

number $f(x)$ because it is a simple root of a polynomial $f'(a) \neq 0$ be Therefore. $f''(a) \neq 0$ We accept this, otherwise the level of the problem $f(x)$ less than (otherwise) level $f''(x)$ were used to calculate the root of the polynomial.

Then (a,b) is the intersection $f(x)$ from α not just a root, but $f'(x)$ and also any root of the polynomial $f''(x)$ we assume that it does not contain the roots of the polynomial.

So, as we know from the course of mathematical analysis, $y = f(x)$ the curve (a, b) either increases monotonically or decreases monotonically on the section.

Therefore, at all points of this section it has a convexity either upward or downward. Consequently, at the location of the curve in

section (a, b), four cases can occur, shown in Figures 1-4.

a number *f* (*x*) because it is a simple root or a
 p a given because it is a simple root or a section (*a*, o), rour cases can occur, snown in
 $f'(a) \neq 0$ We accept this, otherwise the level of A and b are on which A and b are on which of the limits $f(x)$ hint at $f''(x)$ if it matches the sign a_0 we define through $f(a) \text{vaf}(b)$ having a different sign, $f''(x)$ and since (a, b) has a sign at all points of the section, then in the cases shown in Figures 1-4 $a_0 = a$, and in two other cases $a_0 = b$ will

 $y = f(x)$ lines a_0 there is bat a dead center, i.e. $(a_0, f(a_0))$ Let's try this line at the point where it is inclined to the coordinates and let's try this *x* We denote the abscissa of the point of intersection with the axis by d.

Drawings 1-4 d numbers α shows that it can be taken as an approximate value of the root.

Let's derive a formula by which we find the number d. It is known $y = f(x)$ to the curve $(a_0, f(a_0))$ equation of an experiment carried out at a point $y - f(a_0) = f'(a_0)(x - a_0)$ can be written as $-f(a_0) = f'(a_0)(d - a_0)$ we form equality, hence $(a_{\scriptscriptstyle 0})$ $_0 - \frac{f(a_0)}{f'(a_0)}$ 0 $d = a_0 - \frac{f(a)}{f(a)}$ comes from (2). Example. This method is as follows $h(x) = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$ We use it for many things. As we know, this is a lot.1 < $\alpha_{\text{\tiny{l}}}$ < 2 located between the borders $\alpha_{\text{\tiny{l}}}$ has a common root. It is known $h'(x)$, $h''(x)$,..., $h'''(x)$ derivatives $x = 1$ takes positive values when $x = 1$ value $h'(x)$ So $h''(x)$ It follows that the upper limit function of positive roots for $h''(x)$ is positive everywhere in this interval and $h(2) = 39$ $h(1) = -4,$ Because it is $a_0 = 2$ should be accepted. $h'(2) = 102$ considering that from formula (2) $\frac{1}{109}$ = 1,64,.. 179 109 $d = 2 - \frac{39}{ } = \frac{179}{ } =$ We make an equation. On the other hand, formula (1). $\frac{1}{43}$ = 1,09... 47 4 – 39 $\frac{2(-4)-39}{-4-39}-\frac{47}{43}=$ $c = \frac{2(-4)}{2}$ gives equality and, therefore, α_1 get root rights for this version 1.09< α_1 <1.65 do not lie between the borders $h(x)$ for many of us and his α_1 Let's return to the root and note that all values of the following polynomials are calculated using Horner's method. $h(1,31) = 0,0662923851$ $h(1,3) = -0,13987,$ Since 1.3< α_1 <1.31 which means we α_1 root meaning0.01Let's apply the linear interpolation method to these new limits:

 $\frac{1,31(-0,13987)-1,3\cdot 0,0662923851}{0,26940980063}=1,30678...$ 0,2061623851 0,13987 – 0.0662923851 $\frac{-0.13987}{0.13987}$ = $\frac{0.139877}{0.13987}$ = $\frac{0.20940980000}{0.003674}$ = 1,30678... Newton's method is applicable to *c* ⁼

the same boundaries, here $a_0 = 1,31$ should be taken as

 $h'(1,31) = 20.92822405$

for part

1.30683... 20,92822405 27,3496811204 20,92822405 $d = 1,31 - \frac{0,0662923851}{0,0662923851} = \frac{27,3496811204}{0,0662923851} =$ So,

 $1,30678 < \alpha_1 < 1.30684$

and here's why α_1 If we take =1.30681, we will get an error less than 0.00003. Now we will prove the convergence of these methods for the Newton method.

