

Introduction:

In 1965 [9], L. Zadeh established fuzziness. In 1968, C. Chang [1] studied fuzzy topology. Deb Ray, A [5, 6] studied fuzzy top. ring, fuzzy continuous function and studied left fuzzy top. ring. Basim Mohammed Melgat and Munir AL-Khafaji [3] (2019) gave some results of fuzzy separation axiom in fuzzy top. ring. In 2020 [7] Mohammed M. Ali, introduce fuzzy top. module space and fuzzy top. submodule space. In this work we study fuzzy separation axiom T_(F_i) ,i=0,1,2,3 in fuzzy top. module space and showing the relationship between them

To rich the article some notions of fuzzy set and point are giving. Let M be a set has at least one element and let J=[0,1]

Definition1.1[9]

fuzzy set A in a set M is a map $A:M \rightarrow J$ (

J= [0,1]), that is, an element of J^M . let $E \in J^M$. $m \in M$, we symbolled by E(m) or m_α of the membership degree of m in E.

Definition 1.2[1]

A class $\tau_F \in J^M$ of fuzzy set is called a fuzzy top. for M if the following are hold:

Ø,M∈τ_F

 $\forall A, B \in \tau_F \rightarrow A \land B \in \tau_F$

 $\forall \ \llbracket (A_j) \rrbracket \ _(j \in J) \in \mu \rightarrow \lor _(j \in J) \ A_j \in \tau_F$

 (M,τ_F) is called fuzzy top. space. The set E is fuzzy open if $E \in \tau_F$. and complement of E is a fuzzy closed.

Definition1.3 [7]

Let R be a ring and let M be a left R-module. A fuzzy set E in M is called a fuzzy left R-module if for each $m,n \in M$ and $r \in R$:

(1) $E(m+n) \ge \min \{E(m), E(n)\}.$ (2) $E(m) = E(m^{-1}).$ (3) $E(rm) \ge E(m).$ (4) E(0) = 1.

Definition 1.4 [7]

Let R be a fuzzy top. ring, the set M is said to be left fuzzy top module on the fuzzy top ring R if:

(1) E left fuzzy module on R.

(2) E is a fuzzy top compatible with the stricture of fuzzy group on E and

satisfies the following axiom:

The mapping $R \times M \longrightarrow M$ defined by $(r,m) \longrightarrow r.m$, (r \in R and m \in M) is a fuzzy continuous

Definition1.5 [8]

A fuzzy top. space (M,τ_F) is said to be fuzzy T_0-top. space iff $\forall m,n\in M,m\neq n,\exists U\in \tau_F$ such that either U(m)= 1 and U(n)=0 or U(n)=1 and U(m)=0.

Definition1.6 [8]

A fuzzy top. space (M,τ_F) is said to be fuzzy T_1-top. space iff $\forall m,n\in M,m\neq n,\exists U,V\in\tau_F$ such that U(m)=1, U(n)=0 and V(n)=1 and V(m)=0.

Proposition 1.7 [8]

A fuzzy top. space (M,τ_F) is said to be fuzzy T_1- top. space iff the fuzzy point is a fuzzy closed set.

Definition 1.8 [8]

A fuzzy top. space (M,τ_F) is said to be fuzzy Hausdorff or fuzzy T_2-space iff for any two distinct fuzzy points m,n \in M, there exists disjoint fuzzy sets U,V \in τ_F with U(m)=V(n)=1

Definition 1.9 [8]

A fuzzy top. space (M,τ_F) will be called fuzzy regular if for each fuzzy point $m_{-\alpha}$ and each fuzzy closed set H such that H(m)=0there are fuzzy open sets U and V such that U(m)>0, $H\leq V$ and $U\wedge V=\emptyset$.

Definition 1.10 [9]

A fuzzy top. space (M,τ_F) is said to be

fuzzy T_3-top. space iff it is fuzzy T_1- top. space and fuzzy regular.

Theorem 1.11[3]

For any fuzzy top. ring (R,τ_R) the following conditions are equivalent

1) (M, τ _FM) is fuzzy T_(F_2) top. ring space

2) $\{0_{\alpha}\}$ is fuzzy closed subset in M.

3) If {U_0} is a basis of nbhd of 0_α , then $\bigcap_{V \in U_0} V = \{0_\alpha\}$

4) (M, τ _FM) is fuzzy T_(F_0) top. ring space

5) (M, τ _FM) is fuzzy T_(F_1) top. ring space.

6) (M,τ_FM) is fuzzy T_(F_3) top. ring space

Fuzzy top. R-module Separation Axioms Definition 2.1

A fuzzy top. R-module space (M,τ_F) is said to be fuzzy T_{F_0} top. R-module space iff $\forall m,n\in M,m\neq n,\exists U\in\tau_F$ such that either U(m)=1 and U(n)=0 or U(n)=1 and U(m)=0.

Example 2.2

Let Z_2 (integers modulo 2) be Zmodule. Define $1:Z_2 \times Z \rightarrow Z_2$ by 1(n,m)=nmfor all $n \in Z$ and $m \in Z_2$, i.e $1(n,m)=m+m+\dots+m$ (n-times). Let a fuzzy set E_1,E_2 on Z_2 as

E_1 ([0])=1,E_1 ([1])=0,

E_2 ([0])=0 ,E_2 ([1])=1

for allm \in Z_2. Let τ _FM= { \emptyset ,Z_2 E_1,E_2} is a fuzzy top. R-module on Z_2, then (Z_2, τ _FM) is a fuzzy T_(F_0) top. R-module space

Definition 2.3

A fuzzy top. R-module space (M,τ_F) is said to be fuzzy $T_(F_1)$ top. R-module space iff $\forall m,n\in M$, $m\neq n,\exists U,V\in\tau_F$ such that U(m)=1 and U(n)=0 and U(n)=1 and U(m)=0.

