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In this work, the problem of specific vibration of the fluid-conducting toroidal shell is
solved. The object of the research is to evaluate the ideal fluid and the composite toroidal
shell with rheagogic properties, their characteristic (or special) vibrations and dynamic
characteristics. Research methods. The integral differential equations with eigenvalues
are reduced to the system of ordinary differential equations. To solve these equations,
freezing method, separation of variables method, Muller's method, and Godunov's
orthogonal projection methods were used. The reliability of the obtained results is based
on the correct formulation of the spectral limit problem, the rigor of the derived
mathematical expressions, the use of based solution methods and the evaluation of the
accuracy of the solutions, as well as comparisons with the solutions of other

ABSTRACT

mathematical problems.
toroidal shell, ideal fluid, composite material, deformation, integro-
Keywords: : . .
differential equation.
Introduction propagation in curved sturgeons was studied.

If the shell consists of a curved axis, studying
its vibrations becomes more complicated. Since
there is no theory for the study of a curved shell,
it has been studied on a curved stern surface. In
the investigation of vibrations in the curved
section of shells, we can see that a number of
works approached from the point of view of the
boom theory studied straight booms under
impact load by theoretical and experimental
methods [1,2,3]. The analysis of curvilinear
sturgeons is much less studied. He introduced
equations in the form of Tymoshenko's
equation for curved lines [4] and obtained
dispersion lines for continuous wave motion.
Theoretical and experimental works are
published in the following [5]. This work is
devoted to elastic wave dispersion in a spiral
waveguide. In his work [6], he published his
research results for different types of springs.
Later, in the works of [8,9,10], wave

And finally, in the works of [11], Morley's
equations are presented as the most optimal
way of checking wave propagation in curved
sterns [12], and numerical calculations are
performed on several similar examples; in the
scientific research of [13], the theoretical works
created by [14,15] are summarized. The results
of rigging devices consisting of straight and
curved sections are given. Also, theoretical and
experimental results are compared.

Statement of the problem and solution
methods

To compare the calculation results of a
straight and curved pipeline, we consider the
equation of motion of a cylindrical shell through
which liquid flows [1]. We can reduce the
equilibrium equations of the shell element to a
single displacement equation. For this TZ, QZ,

S we eliminate the stresses, use the relations
between strains and stresses, as well as
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displacements and strains. When considering
small displacements, discarding all non-linear
parts, we arrive at the following equation:
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(1) starting to solve, it should be mentioned that we write all the displacement and torsion angles
by w. Let's isolate the variables and represent w as a string:
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In this w- rotational frequency of free oscillation. In that case
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In this L* - (2) the left side of the equation, fmn( £ )-we get a system of equations to determine the

function we are looking for. It should be noted here at m#k the coefficients of this system will be
Zero:

fmlr\ll (§O)+ amm fmn (660 ) + bmm fmn (§O)+ Cmm fmn (50): 0 (4)

In this fmn -variable function &, =&\/h, ,0< ¢, <1; |, ==

0

JnL

when changing in the interval 0< &, <1 ; |, = will be.
r

(4) coefficients of the system of equations are determined by the following expressions.
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In this
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We write the system of homogeneous differential equations (4) in matrix form using the
operator designations:

L, 0 O
fln
O L, O . B
Af,.|=0 (6)
0 0 L.
fa

In this Lmn- linear operator, differential and fmn determines the algebraic process (operation) on
the function:

mm=LQ+ammL€)+bmmi)+cmm()=0 (7)
dé; dé, dé,

fmn (50) function, the appearance of which depends on the boundary conditions in the cross-

section of the shell, we consider the case where both cross-sections are hinged. fmn (éjo Jwe look

at the function in the form of a trigonometric series, we assume that it satisfies the preliminary
boundary condition:

fmn(O’IO):O’ fn:;(o’lo)zo (8)

The solution

we look for it in appearance. In this A, =

fmn (é:O ) = Dmn Sln ﬂ’nézo (9)

nar
Lh,

(3.8) satisfies. Substituting the solution (9) into (8)

and using the Bubnov-Galyorkin method again (0, lo) applying it in the limit of integration, we get a
system of n homogeneous algebraic equations. The condition of non-participation of trivial solutions
causes the determinant of the system coefficients to be equal to zero:

in this

All 511 BlZ 512 BlS 513
B

21 521 Azz 522 st 523
le 531 Bsz 532 A33 533 =0 (10)
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(10) by opening the detector, we get free oscillation frequency spectra.