Volume 36| November 2024 ISSN: 2795-7667

polynomial prime number α let the root be in the interval (a,b) satisfying Newton's method. From this, in particular, it follows that there exist positive numbers Ava B such that (a,b) are at all

(*x*) globy
notal prime number d is the reaction by in the interval ligh subtriving Newton's method
and this, in particular, it follows that there exist positive numbers Ava B such that [a,b] are at all
noting Newton's me points of the segment *f* $x \le |B| < B$ $f'(x) > A$ $''(x)|<$ $'(x)$ > (x) $(x) > A,$ (3) will $c = \frac{B}{2A}$ $c = \frac{B}{2A}$ let's introduce the notations and $s(ba) < 1(4)$ let's assume that a_0 Newton's method should be applied within the limits of formula numbers a, b (2) mainly we. α as approximate values of the root (a, b) lying in the interval and with each other $k = 1, 2, ...$ $(a_{k-1})^{\mathcal{P}}$ (a_{k-1}) 1 1 ¹ f' $=a_{k-1} - \frac{f'(a_k)}{f'(a_{k-1})}$ $a_i = a_{i+1} - \frac{f(a_i)}{g(a_i)}$ *k k k k* (5) are related by equations $a_1, a_2, ..., a_k, ...$ we form numbers in a row. $k = 0,1,2,...$ $\alpha = a_k + h_k,$ 2 $k = f(a) = f(a_k) + h_k f'(a_k) + \frac{h_k^2}{2} f(a_k + \theta \cdot h_k)$ will be here $0 < \theta < 1$. (a,b) according to

be in that case. $0 = f(a) = f(a_k) + h_k f'(a_k) + \frac{h_k}{2} f(a_k + \theta \cdot h_k)$ the condition imposed on the section $f'(a_k) \neq 0$ taking into account (5) and (6), we find:

> *A* h_i ² $\frac{B}{A}$

$$
-\frac{h^2{}_k}{2}\frac{f''(a_k+\theta\cdot h_k)}{f'(a_k)}=h_k+\frac{f(a_k)}{f'(a_k)}=\alpha-(a_k-\frac{f(a_k)}{f(a_k)})=\alpha-a_{k+1}=h_{k+1}.
$$

 $"(a, +\theta \cdot$

f ^a

 $n_k = n_k \left| \frac{1}{2f'(a_k)} \right| < n_k \left| \frac{1}{2A} \right|$

 θ

 $|e_{n+1}| = h_k^{-2} \left| \frac{\partial^2 (r - r_k)^2}{\partial r_k^2} \right| < h_k^{-2} \frac{\partial^2 (r - r_k)^2}{\partial r_k^2} = Ch$

 $h_{k+1} = h_k^2 \left| \frac{f''(a_k + \theta \cdot h_k)}{2g'(\theta_k)} \right| < h_k^2 \left| \frac{B}{2g} \right| = Ch^2 k$ *k k k*

From this,

So, $|h_{k+1}| < Ch^2 k < C^3 h^4$ or

$$
|h_{k+1}| < Ch^2_k < C^3 h^4_{k-1} < C^7 h^3_{k-2} < \dots < C^{2^{k+1}} h_0^{2^{k+1}} \\
|h_0| = |\alpha - a_0| < b - a \text{ because } 0.
$$

(7)

 $2f'(a_k)$ $\begin{bmatrix} a_k & 2A \\ 2A & \end{bmatrix}$

 $\left[\begin{array}{ccc} 2 | f''(a_k + \theta \cdot h_k) | & 2 B \\ 0 & 2 \end{array} \right]$

 $k = 0,1,2,...$ $^{1}[C(b-a)]^{2}$ $|h_{k+1}| = C^{-1}[C(b - a)]$

 $k = 0,1,2,...$

 $k+1$ | \cdots \cdots k

Therefore, according to condition (4), α with the root is generated by Newton's method sequentially a_k between the value of approx. h_k difference k tends to zero as it grows. This had to be proven.

