




# Study the Effective Length of Quadrupole Magnet on Some Parameters of Ion Optical System from Plasma Source

**Bushra J. Hussein<sup>1</sup>**

<sup>1</sup>Department of physics, College of Education for pure science (Ibn Al-Haitham) / University of Baghdad, Baghdad, IRAQ.

\*Corresponding Author: [bushra.j.h@ihcoedu.uobaghdad.edu.iq](mailto:bushra.j.h@ihcoedu.uobaghdad.edu.iq)

## ABSTRACT

This study used a MATLAB program to investigate the impact of effective length (L mm) on the quadrupole magnet lens primary parameters, where values are selected (from 50 mm to 1000 mm), to determine the power of lens, focal length and displacement of both (horizontal and vertical) planes, respectively. Theoretical analysis was done as part of the study. Results indicated that the effective length was growing decreased the system's horizontal and vertical focal length, while for the power lens, increasing the effective length leads to an increase in its value for both the horizontal and vertical axes. Additionally, the longer effective length led to on a horizontal plane, a decreasing horizontal displacement (beam envelope), the opposite happens for the vertical axes

**Keywords:**

Focusing lenses, Ion optical, A quadrupole magnet, Ion beam and magnetic lenses

## 1. Introduction

The beam steering and focusing mechanism is provided by beam transport systems and particle accelerators, which are the most noticeable. For any application, it is expected that a beam of charged particles would move along a desired beam transport line, in the case of circular accelerators in a closed orbit, in close alignment with the route that is specified by design. These systems fundamental components are a series of electromagnetic components through which a beam of charged particles travels [1]. There are many different kinds of electromagnetic devices, such as magnets. These devices employ magnetic fields to deflect particles in accordance with the equilibrium between the centrifugal force and the Lorentz force. The interaction with electromagnetic forces is what mostly determines a charged particle's motion. Most particle-beam installations' focusing devices actually designed to focus the beam, therefore is, achieving a point-focused beam with an extremely tiny beam cross section [2,3]. There are many devices to focus the beam like alternating gradient focusing, sector-shaped magnets with edge focusing, quadrupole lenses, and other techniques. With consistently rising energies, plasma physics was created and successfully advanced by enhancing performance qualities [4,5,6]

## 2. Ion Optical System

The plasma electrode, which is the front plate of the ion source and the pole puller, which generates the required electric field to speed up the ions beam, beside that source of ion beam make up the ion optical system. The particles beam intensity relies on a rough estimate of the charged particle flow striking the plasma electrode aperture then releasing plasma. The form of the surface area is concave and is dependent according to the plasma density and the plasma surface electric field. [3,7]. Drift

space is the same as field free zone in light optics. Similar to how a beam that is diverging or parallel remains that way, beam particles in this area maintain their direction of travel [8]. Such focusing lenses deflect ion beam at an angle proportional to the distance of the ray from the center of the lens, which is their distinguishing feature a charge particle of beams that are parallel can be focusing to a spot with use of such a lens focusing devices are necessary to maintain the particle beam cohesion and provide the appropriate advantages of beam at precise locations throughout the beam transport line [9]. A quadrupole magnetic lens is the most practical tool that provides the necessary gap and field of focus [10, 11]. The lens power and the focal lengths are two metrics that are used to describe lenses. Stronger lenses equate to shorter focal lengths. Lens power is the reciprocal of focal length. It describes various optical systems in terms of the smallest attainable focusing point and flow of particles [7].

