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 number )(xf because it is a simple root of a 

polynomial 0)(  af will be Therefore,

0)(  af We accept this, otherwise the level of 

the problem )(xf less than (otherwise) level

)(xf  were used to calculate the root of the 

polynomial. 
Then (a,b) is the intersection )(xf from not 

just a root, but )(xf  and also any root of the 

polynomial )(xf  we assume that it does not 

contain the roots of the polynomial. 
So, as we know from the course of 
mathematical analysis, )(xfy = the curve (a, b) 

either increases monotonically or decreases 
monotonically on the section. 
Therefore, at all points of this section it has a 
convexity either upward or downward. 
Consequently, at the location of the curve in 

section (a, b), four cases can occur, shown in 
Figures 1-4. 
A and b are on which of the limits )(xf hint at

)(xf  if it matches the sign 0a we define through

)()( bvafaf having a different sign, )(xf  and 

since (a, b) has a sign at all points of the 
section, then in the cases shown in Figures 1-4

aa =0 , and in two other cases ba =0 will 

)(xfy = lines 0a by abscissa there is bat a 

dead center, i.e. ))(,( 00 afa Let's try this line at 

the point where it is inclined to the coordinates 
and let's try this x We denote the abscissa of the 
point of intersection with the axis by d. 
Drawings 1-4 d numbers shows that it can be 
taken as an approximate value of the root. 
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Let's derive a formula by which we find the number d. It is known  )(xfy = to the curve ))(,( 00 afa

equation of an experiment carried out at a point        ))(()( 000 axafafy −=−               

can be written as 
))(()( 000 adafaf −=−  

we form equality, hence           
)(

)(

0

0

0
af

af
ad


−=  

comes from (2). 
Example. 
This method is as follows 

37852)( 2345 −−+−+= xxxxxxh   

We use it for many things. 
As we know, this is a lot. 21 1   located between the borders 1 has a common root. 

It is known )(),...,(),( xhxhxh  derivatives 1=x takes positive values when . 1=x   value  )(xh So )(xh 

It follows that the upper limit function of positive roots for )(xh  is positive everywhere in this interval 

and 

39)2(

,4)1(

=

−=

h

h
    

Because it is 20 =a should be accepted. 

102)2( =h considering that from formula (2) 

,..64,1
109

179

109

39
2 ==−=d  

We make an equation. 
On the other hand, formula (1). 

...09,1
43

47

394

39)4(2
=−

−−

−−
=c  

gives equality and, therefore, 1 get root rights for this version 1.09< 1 <1.65 

do not lie between the borders )(xh for many of us and his 1 Let's return to the root and note that all 

values of the following polynomials are calculated using Horner's method. 

0662923851,0)31,1(

,13987,0)3,1(

=

−=

h

h
 

Since 1.3< 1 <1.31 which means we 1 root meaning0.01Let's apply the linear interpolation method to 

these new limits: 

...30678,1
2061623851,0

32694098006,0

0662923851.013987,0

0662923851,03,1)13987,0(31.1
==

−

−−
=c Newton's method is applicable to 

the same boundaries, here 31,10 =a should be taken as 

92822405,20)31,1( =h   

for part 

...30683.1
92822405,20

3496811204,27

92822405,20

0662923851,0
31,1 ==−=d  

So, 
1,30678< 1 <1.30684   

and here's why 1 If we take =1.30681, we will get an error less than 0.00003. Now we will prove the 

convergence of these methods for the Newton method. 
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)(xf polynomial prime number   let the root be in the interval (a,b) satisfying Newton's method. 

From this, in particular, it follows that there exist positive numbers Ava B such that (a,b) are at all 

points of the segment
Bxf

Axf





)(

,)(
     (3) 

will
A

B
c

2
= let's introduce the notations and 

s(ba)<1 (4) 
let's assume that 0a   Newton's method should be applied within the limits of formula numbers a, b (2) 

mainly we. as approximate values of the root (a, b) lying in the interval and with each other 

,...2,1

,
)(

)(

1

1

1

=


−=

−

−

−

k

af

af
aa

k

k

kk
     (5) are related by equations  ,...,...,, 21 kaaa we form numbers in a row.

,...2,1,0

,

=

+=

k

ha kk
 

be in that case. )(
2

)()()(0

2

kk

k

kkk haf
h

afhafaf +++==  will be here 10   .(a,b) according to 

the condition imposed on the section 0)( 
kaf taking into account (5) and (6), we find:

.)
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11
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From this,             

,...2,1,0

,
2)(2

)( 222

1

=

=


+
=+

k
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So,   
11 2

0

2
2

37
1

432

1 ...
++

 −−+

kk

hChChCChh kkkk  

or                                                 abah −−= 00  because . 

