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ABSTRACT

In this paper we consider the family of operator matrices H(K) of order three which
depends on the parameter K. This family of operator matrices are act in the three-particle
cut subspace of the bosonic Fock space. We constract the Weinberg equation for the
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Introduction. In the theory of solid-
state physics [1], quantum field theory [2],
statistical physics [3,4], fluid mechanics [5],
magnetohydrodynamics [6] and quantum
mechanics [7] some important problems arise
where the number of quasi-particles is finite,
but not fixed. Notice that the corresponding
Hamiltonian to such systems has operator
matrix representation. Operator matrices are
matrices the entries of which are linear
operators between Banach or Hilbert spaces [8].
Every bounded linear operator can be written
as a block operator matrix if the space in which
it acts is decomposed in two or more more
components. Operator matrices arise in various
areas of mathematics and its applications.
In the present paper we consider a
family of 3x3 operator matrices H(K),

K eT:=(-z;7]. These operator matrices are

associated with the lattice systems describing
two identical bosons and one particle, another
nature in interactions, without conservation of
the number of particles. They act in the direct
sum of zero-, one- and two-particle subspaces of
the bosonic Fock space. We discuss the case

where the dispersion function ¢(-) has the form
g(x) =1-cos(nx) with n>1. We denote by A
the set of points T where the function &(:)
takes its (global) minimum. Our main aim is to
constract the Weinberg equation for the
eigenvectors of the family of operator matrices
H(K).

Family of 3x3 operator matrices and
main results

Let T be the one-dimensional torus,
Hy, = C be the field of complex numbers,
H,:=L,(T) be the Hilbert space of square
integrable (complex) functions defined on T
and H, := L;(T?) be the Hilbert space of square
integrable (complex) symmetric functions
defined on T2  The Hilbert space
H:=H,®H, ®H, is called three-particle cut

subspace of a bosonic Fock space F,(L,(T))
over L,(T), respectively.

In the present paper we consider a
family of 3x3 operator matrices H(K), KeT

acting in the Hilbert space H as
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Hyp(K)  Hgy 0
H(K):=| Hy  Hu(K)  Hy
0 Hp, H,, (K)

with the entries
Hy (K) fo =w,(K)f,, Hyf = ITv(t) f,(t)dt,

(Hyu(K) 1)) = w (K ) £,00, - (Hy, £,)(0) = [v(®) f,(x, tyet,
(H(K) ) y) = w,(Kix, y) f,(x,y),  fieH;, 1=0,1,2
where H; (1< ]) denotes the adjoint operator to H; .
Here w,(-) is a real-valued bounded function on T, the function V(:) is a real-valued analytic on
T, the functions w,(-;-) and w,(;-,-) are defined by the equalities
w (K;x) = le(x)+Le(K-x)+1, w,(K;x,y):=Le(X)+Le(y)+Le(K-x-Yy),
respectively, with I;,1, >0 and
g(x):=1-cos(nx), neN.
Under these assumptions the operator H(K) is bounded and self-adjoint.
We remark that the operators H; and H,,, resp. H,, and H,, are called annihilation resp.

creation operators, respectively. It is clear that
Ho iHo = Hy  (Hy f)() =v(x)f,,  fyeH,;

Mzt H, o Hyy (H 0000 = 2 (V00 K ()Y (), T e,

The essential and discrete spectrum of H(K) is studied in [9-11]. Similar operator matrix with
fixed K is considered in many works, see for example [12-15].
Constraction of the Weinberg equation. In the domain C\[my (x),M . (x)] we consider the

following regular function

2
AKX A) = oy (Ko X) = A— L [t
27 w,(K;x;t) -4
where the numbers my (x) and M (x) are defined as follows:

mK(x)::mipa)z(K;x;y); MK(x)::maTsz(K;x;y).
ye ye

We introduce the following definitions: we define the set o as the set of numbers 4 € C such

that A(K;x;4) =0 for some xeT and
my = min a,(K;X;y); My = max m,(K;X;y)
X, yeT X, yeT

The following theorem describes the position of the essential spectrum of the operator matrix
H(K).

Theorem 1. The equality o, (H(K))=[mx;M¢]uok holds for the essential spectrum
0. (H(K)) of the operator matrix H(K).

Definition 1. The sets o and [my;M ] are respectively called the “two-particle” and “three-

particle” branches of the essential spectrum of H(K).

For each fixed 4 € C\ o (H(K)) we define
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Woo (K5 4) Wy (K;4) 0
W(K; 1) =| W, (K;4) W, (K;2) 0,
Wy (K;4) Wy (K;2) 0

where
Woo (K5 2) fo)o = (@o(K) = A+1) Ty, Woy(K; 2) 1) =lv(t) f(®dt, Wio(K;2) o), :_%,
A(K;x;ﬂ):q(K;X)—ﬂ—%l%; (Wi (4) )y =%A(,\2(;)2%) lwzzs)ft(;)—/l
W, (K 2) ), (: y){z(a)z(Kv;(:;)y)—i) A(;é(;););g) - z(wz(lz;(:;)y)—ﬂ) A(I\i(;););ﬂ)Jfo
W, (K3 2) )2 (X y) =—4(w2(£;(:;)y)_1) ‘ A(;\é(;yy);,l) iwzzllit);lt(;)—z
v(X) v(x) i v(® £, ()

Uy (Kixiy) = 2) A(KXiA) Ty (Kixit) =2
Definition 2. The equation f =W (K;A4)f is called the Weinberg equation.
Theorem 2. If the number A4 is an eigenvalue of an operator H(K), and f eigenvector
corresponding to this eigenvalue, then the vector f satisfies the Weinberg equation W (K; A1) f = f .

