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Introduction 

Difficulties in studying two-dimensional 
surfaces in five-dimensional space are 
associated with its normal space. This normal 
space is a three-dimensional subspace of the 
space under consideration. Therefore, the 
classification of the geometry of three-
dimensional subspaces of a five-dimensional 
space of index two is of scientific interest. 

The geometry of a three-dimensional 
subspace is generated by the metric of the 
enveloping space and essentially depends on 
the degeneracy of this metric. 
 
Results and Discussion 

Under five-dimensional pseudo-

Euclidean space of index two 
2

5R , we mean the 

Riemann space with the metric [1] 
2 2 2 2 2 2

1 2 3 4 5ds dx dx dx dx dx= + + − − .         (1) 

Space 
2

5R  is defined as an affine space 

5A  with the scalar product of vectors 

( )1 2 3 4 5, , , ,X x x x x x , ( )1 2 3 4 5, , , ,Y y y y y y   

( ) 1 1 2 2 3 3 4 4 5 5X Y x y x y x y x y x y = + + − −                                 

(2) 

in some affine coordinate system with the 

origin point  1 2 3 4 5, , , ,O e e e e e  and basis 

 1 2 3 4 5, , , ,e e e e e . 

This definition of space 
2

5R  makes it 

possible to reveal the property of the elements 
of space by analogy with Euclidean space. 

It is known from [2], that the norm of 

vector ( )X X X=   is defined as the 

square root of the scalar square of the vector, 
and the distance between points is defined as 
the norm of the vector connecting these points. 

 The distance between points in 
2

5R  is 

not positive definite. It can be real, imaginary, 
and zero when the points do not match. It is 
obvious, that the norm of vectors also takes 
real, imaginary values or zero when the vector 
is not equal to zero vector. 

The set of vectors with zero norms form 

an isotropic cone of space 
2

5R . It is given in 

affine coordinates by the following equation 
2 2 2 2 2

1 2 3 4 5 0x x x x x+ + − − = .                     (3) 

 This is a cone with a two-dimensional 
hyperbolic-type surface with a flat apex and 
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three-dimensional generatrices of a hyperplane 
in a five-dimensional space. 

The study of geometry of 
2

5R  is 

attractive, because it exists as a subspace of all 
kinds of three-dimensional spaces, except for 
elliptic ones with projective metrics 
determined by the Cayley-Klein theory set 
forth in the Erlangen Program [3]. 

According to Cayley-Klein, the number 
of n − dimensional spaces with projective 

metrics is 3n
. In the three-dimensional case, 

the number is 27 [4]. 
Here there is a space with projective 

metrics in the sense of Cayley-Klein. It is a 
three-dimensional space with a metric that 
preserves space on itself when mapped 
linearly. The corresponding linear 
transformation is called the motion of this 
space. 

The study of the geometry of a pseudo-
Euclidean space shows [5] that the geometry of 
some pseudo-Euclidean spaces differs little 
from another or does not introduce anything 
essentially new into the geometry of another 
pseudo-Euclidean space. Let us explain this 
property of space using the example of three-
dimensional pseudo-Euclidean spaces. 

Let a three-dimensional pseudo-

Euclidean space 
1

3R , called the Minkowski 

space, in Cartesian coordinates, have a metric 
of the form 

2 2 2 2ds dx dy dz= + − .                                   (4) 

Consider pseudo-Euclidean space 
2

3R  

with the following metric in the same 
coordinate system 

2 2 2 2ds dx dy dz= − − + .                                (5) 

Fixing the same coordinate system in 
two spaces is called the superimposed space 
method. In this method, a one-to-one 
correspondence is determined between the 
points of these spaces, comparing points with 
the same coordinates. Naturally, with such a 
correspondence, the geometric images of the 
structures under consideration are 
represented by one figure. Moreover, between 

the metric of space 
1

3R  and the metric of 

space
2

3R  the difference is an imaginary factor. 

Therefore, 1 1
3 3

2 2

R R
ds ds= −  . 

It can be said that the image of point 

( ) 1

0 0 0 3, ,x y z R  is point 

( ) 2

0 0 0 3, ,ix iy iz R . 

Therefore, they differ only by a factor, 
which is an imaginary unit. The geometry of 

space 
2

3R  does not differ significantly from the 

geometry of space 
1

3R . This means that the 

study of the geometry of space 
2

3R  is of no 

interest if the geometry of space 
1

3R  is studied. 

Among the 27-three-dimensional 
spaces, there are 9 spaces that differ from each 
other only by an imaginary factor of 
coordinates. We do not consider these spaces. 