,...2,1,0

)]([
121

1

=

−=
+−

+

k

abCCh
k

k                       (7) 

Therefore, according to condition (4), with the root is generated by Newton's method sequentially  

ka between the value of approx. kh difference k tends to zero as it grows. This had to be proven. 

Given to P.L. Chebyshev in 1838 )(xf is an inverse function )(yg proposes a method for constructing a 

higher-order iteration by describing a function using the Taylor formula. 
Let's assume 0)( =xf equations =x let the root lie in the interval [a,b] and )(xf   let the function and 

its derivatives of sufficiently high order be continuous. Also, all points in this interval )0(  xf let it be

In this case )(xf  maintains its position in this interval and )(xf is a monotone function, )(ygx − will 

have the opposite function. 
Reverse function  )(yg   )(xf The domain of variation is defined in [c,d], and )(xf no matter how many 

continuous derivatives it has, it has the same number of continuous derivatives according to the 
definition of the inverse function. 

))((

))((

ygfy

xfgx




             

]).,[(

]),,[(

dcy

bax




          (1) 

So, ),0(g=                              (2) 
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If ],[ dcy    if , then by Taylor's formula

p
p

pk
kp

k

k y
p

g
y

k

yg
ygyygyg

!

)(
)1(

!

)(
)1()()()(

)()(1

1


 −+−+=−== 

−

=

(3) 

Here number 0 and  y lies between 

Or y instead of )(xf having put and xyg =)( referring to

).(
!

)(
)1()(

!

))((
)1(

)()(1

1

xf
p

g
xf

k

xfg
x p

p
pk

kp

k

k 
 −+−+= 

−

=

     (4) 

we generate. 
If 

)(
!

))((
)1()(

)(1

1

xf
k

xfg
xx k

kp

k

k

p 
−

=

−+=  

if we define this, then 
)(xx p=    (5) 

for the equation  =x There will be a solution because 

  


 =−+= 
−

=

)(
!

))((
)1()(

)(1

1

k
kp

k
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p f
k

fg
 

From this ,0)(
)(

=
j

p     1,1 −= pj   

because it is 
)(1 nn xx =+    ]),[,..,2,1,0( 0 baxn =      (6) 

the iterative process has p-order. 
If 0x is close to , it is determined by formula (6). }{ nx subsequence   is approaching. Indeed, 0)( =  p   

for what you   it was found that there is 1)(  qxp will happen from this too. 0x   close enough to  

}{ nx the convergence of the iterative sequence is obtained. 

Now )(xp from )(xf And   we find the expression determined by the derivatives. To do this, we take 

successive derivatives from (1). 













−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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0)())(()()())((3)())((

0)())(()())((

1)())((

43
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xfxfgxfxfxfgxfxfg

xfxfgxfxfg

xfxfg

(7)    

2=p When 
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)(2
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x


−=   And

)(
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1

n

n

nn
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xf
xx


−=+

              (8) 

This process partially coincides with Newton's process.     
3=p    from point (5), (7). 

3

2
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2
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      (9) 

arises. 
4=p For   
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And  .
)]([

)()()(3

12

)(

)]([2

)()(

)(

)(
5

423

3

2

1

n

nnnn

n

nn

n

n

nn
xf

xfxfxfxf

xf

xfxf

xf

xf
xx



−
−




−


−=+  

we generate. 
These iterative processes will be 2nd, 3rd and 4th order iterations respectively. 
Now nn x−=  To do this, in equation (4) we estimate the error rate tending to zero. nxx = Taking this 

into account and taking into account (6), we obtain the following. 

)(
!

)~()1( )(
)(

1 n

p
pp

n xf
p

xfg
x

−
=− +   (11) 

Here x    With nx   lies between 

0)( =f because 

)
~~()()]()([)( xfxxffxf nnn −−=−−=                 (12) 

( x
~~ too much With  nx (12) in (11): p

n

p
p

n xf
p

xfg
 )]

~~([
!

))~(()(
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        (13) 

Following 

p
p

bxxa
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p
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=
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  from (13), introducing the notations 

   
p

nn q  +1                 (14) 

we obtain an inequality. Applying this inequality consistently, we obtain the following: 
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If    10  And   10 = q so be it
1
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p n

n         (15)      

It turns out that iteration (6) is rapidly approaching. 
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1
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     then for iterations (8), (9), (10) above we have the following: 
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So, 1,0   when , only the third iteration gives us the required accuracy. 
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