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Introduction 
      If the shell consists of a curved axis, studying 
its vibrations becomes more complicated. Since 
there is no theory for the study of a curved shell, 
it has been studied on a curved stern surface. In 
the investigation of vibrations in the curved 
section of shells, we can see that a number of 
works approached from the point of view of the 
boom theory studied straight booms under 
impact load by theoretical and experimental 
methods [1,2,3]. The analysis of curvilinear 
sturgeons is much less studied. He introduced 
equations in the form of Tymoshenko's 
equation for curved lines [4] and obtained 
dispersion lines for continuous wave motion. 
Theoretical and experimental works are 
published in the following [5]. This work is 
devoted to elastic wave dispersion in a spiral 
waveguide. In his work [6], he published his 
research results for different types of springs. 
Later, in the works of [8,9,10], wave 

propagation in curved sturgeons was studied. 
And finally, in the works of [11], Morley's 
equations are presented as the most optimal 
way of checking wave propagation in curved 
sterns [12], and numerical calculations are 
performed on several similar examples; in the 
scientific research of [13], the theoretical works 
created by [14,15] are summarized. The results 
of rigging devices consisting of straight and 
curved sections are given. Also, theoretical and 
experimental results are compared. 
      Statement of the problem and solution 
methods 
      To compare the calculation results of a 
straight and curved pipeline, we consider the 
equation of motion of a cylindrical shell through 
which liquid flows [1]. We can reduce the 
equilibrium equations of the shell element to a 

single displacement equation. For this 
2
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S  we eliminate the stresses, use the relations 
between strains and stresses, as well as 
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displacements and strains. When considering 
small displacements, discarding all non-linear 
parts, we arrive at the following equation: 
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(1) starting to solve , it should be mentioned that we write all the displacement and torsion angles 
by ω. Let's isolate the variables and represent ω as a string: 
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In this ω- rotational frequency of free oscillation. In that case 
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(2)  and  (3) the (1) putting into the equation and using the algorithm of the Bubnov Galyorkin 
method 
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In this L* - (2) the left side of the equation, fmn( )-we get a system of equations to determine the 

function we are looking for. It should be noted here at m≠k the coefficients of this system will be 
zero: 
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(4) coefficients of the system of equations are determined by the following expressions. 
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We write the system of homogeneous differential equations (4) in matrix form using the 
operator designations: 
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In this Lmn- linear operator, differential and fmn determines the algebraic process (operation) on 
the function: 
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) function, the appearance of which depends on the boundary conditions in the cross-

section of the shell, we consider the case where both cross-sections are hinged. fmn (
0

)we look 

at the function in the form of a trigonometric series, we assume that it satisfies the preliminary 
boundary condition: 
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and using the Bubnov-Galyorkin method again  (0, l0) applying it in the limit of integration, we get a 
system of n homogeneous algebraic equations. The condition of non-participation of trivial solutions 
causes the determinant of the system coefficients to be equal to zero: 
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(10) by opening the detector, we get free oscillation frequency spectra. 
 
 
    The analysis of the obtained results shows that the influence of the Coriolis force on the frequency of 
free oscillation is small. Therefore, we will not take into account the influence of these forces from now 
on. In this case, the expressions for determining the square of the frequency take the following form. 
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(11) terms in the second parentheses in the denominator of the expression reflect the different effects 
of the components of the inertial force. All calculation processes of the above frequency are presented 
in [2]. That is, the first tone of the free vibration overlaps with the bending vibration of the hammer. For 
this case (11) after substitutions, 
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we write in the form.  This result overlaps with the solutions of [3] found without considering the fluid 
pressure. Formula (12) is not valid for the class of pipes of medium length. Because it does not take into 
account the effect of deformation of the pipe profile. It takes into account only the component of the 
inertia forces in the bending plane. Further analysis shows that the internal pressure of the liquid has a 
significant effect on the frequency of free oscillation of a sufficiently thin-walled pipe (in m>1). 
    Algorithms and programs, a series of eigensolutions obtained, show that they are correct compared 
to the known results in [4]. The considered toroidal shell is subject to a single problem on the boundary 

contours of the shell 0====


 wu  given In this case, the minimum frequency corresponds to 

the shape of the axis of symmetry of the vibration.  
The value of this frequency depending on the given values is determined by (12).   In the work of [4], 
the following formula was given to determine the natural frequency of a curved cylindrical shell taking 
into account the effect of fluid 
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in this , 
n

S
2

1
= ;     n -  meridian node numbers; h- thickness;  - shell radius, 

n
x  - coefficient value 

( )LS /  depends on. 