Given to P.L. Chebyshev in 1838 $f(x)$ is an inverse function $g(y)$ proposes a method for constructing a higher-order iteration by describing a function using the Taylor formula.

Let's assume $f(x) = 0$ equations $x = \xi$ let the root lie in the interval [a,b] and $f(x)$ let the function and its derivatives of sufficiently high order be continuous. Also, all points in this interval $f'(x \neq 0)$ let it be

In this case $f'(x)$ maintains its position in this interval and $f(x)$ is a monotone function, $x - g(y)$ will have the opposite function.

Reverse function $g(y)$ $f(x)$ The domain of variation is defined in [c,d], and $f(x)$ no matter how many continuous derivatives it has, it has the same number of continuous derivatives according to the definition of the inverse function.

 $y \equiv f(g(y))$ $x \equiv g(f(x))$ $(y \in [c, d]).$ $(x \in [a, b]),$ (1) So, $\xi = g(0)$, (2)

Volume 36| November 2024 ISSN: 2795-7667

If
$$
y \in [c, d]
$$

\nIf $y \in [c, d]$
\nIf $f \in [c, d]$

Here η number 0 and y lies between

Or *y* instead of $f(x)$ having put and $g(y) = x$ referring to 1 $\alpha^{(k)}$ ($f(x)$) $\alpha^{(p)}$

$$
\xi = x + \sum_{k=1}^{p-1} (-1)^k \frac{g^{(k)}(f(x))}{k!} f^k(x) + (-1)^p \frac{g^{(p)}(\eta)}{p!} f^p(x). \tag{4}
$$

we generate.

 $If \dots = \begin{bmatrix} 0 & J \end{bmatrix}$

If

$$
\varphi_p(x) = x + \sum_{k=1}^{p-1} (-1)^k \frac{g^{(k)}(f(x))}{k!} f^k(x)
$$

if we define this, then

 $x = \varphi_p(x)$ (5)

for the equation $x = \xi$ There will be a solution because

$$
\varphi_p(\xi) = \xi + \sum_{k=1}^{p-1} (-1)^k \frac{g^{(k)}(f(\xi))}{k!} f^k(\xi) = \xi
$$

From this $\varphi_p^{(i)}(\xi) = 0$, $j = 1, p-1$

From this
$$
\varphi_p^{(j)}(\xi) = 0
$$
,

because it is

$$
x_{n+1} = \varphi(x_n) \quad (n = 0, 1, 2, \dots, x_0 \in [a, b]) \tag{6}
$$

the iterative process has p-order.

If $x_0 \xi$ is close to , it is determined by formula (6). $\{x_n\}$ subsequence ξ is approaching. Indeed, $\varphi'_p(\xi) = 0$ for what you ξ it was found that there is $|\varphi_p'(x)| \leq q < 1$ will happen from this too. $x_0 \xi$ close enough to ${x_n}$ the convergence of the iterative sequence is obtained.

Now $\varphi_p(x)$ from $f(x)$ And φ we find the expression determined by the derivatives. To do this, we take successive derivatives from (1).

$$
\begin{cases}\ng'(f(x))f'(x) = 1 \\
g''(f(x))f'^2(x) + g'(f(x))f'^4(x) = 0 \\
g'''(f(x))f'^3(x) + 3g''(f(x))f'(x)f''(x) + g'(f(x))f'^4(x) = 0\n\end{cases}
$$
\n(7)

 $p = 2$ When

$$
\varphi_2(\alpha) = x - \frac{f(x)}{f'(x)}
$$
 And $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ (8)

This process partially coincides with Newton's process. *^p* ⁼ ³ from point (5), (7).

$$
p = 3 \text{ from point (5), (7).}
$$
\n
$$
\varphi_3(\alpha) = x - \frac{f(x)}{f'(x)} - \frac{f''(x)f^2(x)}{2[f'(x)]^3}
$$
\n
$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{f''(x_n)f^2(x_n)}{2[f'(x_n)]^3}
$$
\n(9)

arises.