When we talk about five-dimensional 
pseudo-Euclidean space, there is a three-
dimensional subspace. Let us show one of the 
spaces that differ from each other only by an 
imaginary factor of coordinates. 

Theorem 1. In a pseudo-Euclidean 

space 
2

5R , there are all three-dimensional 

spaces with projective spaces as their 
subspaces, except for elliptic spaces. 

Proof. Let us start with the classical 

three-dimensional Euclidean space 3R . The 

subspace, which is the 3D hypersurface defined 

by 4 5 0x x= = , is a 3D Euclidean space. This is 

an almost obvious fact. There is a three-

dimensional space 
1

3R  in 
2

5R .  It is 

hypersurface 3 5 0x x= =  or hyperplane 

1 2 0x x= = . 

Since there is no four-dimensional 

Euclidean space in 
2

5R , then there is no three-

dimensional elliptic space 3S , which is 

isometric to the geometry of the sphere of four-
dimensional Euclidean space. 

The three-dimensional hyperbolic 

spaces 
1

3S  and 
2

3S  are isometric to the 

geometries of the spheres of pseudo-Euclidean 

spaces 
1

4R  and 
2

4R , respectively. In 
2

5R , the 
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four-dimensional subspaces 5 0x =  are 

pseudo-Euclidean space 
1

4R  and subspace 

3 0x =  is pseudo-Euclidean space 
2

4R . 

In addition to the above, there are a 

number of semi-Euclidean 
1 2 12

3 3 3, ,R R R  and 

semi-pseudo-Euclidean 
01 1 01 2

3 3,R R  spaces. 

These spaces are spaces with a degenerate 
metric [2]. Among three-dimensional spaces, 
there are elliptic and hyperbolic spaces with a 
degenerate metric. These spaces are isometric 
to spheres of four-dimensional semi-Euclidean 
and semi-pseudo-Euclidean spaces. Therefore, 
it is necessary to prove the existence of four-

dimensional subspaces of subspace 
2

5R  which 

is a four-dimensional semi-Euclidean and a 
semi-pseudo-Euclidean space. The theorem is 
proven. 

Space 
1

3 3R Г=  is called Galilean space. 

Galilean space 
1

3R  is a subspace of 

( ) 2

5, , , ,M x y y z z R . This assertion was 

proven in [6]. 

Three-dimensional space 
2

3R  is called 

an isotropic space and has a degenerate metric 
if 

2 2

2

2 2 2 0.

dx dy
ds

dz когда dx dy

 +
= 

+ =
                                        

(*) 

Consider subspace ( ), ,U X Y Z of 

space 
2

5R  , where 1 2,X x Y x= =  and 3Z x= , 

and condition
2 2 2

3 4 5x x x= +  is satisfied. It is 

easy to prove that under these conditions 
metric (1) turns into degenerate metric (*). 

Likewise, we can prove that subspace 

( ), , , ,N x y z y z  is a pseudo-Galilean space 

in space 
01 1

3R , and subspace 

( )1 2 3 4 5, , , ,H x x x x x  with conditions 

1 5,x x y x= =  and 
2 2 2

4 2 3z x x x= = +  is space 
01 1

3R . 

To prove the existence of semi-

hyperbolic spaces 
01 1 01 2

3 3,S S , it suffices to 

prove the existence of four-dimensional semi-
Euclidean and semi-pseudo-Euclidean spaces 
in spheres of which these spaces are realized. 

Subspace ( )1 2 3 4 5, , , ,M x x x x x  of 

space
2

5R  is semi-pseudo-Euclidean space 
11 3

4R . In the sphere of space 
10 3

4R , semi-

hyperbolic space 
10 2

3S  is realized. 

Space 
01 1

3S  is the sphere of subspace 

( ) 2

1 2 3 4 5 5, , , ,W x x x x x R  where 

2 2 2

3 4 5x x x= + . Subspace W is semi-pseudo-

Euclidean space 4R . 

 The sphere of space 
2

5R , defined as the 

locus of points equidistant from a given point 
depending on the radius, is divided into three 
types. A sphere of real radius, a sphere of 
imaginary radius, and a sphere of zero radius 
coinciding with an isotropic cone. 

When the center of the sphere is at the 
origin, the equation for a sphere of real radius 
is 

2 2 2 2 2 2

1 2 3 4 5x x x x x r+ + − − = . 

and for a sphere of imaginary radius, it is 
2 2 2 2 2 2

1 2 3 4 5x x x x x r+ + − − = − .               (6) 

 A sphere of space 
2

5R  is a surface of 

constant curvature; curvature 0R   for a 
sphere of real radius, 0R   for a sphere of 
imaginary radius. 