The analysis of the obtained results shows that the influence of the Coriolis force on the frequency of
free oscillation is small. Therefore, we will not take into account the influence of these forces from now
on. In this case, the expressions for determining the square of the frequency take the following form.

Ehf{/lﬁ Tt 5 (pm V24 p)/lﬁhv + m“(m2 —1)(m2 + P —1)
o = Ehh, (11)
rz[p+ p”z"h rj(ﬂzhv m?+ m“)

n

(11) terms in the second parentheses in the denominator of the expression reflect the different effects
of the components of the inertial force. All calculation processes of the above frequency are presented
in [2]. That is, the first tone of the free vibration overlaps with the bending vibration of the hammer. For

this case (11) after substitutions,
z°n \/nz vl (p,F,)

2 /pF +p F_ 7°El
El

we write in the form. This result overlaps with the solutions of [3] found without considering the fluid
pressure. Formula (12) is not valid for the class of pipes of medium length. Because it does not take into
account the effect of deformation of the pipe profile. It takes into account only the component of the
inertia forces in the bending plane. Further analysis shows that the internal pressure of the liquid has a
significant effect on the frequency of free oscillation of a sufficiently thin-walled pipe (in m>1).
Algorithms and programs, a series of eigensolutions obtained, show that they are correct compared
to the known results in [4]. The considered toroidal shell is subject to a single problem on the boundary
contours of the shell U=9 = =W_ =0 given In this case, the minimum frequency corresponds to

o= (12)

the shape of the axis of symmetry of the vibration.

The value of this frequency depending on the given values is determined by (12). In the work of [4],
the following formula was given to determine the natural frequency of a curved cylindrical shell taking
into account the effect of fluid

/ S
On _ 1 s or ®=0, 1+—X”p';]c L 13)
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27w
in this, Sl =——; N- meridian node numbers; h- thickness; « - shell radius, X, - coefficient value

n
(S /L) depends on.

If0<S/L<20, 1,2<x, <0,2. Taking into account the effect of fluid plays the role of attaching

masses from the analysis of known results. So, in this case, the frequency takes on an increased value
(empty shell pressure). To date, pipelines made of polyethylene are widely used for the transportation
of gas, oil, and petroleum products. Pipe material made of polyethylene Pe-80 and Pe-100, elastic
modulus E=500 MPa, Poisson's coefficient, outer diameter up to 1200 mm, ratio of pipe wall thickness
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to middle surface radius h = 1 + 1 up to 0.8 MPa internal hydrostatic pressure, designed. The curved

part of the pipelines is in the form of a thin-walled toroidal shell made of sections of polyethylene pipe
with an outer diameter of up to 630 mm. The dynamic calculation of such pieces will have to be done
based on the theory of shells. Therefore, the determination of the specific vibration frequency of a
curved section of a pipeline made of a polyethylene pipe is carried out according to the above method.
In curved sections of polyethylene pipeline, which has a small modulus of elasticity compared to steel,
the first three specific vibrations m =1,2,3 according to the form ®,, examination of the frequency

shows that the fluid flow rate has a significant effect on the natural vibration frequency. Calculation of
the frequencies carried out according to the quality of the polyethylene pipe given in [132], the relative

thickness of the wall — = ﬁ, The pipeline was made for a curved section with an outer diameter of
r ,

630 mm. % = % and 5—10 The specific vibration of the pipe was analyzed when the water velocity

changes from zero to the relative curvature of the fluid flow. The test results are presented in table 1
and figure 1 graphically. The analysis of the test results shows that the tradition of changes in vibration
frequencies established in steel pipelines is also preserved for polyethylene. It can be seen from the

graph in Figure 1 that it has a large curvature %: % the tube vibration frequency is significantly

. : r 1 r 1
higher than the frequency of the tube with small curvature R = . E = % for,=0,25 Iy . The

main conclusion of the analysis of the results of the analysis of the bending vibration natural frequency
of the polyethylene pipe flowing through the liquid is that the natural vibration frequency of these
pipelines is much more dependent on the influence of the fluid velocity than that of the steel pipelines.