 $p = 4$ For

Volume 36| November 2024 ISSN: 2795-7667

$$
\varphi_4(\alpha) = x - \frac{f(x)}{f'(x)} - \frac{f''(x)f^2(x)}{2[f'(x)]^3} - \frac{f^3(\alpha)}{12} \cdot \frac{3f''^2(x) - f'(x)f''(x)}{[f'(x)]^5} \tag{10}
$$
\nAnd $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{f''(x_n)f^2(x_n)}{2[f'(x_n)]^3} - \frac{f^3(x_n)}{12} \cdot \frac{3f''^2(x_n) - f'(x_n)f'^4(x_n)}{[f'(x_n)]^5}.$

we generate.

These iterative processes will be 2nd, 3rd and 4th order iterations respectively.

Now $\varepsilon_n = \xi - x_n$ To do this, in equation (4) we estimate the error rate tending to zero. $x = x_n$ Taking this into account and taking into account (6), we obtain the following.

$$
\xi - x_{n+1} = \frac{(-1)^p g^{(p)} f(\tilde{x})}{p!} f^{(p)}(x_n)
$$
 (11)

Here $\bar{x} \leq W$ ith x_n lies between

$$
f(\xi) = 0 \text{ because}
$$

$$
f(x_n) = -[f(\xi) - f(x_n)] = -(\xi - x_n) f(\tilde{\tilde{x}})
$$
(12)

$$
(\tilde{\tilde{x}} \text{ too much } \xi \text{ With } x_n \text{ (12) in (11): } \varepsilon_{n+1} = \frac{g^{(p)}(f(\tilde{x}))}{p!} [f'(\tilde{\tilde{x}})]^p \varepsilon_n^p
$$
(13)

Following

$$
q = \max_{a \le \tilde{x}, \tilde{\tilde{x}} \le b} \left| \frac{g^{(p)}(f(\tilde{x}))}{p!} [f'(\tilde{\tilde{x}})]^p \right| \text{ from (13), introducing the notations}
$$

$$
|\varepsilon_{n+1}| \le q |\varepsilon_n|^p \qquad (14)
$$

we obtain an inequality. Applying this inequality consistently, we obtain the following:

$$
|\varepsilon_n| \le q^{1+p+\dots+p^{n-1}} |\varepsilon_0|^p = (q|\varepsilon_0|)^{\frac{p^n-1}{p-1}} |\varepsilon_0|^{\frac{p^n(p-2)+1}{p-1}}.
$$

If $|\varepsilon_0| < 1$ And $q|\varepsilon_0| = \omega < 1$ so be it $|\varepsilon_n| < \omega \frac{p^n - 1}{p-1}$ (15)

It turns out that iteration (6) is rapidly approaching.

Privately $\omega \leq 10^{-1}$ $\left|\varepsilon_0\right|$ < 1 then for iterations (8), (9), (10) above we have the following: $p = 2$ For 10^{-15} , . . . 10^{-7} , 10^{-3} , $10^{-1},$ $|\mathcal{E}_4| \leq 10^{-4}$ $\mathcal{E}_3 \leq 10^{-7}$ ε_2 | $\leq 10^{-7}$ $|\mathcal{E}_1| \leq 10^{-1}$ $p = 3$ For $10^{-40},\! \ldots$ 10^{-7} , 10^{-4} , $10^{-1},$ $|\mathcal{E}_4| \leq 10^{-4}$ $\epsilon_{3} \leq 10^{-1}$ $\varepsilon_2 \leq 10^{-7}$ $\left|\varepsilon_1\right| \leq 10^{-5}$ $p = 4$ For $10^{-1}, |\varepsilon_2| \leq 10^{-5}, |\varepsilon_3| \leq 10^{-18}, |\varepsilon_4| \leq 10^{-85}, ...$ 4 18 3 5 2 1 $|\mathcal{E}_1| \leq 10^{-1}$, $|\mathcal{E}_2| \leq 10^{-3}$, $|\mathcal{E}_3| \leq 10^{-10}$, $|\mathcal{E}_4| \leq 10^{-1}$

So, ω < 0,1 when, only the third iteration gives us the required accuracy.