The space of constant curvature 0R   
is called de Sitter space of second kind. It has 

topology 1 3S R and can be represented as a 

sphere of imaginary radius [7], [8]. 
 This definition of de Sitter space of 
second kind is given by Hawking in [9]. 

In the monograph by B. A. Rosenfeld [2], 
a set of points of a sphere of imaginary radius 

of space 
2

5R  with identified diametrically 

opposite points is called hyperbolic space 
2

4S . 

Obviously, these definitions are equivalent. 

Hyperbolic space 
2

4S  is de Sitter space of 

second kind. 
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When the equation of a sphere of 
imaginary radius is given in spherical 
coordinates 

1

2

3

4

5

cos sin sin

cos sin cos

cos cos

cos

sin

x r t sh

x r t sh

x r t sh

x r t ch

x r t

  

  

 



=


=



=
 =


=

 

then the metric on the sphere is 

( ) 2 2 2 2 2 2 2 2cos sinds dt t d sh d d    = − + + +

. 
 When the equation of a sphere is given 
in cylindrical coordinates 

1

2

3

4

5

sin sin

sin cos

cos

'

x shr

x shr

x shr

x chr

x t

 

 



=


=



=
 =


=

 

then the metric on this sphere has the 
following form 

( )2 '2 2 2 2 2 2sinds dt dr sh r d d  = − + + + . 

 In [10], the Pogorelovsky analog in the 
mapping of hyperbolic spaces in a pseudo-
Euclidean space is given. Let us construct this 

mapping for space 
2

3S . 

For convenience, the coordinate system 

in the space under study 
2

5R  is considered a 

Cartesian system. Then for the unit sphere of 

imaginary radius of space 
2

5R , plane 5 1x =  is a 

tangent plane. On this tangent plane, vectors 

 1 2 3 4, , ,e e e e  of the enveloping space can be 

taken as basis vectors. Therefore, the geometry 

on this plane 
1

4R  is the Minkowski four-

dimensional space [11]-[12], [16]-[18]. 
Let X  be the radius vector of a point in 

2

3S . Then 
2 1X = − . Therefore, for any point 

( ) 1

1 2 3 4 5 2, , , ,x x x x x S , condition (6) is 

satisfied.  

Denote the central projection of point 

X on the tangent plane 
5 1x =  by 

XT . 

 Then  

( )
( )

5 5

5

X

X X e e
T

X e

− 
=


 

or 
XT  has coordinates 

1 2 3 4

5 5 5 5

, , , , 1
x x x x

x x x x

 
 
 

on plaxne 5 1x = . 

 Lemma. Under a mapping of 
XT  of 

i − dimensional planes of space 
2

4S , non 

i − dimensional planes  ( )0, 1, 2, 3i =  are 

mapped. 
 Proof. Since we are considering the 

projection of the sphere of space 
2

5R  from the 

center onto the tangent plane, the points are 
mapped to points. Hence, the zero-dimensional 
plane is mapped to the zero-dimensional plane. 

An m −dimensional plane of space 
2

5S  

refers to the intersection ( )1m + of the plane 

of space 
2

5R  passing through the origin with 

the sphere (6). 

However, any plane ( )1m +  of space 

2

5R   intersects plane 5 1x =  along 

m −dimensional plane. Therefore, m −planes 

of space 
2

5S  correspond to m − plane in plane 

5 1x = .  

 A two-dimensional plane passing 

through the origin of coordinates of space 
2

5R  

intersects a sphere of imaginary radius along a 
curve that is an arc of a circle of large radius. 
This curve is called the straight line of space 
2

4S . The distance   between points ( )A X  

and ( )B Y  of space 
2

4S  is determined using 

the radius vectors X  and Y   by the following 
formula 

( )X Y
ch

X Y



= . 
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 If we denote the coordinates of vector 

XT  by 
iu  and 

YT  by 
iv , then the distance 

between the samples of points ( )A X  and 

( )B Y is calculated by the following formula 

1 1 2 2 3 3 4 4

2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4

1

1 1

u v u v u v u v
ch

u u u u v v v v


− − − +
=

− − − +  − − − +

.                        

(7) 
 Since the coordinates of a point of a 
sphere of imaginary radius are subject to 

condition (7) and 5 0x  , then for the points 

under consideration we obtain the following 
inequality 

2 2 2 2

1 2 3 4 2

5

1
1 1u u u u

x
+ + − = −  . 