     If 0,2/0  LS ,   2,02,1 
n

x . Taking into account the effect of fluid plays the role of attaching 

masses from the analysis of known results. So, in this case, the frequency takes on an increased value 
(empty shell pressure). To date, pipelines made of polyethylene are widely used for the transportation 
of gas, oil, and petroleum products. Pipe material made of polyethylene Pe-80 and Pe-100, elastic 
modulus E=500 MPa, Poisson's coefficient, outer diameter up to 1200 mm, ratio of pipe wall thickness 
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to middle surface radius  
12

1

8

1
=

r

h
 up to 0.8 MPa internal hydrostatic pressure, designed. The curved 

part of the pipelines is in the form of a thin-walled toroidal shell made of sections of polyethylene pipe 
with an outer diameter of up to 630 mm. The dynamic calculation of such pieces will have to be done 
based on the theory of shells. Therefore, the determination of the specific vibration frequency of a 
curved section of a pipeline made of a polyethylene pipe is carried out according to the above method. 
In curved sections of polyethylene pipeline, which has a small modulus of elasticity compared to steel, 
the first three specific vibrations 3,2,1=m  according to the form mn  examination of the frequency 

shows that the fluid flow rate has a significant effect on the natural vibration frequency. Calculation of 
the frequencies carried out according to the quality of the polyethylene pipe given in [132], the relative 

thickness of the wall  
5,12

1
=

r

h
, The pipeline was made for a curved section with an outer diameter of 

630 mm.  
10

1
=

R

r
   and  

50

1
 The specific vibration of the pipe was analyzed when the water velocity 

changes from zero to the relative curvature of the fluid flow. The test results are presented in table 1 
and figure 1 graphically. The analysis of the test results shows that the tradition of changes in vibration 
frequencies established in steel pipelines is also preserved for polyethylene. It can be seen from the 

graph in Figure 1 that it has a large curvature  
10

1
=

R

r
 the tube vibration frequency is significantly 

higher than the frequency of the tube with small curvature  
10

1
=

R

r
.  

50

1
=

R

r
  for, Гц25,0= . The 

main conclusion of the analysis of the results of the analysis of the bending vibration natural frequency 
of the polyethylene pipe flowing through the liquid is that the natural vibration frequency of these 
pipelines is much more dependent on the influence of the fluid velocity than that of the steel pipelines. 

In this mn  decrease in vibration frequency, change in current speed from 0 to  
с

м
40  reaches up to 

20%. It is necessary to take this into account in dynamic calculations of pipelines. It can be seen from 

Figure 1 that the damping coefficient 
I

mn
  for смu /30=  takes the maximum value for.  

    So, at this value, the vibration of the body decreases to a maximum. Similarly, in pipelines made of 
steel, the largest specific vibration frequency is the frequency of the first vibration form n1 ( 1=m  for). 

    The deformation of the contour of the pipe cross-section does not take part in it. These frequencies 
correspond to the Sturgeon theory of pipeline calculations. 
1 - table. Correlation of the velocity change of the flowing liquid with the specific frequency 
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1,4=  
Velocity of the flowing liquid (м/с) for (Гц)  

Form of 
vibration 

Frequencies 
0=v  20=v  30=v  

1=m  

11  6,67 6,47 5,56 

12  7,45 6,82 6,01 

13  8,74 7,91 7,51 

2=m  

21  4,65 6,19 2,52 

22  5,55 6,85 3,75 

23  6,02 5,51 4,69 

mn
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3=m  

31  2,23 1,73 0,29 

32  34,04 2,55 1,53 

33  5,54 4,91 3,25 

4=m  

41
  7,02 5,79 4,77 

42
  8,19 6,95 5,62 

43
  10,27 8,86 6,92 

      
The smallest natural frequency of a bending 
vibration in a curved section is a shell-shaped 
vibration  (m=2 and 3 for) corresponds to the 
deformed contour of the cross section. For the 
case when the sinusoidal longitudinal forms one 
half-wave (for n=1). Conducted special 
vibration tests of a curved piece of polyethylene 
pipeline show that the frequency of vibration 
along the investigated shell shape (m,n=1,2,3) 
for the modulus of elasticity of polyethylene is 
400 times smaller than that of steel, and from a 

practical point of view, all the real geometric 
dimensions of the piece are significant. small 
(compared to the corresponding steel pipeline 
dimensions see Figure 1). The pipeline is 
considered dangerous due to the fact that a 
resonance state may appear at a lower 
frequency of the specific vibration.        
Therefore, the condition of special frequency 
construction with external excitation 
frequencies for the polyethylene pipeline 
requires careful investigation. 

 
Fig. 1.  Dependence of the speed of the flowing fluid on the frequency of the specific bending 

vibration 
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     According to the normative document, the condition for frequency otstroyka (construction) for lower 
vibration frequencies: 

28,1min 



     or      



min
69,0                    (14) 

(3)     (14) will appear. In this ωmin – pipeline natural oscillation lower frequency? Ω external 
excitation frequency. For pipelines above ground, in special cases, the effect of wind force can serve as 
an external driver. The lower frequency of bending vibration, when it becomes zero, also leads to the 
loss of pipeline priority.    Not at all, when calculating the curved part of the polyethylene pipeline, the 

first form of vibration (m,n=1) and the flow rate of the liquid v=20m/c, relative curvature at  
50

1
=

R

r
 

frequency ω11=0 (See the dashed part of Figure 1). This means that for such a pipeline, the velocity 
becomes critical and loses its priority at v=20m/c. To check, the parameter P*0 depends on the 
characteristic vibration frequency of the curved section of the pipeline from the velocity of the flowing 
fluid. This was done only to check the dependence of the vibration frequency of the hydrodynamic 
pressure generated by the fluid movement. 
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