1)—2a*’(lna+1):O
X—a 2X 2a .

Method 2: Use Theorem 3 to calculate the limit. We use the formula
f (X)(p(X) — ¢(X)f(X) ¢(X) Ioga f (X) —a — lim f (X) Ioga ¢(X) — a)

lim =a’Ina(lim
X—>X%g g(x) X—>Xg g(x) X—Xg g(x)
X X2
—Ilog,(2x—a)—(2x—a)log, —
Ina-lim-2& — a
X—a X —a
X2 X2 x? X2
—Ilog,(2x—a)—alog,(2x —a) (2x—a)log, —alog, — alog,(2x—a)—alog, —
a’lna-|lim-2 s —~lim —a +1im — a1
x—a X°—a x—a X°—a x—a X°—a
¢ *~aliog,(2x-a)
A P _ ~——allog,(2x—a
o log(2x—a)-alog,(2x-a) |3 a log,(2x-a) 1
lim PR =lim T =lim ==
x—a X —a x—a X —a x—a a a
2 2 2 2
X X X X
(2x—a)log, = —alog, = 2(x—a)log, ~- 2log, — 4
- a a _j; a _j; a _+
2) lim =lim =lim =
X—a Xz—a2 X—a )(z—a.2 X—a X+ a a
2 2
X 2a a
a(loga(ZX—a)—loga} alog (2x-a)a Ioga(—2—1+1j
: a : a 2 . X X
3) lim — = lim —% —— =alim — =
X—a X" —a X—a X" —a X—a X" —a
a 2
log,|1-| —-1 P\
. X . x—a) |
=alim TR =alimlog,|1-| —— =
x—a x*—a x—a X
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o1 1 1 1

. X—a \x*-a? X—a |x*-a? 7 .2

=alog, lim (1——) ~(1+—j :aloga(e 2a” | g2a’
X

x—a X

Theorem 4. lim u(x)=1, lim v(x)=c When equality holds

X—>Xg X—Xo

lim u’ = exp)lim (u —1)\/}

1 \(u-1y
Proof. limu’ = lim ((1+ (u —1))“j = exp{!im (u —1)/}
Consider the following practical examples of theorem 4. [15]:

kx
1. Iim(wj — gkla-b),
x>=\ 4+ X
-1

. (1+x (14X . (=x)
lim| —— |=expslimx —— -1 |} =expylim——=;=e"".
x—o| 2+ X xon | 24+ X x>0 2+ X

]:a~0:0.

x—0 x—0

1+2x
= expilim (u —1)\/} we use the fact that

1+X

1
lim| 1EX )" —exp!lim1t2X 1 _exp Iim(_—)
x>0\ 14 2X X

! }ze‘l.

x>01 42X

x—0

Conclusion
Forming the dynamics of studying
mathematics by students, analyzing the level of
theoretical knowledge, practical skills and
qualifications they have acquired, as well as
studying the possibilities of mathematics in
developing the level of mastery, increasing the
efficiency of the educational process, the
methodological basis of qualifications,
independent learning of students is created.
This knowledge is used to develop skills for
independent study of the “Theory of Limits”
section and analyze the level of mastered
theoretical, practical skills and qualifications,
improve the level of skill, as well as to study the
capabilities of the “Theory of Limits” section.
The “Theory of Limits" creates a
methodological basis for increasing the
effectiveness of practical training.
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