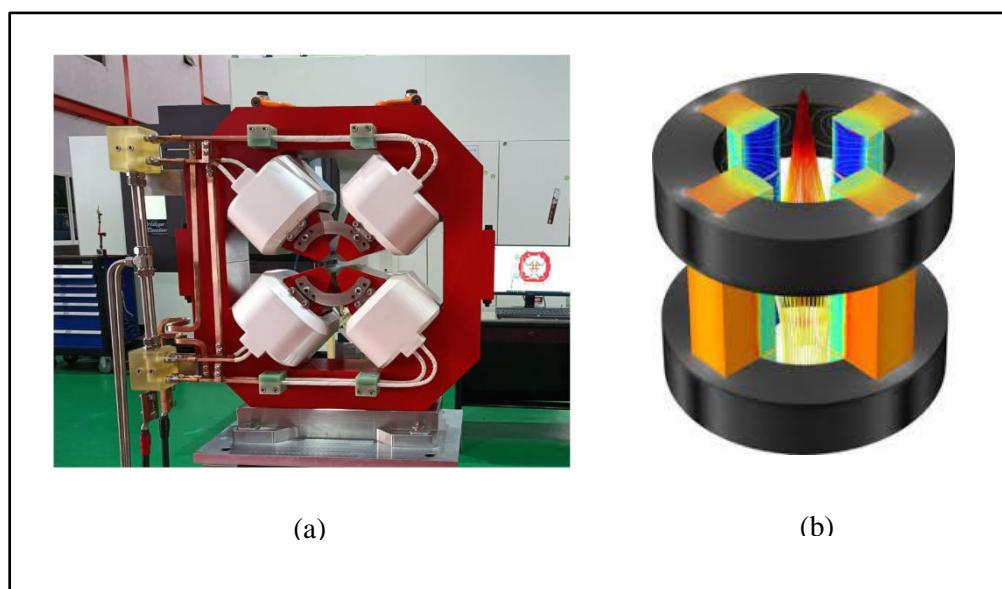
### 3. Quadrupole Magnet Lenses

In several disciplines, magnetic lenses are frequently employed to control charged particle beams of varying energies and orientations. Therefore, substantial theoretical and practical researches has been done on their focused qualities. A circularly shaped coil act as the simplest magnetic lens, allowing the beam to flow through it ideally along its axis [1, 12]. A magnetic element with two north poles and two south poles is called a quadrupole as shown in Figure 1[13]. They are placed symmetrically throughout the magnet core and be there along the middle axis no magnetic field [14,2]. The particle beam is focused using these magnets. A particle beam passing through a quadrupole magnet experiences no force because all of the field lines in the center of the quadrupole cancel each other out[15,16].

The orbital axis  $u_i = (x_i, x_i)$  is changed in the vector  $u_f = (x_f, x_f)$  by the quadrupole magnet lens. the  $u_f$  components are linear fusions of the  $u_i$  component parts. The process may be expressed using the notation for matrices  $u_f = A_f u_i$  if

$A_f$  is regarded like [1]:

$$\begin{vmatrix} \cos(L\sqrt{k}) & \sin(L\sqrt{k}/\sqrt{k}) \\ -\sqrt{k} \sin(L\sqrt{k}) & \cos(L\sqrt{k}) \end{vmatrix} \quad (1)$$


When the quadrupole magnet poles are turned  $90^\circ$ , the lens causes it defocuses in the opposite direction, then:

$$A_D = \begin{vmatrix} \cosh(L\sqrt{k}) & \sinh(L\sqrt{k}) \\ -\sqrt{k} \sinh(L\sqrt{k}) & \cosh(L\sqrt{k}) \end{vmatrix} \quad (2)$$

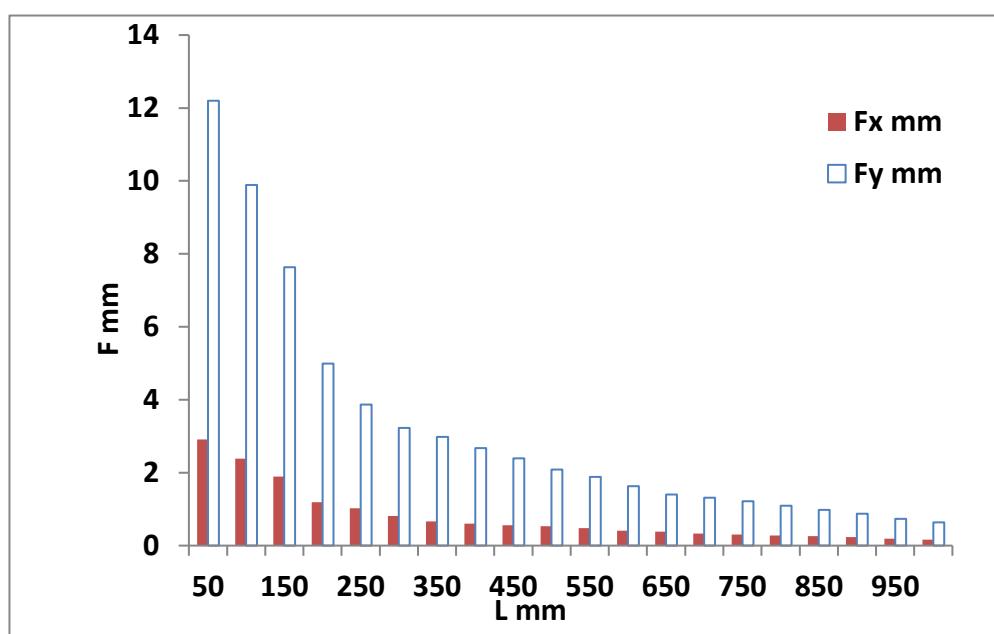
The specifics L stood for the quadrupole magnet effective length and k for the factor of strength focusing creating small amount of ( $kL$ ) and preserving the first limit of the series Taylor for the sine and cosine results in the thin lens approximation, then the matrix becomes the form [9,15,17]:

$$A_q = \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \quad (3)$$

Where  $f$  is the focal length and ( $1/f=kL$ ) which represents the value of  $P$  (power of lens).

