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Introduction. In the theory of solid-

state physics [1], quantum field theory [2], 
statistical physics [3,4], fluid mechanics [5], 
magnetohydrodynamics [6] and quantum 
mechanics [7] some important problems arise 
where the number of quasi-particles is finite, 
but not fixed. Notice that the corresponding 
Hamiltonian to such systems has operator 
matrix representation. Operator matrices are 
matrices the entries of which are linear 
operators between Banach or Hilbert spaces [8]. 
Every bounded linear operator can be written 
as a block operator matrix if the space in which 
it acts is decomposed in two or more more 
components. Operator matrices arise in various 
areas of mathematics and its applications. 

In the present paper we consider a 
family of 3 3  operator matrices ( ),H K  

:= ( ; ]K   −T . These operator matrices are 

associated with the lattice systems describing 
two identical bosons and one particle, another 
nature in interactions, without conservation of 
the number of particles. They act in the direct 
sum of zero-, one- and two-particle subspaces of 
the bosonic Fock space. We discuss the case 

where the dispersion function ( )   has the form 

( ) =1 cos( )x nx −  with > 1.n  We denote by   

the set of points T  where the function ( )   

takes its (global) minimum. Our main aim is to 
constract the Weinberg equation for the 
eigenvectors of the family of operator matrices 
H(K). 

Family of 3 3  operator matrices and 
main results 

Let T  be the one-dimensional torus, 
𝐻0 ≔ 𝐶 be the field of complex numbers, 

1 2:= ( )L TH  be the Hilbert space of square 

integrable (complex) functions defined on T  
and s 2

2 2:= ( )L TH  be the Hilbert space of square 

integrable (complex) symmetric functions 

defined on 2.T  The Hilbert space 

0 1 2:=  H H H H  is called three-particle cut 

subspace of a bosonic Fock space s 2( ( ))L TF  

over 2 ( ),L T  respectively. 

In the present paper we consider a 
family of 3 3  operator matrices ( ),H K  K T  

acting in the Hilbert space H  as  
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with the entries  

00 0 0 0 01 1 1( ) = ( ) , = ( ) ( ) ,H K f w K f H f v t f t dtT  

11 1 1 1 12 2 2( ( ) )( ) = ( ; ) ( ), ( )( ) = ( ) ( , ) ,H K f x w K x f x H f x v t f x t dtT  

22 2 2 2( ( ) )( , ) = ( ; , ) ( , ), , = 0,1,2i iH K f x y w K x y f x y f iH  

where *

ijH  ( < )i j  denotes the adjoint operator to 
ijH . 

Here 0 ( )w   is a real-valued bounded function on ,T  the function ( )v   is a real-valued analytic on 

,T  the functions 1( ; )w    and 2 ( ; , )w     are defined by the equalities  

1 1 2 2 1 1 2( ; ) := ( ) ( ) 1, ( ; , ) := ( ) ( ) ( ),w K x l x l K x w K x y l x l y l K x y    + − + + + − −  

respectively, with 1 2, > 0l l  and  

( ) :=1 cos( ), .x nx n N −   

Under these assumptions the operator ( )H K  is bounded and self-adjoint. 

We remark that the operators 01H  and 12H , resp. *

01H  and *

12H  are called annihilation resp. 

creation operators, respectively. It is clear that  
* *

01 0 1 01 0 0 0 0: , ( )( ) = ( ) , ;H H H H f x v x f f H→   

* *

12 1 2 12 1 1 1 1 1

1
: , ( )( , ) = ( ( ) ( ) ( ) ( )), .

2
H H H H f x y v x f y v y f x f H→ +   

The essential and discrete spectrum of ( )H K  is studied in [9-11]. Similar operator matrix with 

fixed K  is considered in many works, see for example [12-15]. 

Constraction of the Weinberg equation. In the domain )](),([\ xMxmС KK  we consider the 

following regular function 


−
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T txK
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where the numbers )(xmK  and )(xM K  are defined as follows: 

);;(min:)( 2 yxKxm
Ty

K 


= ; );;(max:)( 2 yxKxM
Ty

K 


= . 

We introduce the following definitions: we define the set K  as the set of numbers C  such 

that 0);;( = xK  for some Tx  and 

);;(min: 2
,

yxKm
Tyx

K 


= ;  );;(max: 2
,

yxKM
Tyx

K 


=  

The following theorem describes the position of the essential spectrum of the operator matrix 
)(KH . 

Theorem 1. The equality KKKess MmKH  = ];[))((  holds for the essential spectrum 

))(( KHess  of the operator matrix )(KH .  

 Definition 1. The sets K  and ];[ KK Mm  are respectively called the “two-particle” and “three-

particle” branches of the essential spectrum of )(KH . 

For each fixed ))((\ KHC ess   we define  
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Definition 2. The equation fKWf );( =  is called the Weinberg equation. 

Theorem 2. If the number   is an eigenvalue of an operator )(KH , and f  eigenvector 

corresponding to this eigenvalue, then the vector f  satisfies the Weinberg equation ffKW =);(  . 

Proof. In the proof of this theorem, we consider the equation with respect to the eigenvalue for 
the operator )(KH : 

 ffKH =)( . 

Let us consider 
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The equation ffKH =)(  can be written in the form 
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The above equation can be written as the following system of linear equations: 
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We can write the system of linear equations (1) as follows 
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We simplify the system of linear equations (2): 
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0);;(2 −  yxK  is true for Tyx , . Therefore, from the third equation of the system of 

equations (3) the function );(2 yxf  can be found in the following form: 
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Now we substitute the expression (4) for );(2 yxf  into the second equation of the system of 

equations (3) and write it as follows: 
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or, simplifying our last system, we write as follows: 
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Simplifying the system of equations (6) we can write it down 
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We define the function in front of )(1 xf  in the second equation of the system of equations (7) as 

follows: 
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It is known that the relation 0);;(  xK  is valid for all    and Tp . Therefore, we can find 
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We substitute the expression (8) for )(1 xf  into the expression (4): 
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We open the brackets on the right side of the expression (9), 
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In the system of equations (7), we add to the right and left sides of the 0f  first equation. As a result, 

01000 0)()())(( fdttftvfKf

T

+=+−+ 

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is formed. Since this is 0f  common multiplier from the left side of the equation, we take it out of the 

parentheses. Then, it will be 

0100 )()()1)(( fdttftvfK

T
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

       (11) 

Using equations (8), (10) and (11), we 
obtain the following matrix equation 

ffKW =);(  . Theorem is proved. 

Conclusion. In the present paper a family of 
operator matrices )(KH  of order three 

associated with the energy operator of a system 
describing three particles in interaction, 
without conservation of the number of particles, 
is considered. This operator matrix acting in the 
direct sum of zero-particle, one-particle and 
two-particle subspaces of the bosonic Fock 
space. The location of the essential spectrum of 

)(KH  is described. The Wienberg equation for 

the eigen vector functions of the )(KH  is 

constructed. Using this equation one can prove 
the finiteness of the number of eigenvalues of 
the operator matrix )(KH . 
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