M
In this @, decrease in vibration frequency, change in current speed from 0 to 40— reaches up to
c

20%. It is necessary to take this into account in dynamic calculations of pipelines. It can be seen from
Figure 1 that the damping coefficient a)n'1n for U=30m/c takes the maximum value for.

So, at this value, the vibration of the body decreases to a maximum. Similarly, in pipelines made of
steel, the largest specific vibration frequency is the frequency of the first vibration form w,,(m =1 for).
The deformation of the contour of the pipe cross-section does not take part in it. These frequencies

correspond to the Sturgeon theory of pipeline calculations.
1 - table. Correlation of the velocity change of the flowing liquid with the specific frequency

r 1 h 1
R 20'r 40 Velocity of the flowing liquid (m/c) for “m (T'w)
u=41
FF)rm . of | Frequencies V=0 V=20 v = 30
vibration

N 6,67 6,47 5,56
m=1 oy, 7,45 6,82 6,01

W4 8,74 7,91 7,51

@, 4,65 6,19 2,52
m=2 s 5,55 6,85 3,75

@, 6,02 5,51 4,69
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vy, 2,23 1,73 0,29
m=3 o, 34,04 2,55 1,53
vy, 5,54 4,91 3,25
w,, 7,02 5,79 4,77
m=4 o, 8,19 6,95 5,62
o, 10,27 8,86 6,92

The smallest natural frequency of a bending
vibration in a curved section is a shell-shaped
vibration (m=2 and 3 for) corresponds to the
deformed contour of the cross section. For the
case when the sinusoidal longitudinal forms one
half-wave (for n=1). Conducted special
vibration tests of a curved piece of polyethylene
pipeline show that the frequency of vibration
along the investigated shell shape (m,n=1,2,3)
for the modulus of elasticity of polyethylene is
400 times smaller than that of steel, and from a

rrrrr

10

practical point of view, all the real geometric
dimensions of the piece are significant. small
(compared to the corresponding steel pipeline
dimensions see Figure 1). The pipeline is
considered dangerous due to the fact that a
resonance state may appear at a lower
frequency of the specific vibration.
Therefore, the condition of special frequency
construction  with  external  excitation
frequencies for the polyethylene pipeline
requires careful investigation.

‘\\C‘E‘

(/)

30 40

Fig. 1. Dependence of the speed of the flowing fluid on the frequency of the specific bending
vibration
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According to the normative document, the condition for frequency otstroyka (construction) for lower
vibration frequencies:

Dnin 128 or Lmn <069 (14)
O Q

(3) (14) will appear. In this wmin — pipeline natural oscillation lower frequency? Q external
excitation frequency. For pipelines above ground, in special cases, the effect of wind force can serve as
an external driver. The lower frequency of bending vibration, when it becomes zero, also leads to the
loss of pipeline priority. Not at all, when calculating the curved part of the polyethylene pipeline, the

first form of vibration (m,n=1) and the flow rate of the liquid v=20m/c, relative curvature at % = 5—10

frequency w11=0 (See the dashed part of Figure 1). This means that for such a pipeline, the velocity
becomes critical and loses its priority at v=20m/c. To check, the parameter P*0 depends on the
characteristic vibration frequency of the curved section of the pipeline from the velocity of the flowing
fluid. This was done only to check the dependence of the vibration frequency of the hydrodynamic
pressure generated by the fluid movement.

Literature

1. 1.bazapoB M.B. Cadapor MW.HU. Illonun .M YwucseHHoe MoAesMpoBaHHE KoJieOGaHUN
JIUCCUNIATUBHO -HEOJHOPOAHBbIX M OJHOPOJAHBIX MeXaHWYeCcKuX cucteM. -HoBocubupck:
Cubupckoro otj. PAH, 1996 -189c.

2. Bekcsep H. JI. UHpopMalLMoHHBIE TPO6JIEMBI TUAPOYNPYTrocTH.- TanauH: 1982. -180 c.

3. I'punuenko B.T., Mesewko B.B. 'apMoHUYeckue kose6aHus U BOJIHBI B yIPYTUX Tesax, - Kues:
HaykoBo aymka, 1981.-283c.

4. Tysb A.H., Ky6enko B./l., YepeBko M.A. /lubpakuus ynpyrux BoJiH. -KueB : HaykoBo nymka, 1978
.-308c.

5. 5.'onockokos /I.Il. YpaBHeHUs1 MaTeMaTH4eckou ¢pusukKa . PemeHue 3aaa4 B cucteMe MAPLE.-
CII6: Mutep,2004.-539c.