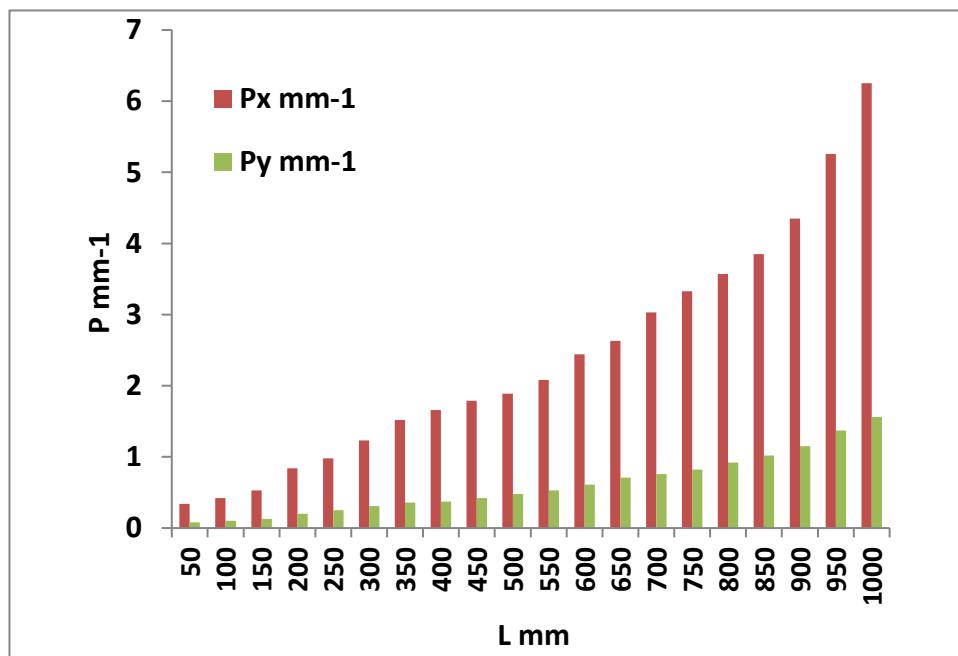


**Figure 1: (a)** Quadrupole magnet **(b)** Illustration of the beam inside the gap of a quadrupole magnet


#### 4. Results and Discussion

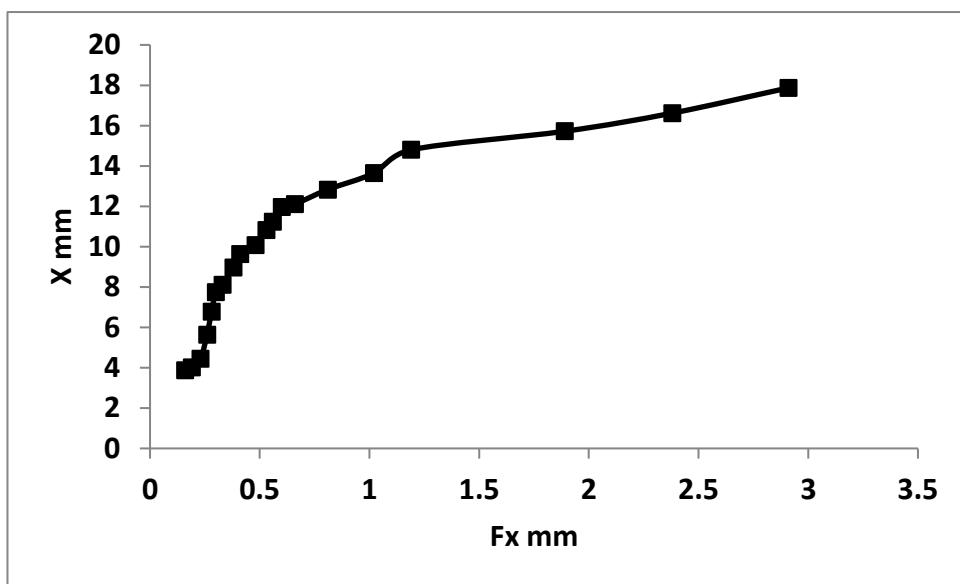
The primary factors that control the behavior of a charge particle ray traversing a set of quadrupole magnets are the effective length (L) and focusing factor for strength (k), whose product offers us the magnetic lens's reversed focal length. As a result, any change in the value of any of them gives a different lens. A computer program made specifically for this study was used to calculate the impact of quadrupole magnet lenses acting such as focusing or defocusing items in the both of planes (see table 1)