References

- 1. Nafasov, G. (2019). Model of Developing Cognitive Competence at Learning Process Elementary Mathematics. *Eastern European Scientific Journal*, (1).
- 2. Nafasov, G., Xudoyqulov, R., & Usmonov, N. (2023). DEVELOPING LOGICAL THINKING SKILLS IN MATHEMATICS TEACHERS THROUGH DIGITAL TECHNOLOGIES. *Евразийский журнал технологий и инноваций*, *1*(5 Part 2), 229-233.
- 3. Dosanov, M., Nafasov, G., & Xudoyqulov, R. (2023). Ikkilik munosabatlar va mulohazalarni isbotlashning yangi talqini. *Zamonaviy ilmiy va texnik tadqiqotlar xalqaro jurnali* , *1* (1), 30-42.
- 4. Umarov, X., Nafasov, G. A., & Mustafoyev, R. (2023). TAQSIMOT FUNKSIYA VA UNING XOSSALARI. *Talqin va tadqiqotlar*, *1*(1).
- 5. Nafasov, GA (2023). Suv omborlarining suv o'tkazuvchi traktining past bosim zonasini aniqlash. *Genius ombori* , *25* , 28-32.
- 6. Нафасов, Г., & Мирхайдаров, М. (2022, April). ИЗУЧЕНИЕ ИНТЕГРИРОВАНИЯ БИНОМИАЛЬНЫХ ДИФФЕРЕНЦИАЛОВ С МЕТОДОМ «Т схема». In *INTERNATIONAL CONFERENCES ON LEARNING AND TEACHING* (Vol. 1, No. 1, pp. 205-209).
- 7. Нафасов, Г. А., & Мирхайдаров, М. Х. (2022). ИЗУЧЕНИЕ ИНТЕГРИРОВАНИЯ БИНОМИАЛЬНЫХ. *RESEARCH AND EDUCATION*, *205*.
- 8. Abdurashidovich, N. G., & Kengash, J. (2022). The Local Problem with Integral Gluing Condition for Loaded Mixed Type Equation Involving the Caputo Fractional Derivative. *Texas Journal of Engineering and Technology*, *14*, 20-26.
- 9. Abdurashidovich, NG, & Muzaffarovich, UN Qosim o 'g 'li, NQ, & Olimjon, D.(2023). *Loyihalash jarayonida* .
- 10. NAFASOV, G. A., SAYFULLAYEV, B., & NAZIROV, Q. (2024). MATEMATIKA

DARSLARIDA O 'QUVCHILARNING KREATIV YONDOSHUVLAR ASOSIDA MANTIQIY FIKRLASH QOBILYATINI RIVOJLANTIRISH. *News of the NUUz*, *1*(1.5. 2), 144-146.

- 11. Kengash, J., & Abdurashidovich, N. G. (2023). To approximate solution to a problem of filtration theory for small values of TIME. *Texas Journal of Engineering and Technology*, *19*, 32-37.
- 12. Abdurashidovich, NG (2021). Boshlang'ich matematikani o'qitish jarayonida oliy o'quv yurtlari talabalarining kognitiv kompetensiyasini rivojlantirishning nazariy asoslari. *Evropa molekulyar va klinik tibbiyot jurnali* , *8* (1), 789-806.
- 13. Nafasov, G., Kalandarov, A., & Xudoyqulov, R. (2023). DEVELOPING STUDENTS'COGNITIVE COMPETENCE THROUGH TEACHING ELEMENTARY MATHEMATICS. *Евразийский журнал технологий и инноваций*, *1*(5 Part 2), 218-224.
- 14. NAFASOV, G. A., ANORBAYEV, M., & NAZIROV, Q. (2024). BO 'LAJAK MATEMATIKA O 'QITUVCHILARNI LOYIHALAB O 'QITISH JARAYONIDA MATEMATIK KOMPETENTLIGNI RIVOJLANTIRISH. *News of the NUUz*, *1*(1.6. 1), 165-167.
- 15. Нафасов, Г. А., & Едгоров, Д. Д. РАЗВИТИЕ КОГНИТИВНОЙ КОМПЕТЕНТНОСТИ УЧАЩИХСЯ ПОСРЕДСТВОМ ПРЕПОДАВАНИЯ ЭЛЕМЕНТАРНОЙ МАТЕМАТИКИ. *Международный*

научно-практический электронный журнал «МОЯ ПРОФЕССИОНАЛЬНАЯ КАРЬЕРА». Выпуск № 52 (том 1)(сентябрь, 2023). Дата выхода в свет: 30.09. 2023., 143.