6. XKymaeB 3.®., CadapoB U.M. O paspylieHUM TOHHEJs NPU CUJIbHBIX JBUKEHHUAX 3€MJIU.
MexayHapo/Has KOHdepeHLUs 10 CEUCMOCTOMKOMY cTpouTenbcTBy. C-IleTpoypr, 2000, c. 71-
78

7. Kpayknuc II.B., MosotkoB JI.LA. HuskoyacToTHble BOJIHBI JIaMba B LMJIUHAPUYECKUX U
chepHrUecKUX C/105X , pacloJI0KeHHbIX B ynipyroi cpege // 3an. Hayunbix cemunapos JIOMU AH
CCCP.1972.T. 25 .-c.101-110.

8. Kymnpazgse B. /I. MeTobl noTeHMaia B TEOPUU YIIPYTOCTH. - M.:1963.- 472 c.

9. Kulmuratov N.R., Safarov LI. Oscillations of curved pipeline under the action of variable internal
pressure //World Journal of Engineering Research and Technology WJRET. Wjret, 2018, Volume
4, Issue 6.-P.125-139.

10.Kulmuratov N.R., Safarov LI, Teshayev M.K., Kuldashov N.U. Interaction of Nonstationary
Waves on Cylindrical Body // Journal Applied Mathematics, 2019, 10, 435-447.

11. Kulmuratov N.R., Safarov LI, Teshayev M.K., Kuldashov N.U. Diffraction of Surface Harmonic
Viscoelastic Waves on a Multilayer Cylinder with a Liquid // Journal Applied Mathematics, 10,
468 -484.

12. Kyabmypartos H.P., l'aii6ynaes 3.X., KatomoB C. UcciiejoBaHr e MEXaHU3MOB IIOTePb IHEPTUH B
YOPYrUX MeXaHU4YeCcKuX cucteMax // Y3b6ekckuil ;xypHas «IIpobyeMbl MeXaHUKU». - TOIIKEHT,
2003. - Ne3 - C.32-34. (05.00.00, N26).

13. KyabmypaToB H.P. Co6cTBeHHble KosiebaHUsI KYCOYHO-OJHOPOJHBIX LMUJIWHAPUYECKUX TeJ,
HaXO/JAUIMXCA B YIPYrou cpejie // «3aMOHaBUM UM - paH Ba TEXHOJIOTUSIJIADHUHT 3HT MYXUM
MyaMMoJiapu» Pecny6/ivka uaMui-AManuid KoHepeHIUsICH MakKoJiajap Tymiaamu. JKuszax:
2004. - C.14-17.

Eurasian Journal of Physics, Chemistry and Mathematics www.geniusjournals.org
Page |21



Volume 37| December 2024 ISSN: 2795-7667

14. KynbmypaTtoB H.P., KakeinbekoBa P., T'aiibysnsiaeB 3.X. CoGCTBEHHbIe KOJIeOAHUS KECTKOTO
UJIMHAPUYECKOr0 BKJIIOUEHHUS B ynpyrou cpesae // Matepuanbl Mex/ayHapoJHONW HAy4dHO-
TeXHU4YeCKOM KOoHpepeHUUH «CoBpeMeHHble MNpPOO6JeMbl U MNEPCHEKTHUBbl MeXaHUKU».-
TamkenT, 2006.-C. 277- 278.

15. KyamypatoB H.P., CadpapoB U.U., Temae M.X.,, Kyngamos H.Y. lubpakuuu rapMmoHUYECKUX
BOJIH Ha BSI3KOYINPYTrOM NPOCTPAHCTBEHHOW LUJIWHAPUYECKOU 000JI04Ke C KUAKOCTbIO [/
Martepuanbr XXI MexayHapoJHOW KOHQPEPEHLMU IO BBbIYUCJAUTEJbHOM MeXaHUKe |

COBpeMeHHBIM NpPHUKJIaAHbIM nporpaMMHbIM cucteMaMm (BMCIIIIC), KppiM. Anymra. 2019. -
C.344-346.

Eurasian Journal of Physics, Chemistry and Mathematics www.geniusjournals.org
Page |22