 Hence, 
2 2 2 2

1 2 3 41 0u u u u− − − +  . The 

lemma is proven. 
 We obtain the following corollary. 

 Сorollary. Under a mapping of XT , a 

point in space 
2

4S  is mapped in the interior of 

a sphere of real radius of space 
1

4R . 

The sphere of unit real radius of space 
1

4R  has the equation 
2 2 2 2

1 2 3 4 1u u u u+ + − = .                                           

(8) 
 This is a hyperbolic surface, similar to a 
one-strip hyperboloid in Euclidean space. At 

4 0u = , that is, the section of the sphere by this 

hyperplane is a ball bounded by the unit sphere 
2 2 2

1 2 3 1u u u+ + = . When 4u a= , the radius of 

this ball increases and will be equal to 
2 21r a= + . In four-dimensional space 

1

4R  the 

boundaries of these balls will be in the form of 
a one-block hyperboloid. 

Moreover, from Lemma, it follows that 

the points of space 
2

4S  are the points of the 

interior of this sphere. The straight, two-
dimensional, and three-dimensional planes are 
expressed by the chords of this sphere of the 
corresponding dimension. 

For 4 0x = , a subspace of space 
2

4S  is 

the Lobachevskii space 
1

3S . The image of this 

space in the mapping of 
XT  corresponds to the 

interior of the Euclidean sphere of space 
1

3 4R R  [13]. 

 Theorem 2. In space
2

4S  , planes 

4x C=  form a one-dimensional foliation, the 

layer of which is an expanding Lobachevskii 
space. 

Proof. The sphere of real radius of space 
1

4R  given by equation (8) is a hyperbolic type 

surface. In space 
1

4R , the plane of space 
2

4S  

given by equation 4 0x =  corresponds to plane 

4 0u = , which is the Euclidean space 3R . In a 

ball bounded by a sphere of this space, the 

planes of spaces 
2

4S , which are the 

Lobachevskii spaces 
1

3S   as well, are 

interpreted. Then follows the interpretation. 
 At 0t a=  , the corresponding 
subspace metric has the Lobachevskii form 

2

1 1 2 2 3 3

2 2 2 2 2 2 2 2

1 2 3 1 2 3

1

1 1

a u v u v u v
ch

a u u u a v v v


+ − − −
=

+ − − −  + − − −

. 
But this is a Lobachevskii space metric 

with curvature 
2

1

1
K

a
=

+
 , that is, it is 

realized in the interior of a ball of radius 
2 21r a= + . Therefore, the radius of the sphere 

increases. Since the radius of the ball, inside 
which the Lobachevskii space is realized, 
increases, we can conclude that the 
Lobachevskii space is expanding.  

The fact that set 4x a=  forms a foliation 

follows from the definition of a foliation [14], 
[15], because each a  corresponds to the 

interior of a ball of real radius of space 
1

4R  

which is a compact manifold with a given 
metric. 

 A sphere of space 
1

4R  with a real radius 

given by equation (8) can be represented as a 
one-sheet hyperbolic surface, where the belt is 

a unit ball of three-dimensional space 3R , and 

for the belt 4 0u = . For 4 0u a=  , the section 
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of sphere 
1

4R  is a Euclidean ball with radius 
2 21r a= + . 

 The lines and planes of space 
2

4S  are 

represented by a part of the lines and planes of 

space 
1

4R  corresponding to the sections of the 

ball by these lines and planes. This is an analog 
to the Cayley–Klein interpretation of the 
Lobachevskii plane for a four-dimensional 
hyperbolic space. 

Since 
1

4R  is an affine space, then with 

the lines and planes of this space, one can 

define convex polyhedra of space 
2

4S . Then the 

convex polyhedra of space 
2

4S  are expressed 

by the convex polyhedra of space 
1

4R  

contained inside the sphere of real radius of 

space 
1

4R . The theorem is proven. 

 At that, finite polyhedra correspond to 
polyhedra strictly contained inside the ball, and 
infinite polyhedra are polyhedra that have 
common points with the sphere of real radius 

of space 
1

4R . 

 
Conclusion 

Studies have confirmed that in 

subspaces of space 
2

5R , in addition to elliptic 

spaces, there is a geometry of three-
dimensional spaces with projective metrics. De 
Sitter space of the second kind is also realized 
in the sphere of imaginary radius. De Sitter 
space is a geodesic mapping in four-
dimensional Minkowski space. 
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