**Table( 1):** Various Effective Length values (L mm) with the Focal Length (F mm), Lens Power (P mm<sup>-1</sup>), and Displacement( X, Y) mm

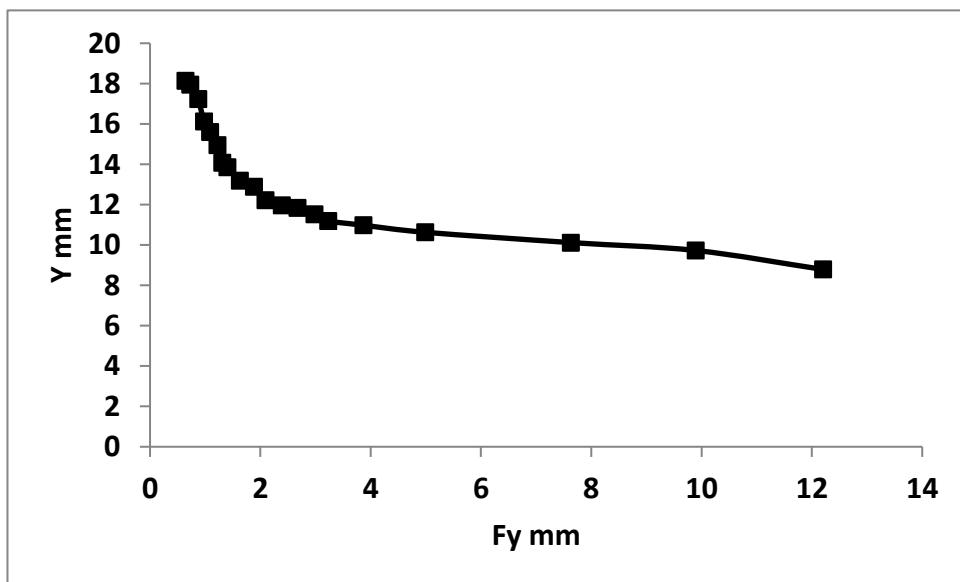

| L mm | F <sub>x</sub> mm | F <sub>y</sub> mm | P <sub>x</sub> mm <sup>-1</sup> | P <sub>y</sub> mm <sup>-1</sup> | X mm  | Y mm  |
|------|-------------------|-------------------|---------------------------------|---------------------------------|-------|-------|
| 50   | 2.91              | 12.20             | 0.34                            | 0.08                            | 17.87 | 8.79  |
| 100  | 2.38              | 9.89              | 0.42                            | 0.10                            | 16.62 | 9.73  |
| 150  | 1.89              | 7.63              | 0.53                            | 0.13                            | 15.72 | 10.12 |
| 200  | 1.19              | 4.99              | 0.84                            | 0.20                            | 14.80 | 10.63 |
| 250  | 1.02              | 3.87              | 0.98                            | 0.25                            | 13.64 | 10.98 |
| 300  | 0.81              | 3.23              | 1.23                            | 0.31                            | 12.83 | 11.20 |
| 350  | 0.66              | 2.98              | 1.52                            | 0.36                            | 12.11 | 11.53 |
| 400  | 0.60              | 2.67              | 1.66                            | 0.37                            | 11.97 | 11.84 |
| 450  | 0.56              | 2.39              | 1.79                            | 0.42                            | 11.23 | 11.97 |
| 500  | 0.53              | 2.09              | 1.89                            | 0.48                            | 10.82 | 12.23 |
| 550  | 0.48              | 1.88              | 2.08                            | 0.53                            | 10.08 | 12.89 |
| 600  | 0.41              | 1.63              | 2.44                            | 0.61                            | 9.63  | 13.19 |
| 650  | 0.38              | 1.40              | 2.63                            | 0.71                            | 8.97  | 13.86 |
| 700  | 0.33              | 1.31              | 3.03                            | 0.76                            | 8.11  | 14.08 |
| 750  | 0.30              | 1.22              | 3.33                            | 0.82                            | 7.74  | 14.96 |
| 800  | 0.28              | 1.09              | 3.57                            | 0.92                            | 6.77  | 15.60 |
| 850  | 0.26              | 0.98              | 3.85                            | 1.02                            | 5.64  | 16.13 |
| 900  | 0.23              | 0.87              | 4.35                            | 1.15                            | 4.45  | 17.24 |
| 950  | 0.19              | 0.73              | 5.26                            | 1.37                            | 4.01  | 17.96 |
| 1000 | 0.16              | 0.64              | 6.25                            | 1.56                            | 3.87  | 18.14 |

Whenever there is an increase in the better focus is attained for high values of L, showing that the quadrupole magnet is a thin lens with good focusing properties, while lowered focal lengths refers to the strongest lenses [1]. As the effective length increases, we notice an decrease in the focal length values of the lens for both axes, as shown in Figure (2).