Proof. In the proof of this theorem, we consider the equation with respect to the eigenvalue for
the operator H(K):

H(K)f = Af .
Let us consider
Hoo (K) Hy 0 fo Hoo(K) fo + Hoi fy
H(K)f = H;l H,:(K) H,, f|= H51f0+H11(K) fi+H,f, |
0 H;Z HZZ(K) f2 HIZ f1+H22(K)f2
The equation H(K)f = Af can be written in the form
HOO(K)fO +H01fl ﬂ’fO
Ho fo + HL(K)f, +H, f, | =| Af, |
H;Z f1+H22(K) f2 //?’fZ

The above equation can be written as the following system of linear equations:
Hoo (K) fo +Hy, f; = Af,

H;1f0+H11(K)f1+H12 fz :ﬁl (1)
H1*2 fl + sz(K) fz = ;tfz
We can write the system of linear equations (1) as follows

o (K) o + [V(t) f,(t)ds = Af,
T

vV(X) fo + @ (K; x) f (%) + [v(t) f, (x; t)dt = Af; (x) (2)
T

%(V(X) fL(Y) +v(y) f.(3) + @, (K5 X y) f5(X y) = Af, (X Y).

We simplify the system of linear equations (2):
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(25 (K) = 49) fo +£V(t) f()dt=0

v(x) fo +(w1(K,X)—/10)f1(X)+{V(t) f(x1)dt =0 (3)

%(V(X) fL(y) +v(y) f1(x)) + (0, (K; X y) = 49) F (X y) =0

@,(K;X;y)—A4#0 is true for X,y eT. Therefore, from the third equation of the system of
equations (3) the function f,(X;y) can be found in the following form:
1 (v() f,(9) +V(Y) £, (X))

2 o,(K;x;y)—4
Now we substitute the expression (4) for f,(x;y) into the second equation of the system of

equations (3) and write it as follows:
((K) = 2) fo + V(D) ()t =0
T

(4)

f,(p;0) =—

L) () +v(D) fl(x))]Clt o

V(X) fo + (e (K; x)— 4) fl(x)+iv1(s)[ 2 o (Kix) -4

or, simplifying our last system, we write as follows:
(a(K) = 2) fo + JV(t) £, (t)dt = 0
T

) 5)
V() fy + (@ (K ) = 2) fﬁx)—%i%dt—%i%dt 0
2 1N 2 1Ny

or

(0 (K) = 2) fo + Jv() fy (t)ds = 0
T

e Lo VORE 1 vy o ©
v(x) fy + (0, (K; x) = 2) (%) 2v(x)i o (KX 7 ds > fl(x)i o (Koxt) 7 t=0
Simplifying the system of equations (6) we can write it down
(g (K) = 2) fo + [v(t) fy (t)dt = 0
T
NI R 1 YOI 7
V(x) fy + (@ (K; x) - 4 Zl o, (X2 —ﬂdt) f(x) 2v(x)! o, (K X:1) — 7 dt=0

We define the function in front of f,(x) in the second equation of the system of equations (7) as
follows:
2
A% 2) = (Ki) — 22 [— e OT
27 0,(K;x;t)—A4
It is known that the relation A(K;x;4) = 0 isvalid forall A ¢ o and p €T . Therefore, we can find
f,(X) from the second equation of the system of equations (7):
fl(x) — 1 V(X) .[ V(t) fl(t) dt— V(X) f0 . (8)
2AK; % A) 1o,(K;xt) -4 A(K;x; 1)
We substitute the expression (8) for f;(x) into the expression (4):

f(X'y)=—E VR +vN ) 1 vefi(y) 1 vinhi()
2y 2 w,(K;xy)-A4 2 0,(K:x:y)—4 2 w,(K;x;y)—A4
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2w, (Kixy)—A4)

v(X) 1 v(y) | v(t) f, (1)
2 AK;y;4) 1o,(K;y;t) -4

v(y) fo J_

CA(K; ;)

v(x) 1 v vi)fi(®)
2AK;x;A4) 1o, (Kixit)—A4
We open the brackets on the right side of the expression (9),

T 2w, (KX y) - 2)

v(x) f, j 9

_A(K;x;;t)

f (X' y) __ V(X) ) V(Y) . V(X) V(y) f0 3
= Hap(Kix y)=2) AK y;A) Tan(Kiyit)—=4  2(w,(K;xy)—4) A(K; y;4)
v(x) vx) [ v(®) £ () v(x) f, (10)

- 4, (K;x;y)—A4) ' AK; % 4) 1o,(K; xt)—A4

2(w, (K; % y) = 4) A(K; %;4)

In the system of equations (7), we add to the right and left sides of the f first equation. As a result,
fo + (@, (K)—2) f, + jv(t)fl(t)dt =0+ f,
s

is formed. Since this is f, common multiplier from the left side of the equation, we take it out of the

parentheses. Then, it will be

(0 (K) = A+ f + [vO)f, ()t = f, (11)

Using equations (8), (10) and (11), we
obtain the following matrix equation
W(K;A)f = f . Theorem is proved.

Conclusion. In the present paper a family of
operator matrices H(K) of order three

associated with the energy operator of a system
describing three particles in interaction,
without conservation of the number of particles,
is considered. This operator matrix acting in the
direct sum of zero-particle, one-particle and
two-particle subspaces of the bosonic Fock
space. The location of the essential spectrum of
H(K) is described. The Wienberg equation for

the eigen vector functions of the H(K) is

constructed. Using this equation one can prove
the finiteness of the number of eigenvalues of
the operator matrix H(K).
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