Example 2.4

Let Z_2 (integers modulo 2) be Zmodule. Define $1:\mathbb{Z}_2 \times \mathbb{Z} \to \mathbb{Z}_2$ by 1(n,m)=nmfor all $n \in \mathbb{Z}$ and $m \in \mathbb{Z}_2$, i.e $1(n,m)=m+m+\dots+m$ (n-times). Let the fuzzy sets E_1,E_2 , E_3 on \mathbb{Z}_2 as

E_1 ([0])=0.25 ,E_1 ([1])=0 , E_2 ([0])=0 ,E_2 ([1])=0.25

E_3 ([0])=0.25 ,E_3 ([1])=0.25

for all $m \in \mathbb{Z}_2$. Let $\tau_FM = \{\emptyset, \mathbb{Z}_2 \in \mathbb{Z}_1, \mathbb{E}_2\}$ is a fuzzy top. R-module on \mathbb{Z}_2 , then (\mathbb{Z}_2, τ_FM) is a fuzzy $T_(F_1)$ top. R-module space

Definition 2.5

A fuzzy top. R-module space (M,τ_F) is said to be fuzzy T_{F_2} top. R-module space iff for any two distinct fuzzy points $m,n\in M$, there exists disjoint fuzzy. sets $U,V\in\tau_F$ with U(m)=V(n)=1

Example 2.6

Let Z_4 (integers modulo 4) be Zmodule. Define $1:\mathbb{Z}_2 \times \mathbb{Z} \to \mathbb{Z}_2$ by 1(n,m)=nm for all $n \in \mathbb{Z}$ and $m \in \mathbb{Z}_2$, i.e $1(n,m)=m+m+\dots+m$ (ntimes) with fuzzy discrete topology on it,

then (Z_4, τ _FD) is a fuzzy T_(F_2) top. R-module space

Definition 2.7

A fuzzy top. R-module space (M,τ_F) will be called fuzzy regular top. R-module space if for each fuzzy point m \in M and each fuzzy closed set H such that H(m)=0 there are fuzzy open sets U and V such that U(m)>0, H \leq Vand U \wedge V=Ø

Definition 2.8

A fuzzy top R-module (M,τ_M) is said to be fuzzy T_(F_3) top. R-module space if (M,τ_FM) is fuzzy T_1 top R-module space and fuzzy regular top. R-module space.

Example 2.9

Let R be (real space) be Z-module. Define $l:R\times Z \rightarrow R$ by l(n,r)=nr for all $n\in Z$ and $r\in R$, i.e $l(n,r)=r+r+\cdots+r$ (n-times) with fuzzy usual topology τ_FU on it. Then (R,τ_FU) is fuzzy $T_{-}(F_{-}3)$ top. R-module space.

Theorem 2.10

For any fuzzy top. R-module space(M,τ -FM), the following conditions are equivalent

1) (M, τ_FM) is fuzzy T_(F_2) top. R-module space

2) $\{0_{\alpha}\}$ is fuzzy closed subset in M.

3) If {U_0} is a basis of nbhd of 0_ α , then $\bigcap_{V \in U_0} V = \{0_\alpha\}$

4) (M, τ _FM) is fuzzy T_(F_0) top. R-module space

5) (M, τ_FM) is fuzzy T_(F_1) top. R-module space.

6) (M, τ_FM) is fuzzy T_(F_3) top R-module space.

Proof

Is similarly to the proof of theorem 1.11

Remark 2.11

fuzzy regular top. R-module space need not to be fuzzy T_{F_2} top. R-module space. for example, the fuzzy indiscreet top R-module space is a fuzzy regular top. R-module space but it is not fuzzy T_2 top. R-module space.

Theorem 2.12

Every fuzzy subspace of fuzzy T_(F_1) top. R-module space is a fuzzy T_(F_1) top. R-module space

Proof: Clearly.

Theorem 2.13

Every fuzzy subspace of fuzzy T_i top. R-module space, i=1,2,3, is a fuzzy $[T]_i$ -itop. R-module space.

Proof: By using Theorem 2.10 and 2.12 we get the resulted.

References

1- Chang, C. L: Fuzzy top. spaces, J. Math. Anal. Appl.,24(1968),182-190.

2- Basim Mohammed Melgat and Munir AL-Khafaji: Fuzzy Top. Rings Induced by Fuzzy Pseudo Normed Ring, Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 07-Special Issue, 2019

3- Basim Mohammed Melgat and Munir AL-Khafaji: Some Result of Fuzzy Separation Axiom in Fuzzy Top. ring Space MJPS, VOL. (6), NO. (2), 2019

4- Basim Mohammed Melgat and Munir AL-Khafaji: Fuzzy Neighborhood Systems in Fuzzy Top. Ring Journal of Al-Qadisiyah for Computer Science and Mathematics Vol.11(4) 2019, pp Math .87– 93

5- Deb Ray, A and Chettri, P: On Fuzzy Top. Module Valued Fuzzy Continuous Functions "Applied Mathematical Sciences, Vol. 3, 2009, no. 24, 1177 – 1188

6- Deb Ray, A: On (left) fuzzy top. module. Int. Math. Vol. 6 (2011), no. 25 -28, 1303 – 1312.

7- Mohammed M. Ali Al-Shamiri
Some Results on Fuzzy Top. Modules and
Fuzzy Top. Submodules Asian Journal of
Fuzzy and Applied Mathematics (ISSN:
2321 – 564X) Vol. 08– Issue 01, April 2020
8- Palaniappan N., Fuzzy topology,
Narosa Publications, 2002.

9- Zadeh, L.A: Fuzzy Sets, Information and Control,8(1965), 338-353.