**Figure 2: illustrates the relation between the focal length and the effective length for the horizontal and vertical axes**

While Figure 3 shows the lens's power increases as effective length become higher because the power of a lens is inversely related to focal length.




**Figure 3: illustrates the relation between the lens power and the effective length for the horizontal and vertical axes**

The horizontal displacement (beam envelop ) increases with the increase in the focal length of lens, this means a focusing of beam in the horizontal plane as in the figure (4). In the case of vertical displacement, the opposite happens, as in Figure (5).



**Figure 4: The relationship between the focal length of the lens and the horizontal displacement**



**Figure 5: The relationship between the focal length of the lens and the vertical displacement**

## 5. Conclusions

We conclude from the above, quadrupole magnets act as defocusing elements for the vertical plane and as focusing elements for the horizontal plane. For the horizontal and vertical planes, an increase in effective length results in a decrease in the focal length with lens power, the reverse effect is seen. Additionally, when effective length increases the horizontal displacement (beam envelope) decreases nevertheless, the reverse effect occurs for the vertical plane.

## Acknowledgements

The authors are thankful for the support of University of Baghdad – Baghdad – Iraq ([www.uobaghdad.edu.iq](http://www.uobaghdad.edu.iq) )

**References**

1. S. Humphries, "Principles of Charged Particle Acceleration", Published by Jon Wiley and Sons. University of New Mexico, Copyright 1999.
2. S. Humphries, "Charged Particle Beams", Albuquerque, New Mexico, November 2002
3. S.I. Molokovsky, and A.D. Sushkov, "Intense Electron and Ion Beams", Springer-Verlag Berlin Heidelberg, Printed in Germany 2005.
4. M. Reiser, "Theory and Design of Charged Particle Beams", WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, Printed in the Federal Republic of Germany 2004.
5. A. Mikhail, "Transport Properties of Intense Ion Beam Pulse Propagation for High Energy Density Physics and Inertial Confinement Fusion Applications", PhD, university of candidacy, 2010.
6. M. Attia, I. H. Hashim, "Studying the effect of the bending magnet parameters on focusing of charged particles in beam transport systems via the matrix representation method", Journal of Physics: Conference Series, 1879 (2021) 032054
7. T. Kalvas, "Beam Extraction and Transport", Department of Physics, University of Jyvaskyla, 40500 Jyvaskyla, Finland, January, 2014.
8. J. Meier, "Matching of the beam from a negative-ion source for capture in a Penning trap", Diploma thesis, University of Heidelberg, Germany, December 2007.
9. H. Wiedemann, "Particle Accelerator Physics. Fourth edition". Springer- Verlag Berlin Heidelberg 2015.
10. K. Hock, "Quadrupole Magnet. Cockcroft Institute", Liverpool University, 2010.
11. K. Halbach, "Conceptual Design of a Quadrupole Magnet with Adjustable Strength". Nucl. Inst. Meth. 1983, 206, 353.
12. H. Wollnik, "Optics of Charged Particles, Academic Press", Orlando, 1987
13. S. Prawanta, , Th. Leetha, , P. Singthong, , P. Numanoy and A. Kwankasem, "Development of Type A Quadrupole Magnet for Siam Photon Source II". Synchrotron Light Research Institute, Muang, Nakhon Ratchasima 30000, Thailand. Particles, 6(2), 664-673, 2023
14. E. Wildner, "Accelerator Physics Transverse Motion". NuFACT School. 2009.
15. A. Lombardi, "Beam Lines. CERN Accelerator School, Geneva", Switzerland, September, 2006.
16. G. Dattoli, A. Doria, E. Sabia, , and M. Artioli, "Charged particle dynamics and beam transport optics", Published September 2017 • Copyright © IOP Publishing Ltd 2017 Pages 1-1 to 1-113
17. W. Parker, "Computation project simulating the focusing and collimation of an electron beam through the beam delivery system of the international linear collider", February 2015.