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ABSTRACT

The problem of filtration near new channels and reservoirs, taking into account
evaporation, is investigated. For one case of the dependence of evaporation on time, a
self-similar solution of the problem with an unknown boundary has been found, which
makes it possible to draw certain qualitative conclusions and which can be used as a test.
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The policy of intensification of
agricultural production carried out in our
country in accordance with the agrarian policy
of the state has caused rapid development of
hydraulic  engineering construction. In
particular, a large number of canals and
reservoirs are being commissioned and built.

The construction of new channels and
reservoirs radically changes the
hydrogeological and reclamation conditions of
coastal territories. An increase in the water
horizon in hydraulic structures causes the
surface of the ground flow in the territories
adjacent to them and in some cases poses a
threat of flooding of cities, settlements, as well
as salinization and waterlogging of lands
valuable for agriculture.

Due to the shallow occurrence near
reservoirs, groundwater is intensively
consumed for evaporation. If the soils and

groundwater are saline, then the rising
groundwater, dissolving the salts contained in
the soils, transports them to the soil layer,
which leads to its salinization.

Consequently, the study and analysis of
the water regime of any territory cannot be
carried out fully enough without taking into
account evaporation. In this regard, the
research of various mathematical models of the
filtration process near new channels and
reservoirs, taking into account evaporation, is
undoubtedly relevant.

Consider the movement of groundwater
near reservoirs, in which the water level
instantly increases from the initial value h,

(hy<h,) up to the value h"=hg+h,,

0<hy<y,, ¥, =h,—h,, h, - the critical level

of groundwater standing, above which
evaporation occurs, h,, — reservoir capacity.
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Suppose the reservoir has a horizontal
water barrier and there is no overflow from the
underlying reservoir, and evaporation occurs
from the surface of the groundwater flow,
depending on the depth of groundwater and
time according to the law

0, h<h

g(h,t): 81(:)(h ~hy )“, h>h
Yo

where n - a parameter that can take values
0,1,2,3.

By virtue of dependence &(h,t) ot

kp!

kp!

h(x,t) the traffic area is divided into two zones
with a movable interface x=I(t), and in the
. ()=h(0,t)>h(x,t) >h(I{t), t)=h,
(0<x<1(t)) will have evaporation, and in the
area of h, < h(xt) < hy, (x > 1(t)) be absent.
Within the limits of hydraulic theory, the

groundwater level h(x,t) satisfies the
Boussinesq equation [1, c. 374]

8h 0 oh

H ax(k ha—j +e(ht), (1)
where p - water recovery coefficient (effective
porosity), k - the filtration coefficient of the

area of

formation.

To simplify the study of the problem,
equation (1) is usually considered in a
linearized form and considered u=const,

k =const. In filtration theory, two methods

(methods) of linearization of the Boussinesq
equation are known, the so-called first and
second methods of linearization [1, p. 412]. In
this paper, in contrast to these methods,
equation (1) is linearized separately.

Let's put:
'h1,0<x< I(t),

a,’ =—=2, x>I)

where h_1 u h, some average value h(X,t
respectively from the intervals [h,, h ] u

[hO ! hkp] '

Problem statement: Find a free surface

(k1) [h(x,t):{hl(x’t)’ 0<x<|(t),J L curve

h,(x,t), x> I(t)
x =1(t), I(t,) = 0 from the following conditions:

2
a_hlzalzalll gl()(h h )'
ot OX MY
0<x<I(t), (2)
oh, , 0°h,
—==a,” —=, It)<x<owo, 3
~ % o 10 (3)
(x,t) , =h,+hy, hy(x t)| Neg»
t>t0, (4)
, (%, t)| Nep
hZ(X’tlx—Hw - h2 X’txtzto - 0' (5)
alza—hl :a;% , >t
OX x=1(t)-0 X x=1(t)+0
(6)
where 'y, - critical depth of groundwater

standing, t, - the time at which the water level

reaches the value h,,.

Let the intensity of evaporation from the
soil surface &, (t) changes by law

s

e (t &%
1( ) Ho '(t_t0)+1
then for the time value t>t", where t" - a
sufficiently large time value; you can take
iy -(t—t,)>>1, Te.
gt)=—22, g =5 —const. (7)
t-1, Hy

In the work of KZhamuratova and
H.Umarova [2, p. 144] proves the uniqueness of
the generalized solution of the problem (2) -
(6), as it is known, the class of generalized
solutions contains many classical solutions of
the problem (2) - (6).

We show that with the law of
evaporation from the soil surface (7), the
problem (2) - (6) (movement) becomes self-
similar.

So, assuming, t >t" let's move on to self-
similar variables. Indeed, assuming
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X
52@' hl_hkpzho'ul(ég)'

h, =, :uz(f) (8)
in place (2) and (3) we have

8, ,"(&)+1'()- 1) - uy (§)+&(0) 1*(0) 0" (£)=0

9)
8, u,"(£)+1'(t)-1(t)¢ -u,'(§)=0.  (10)
Obviously, in order for the movement to
be self-similar, the following conditions must
be met
I'(t)-1(t)=const , &,(t)-1%(t)=const.
(11)
Hence it is clear that when 1(t,)=0, I(t)
you need to search in the form

t)=a-Jt-t,, (12)

where « - some constant.
If formula (7) holds for u,-({t" —t,)>>1,

the equality (11) and (12) will simultaneously
be valid for t > t".

Taking into account (8), (12), the
problem (2) - (6) will take the form without a
change:

0"()+ & -u,'(¢)-b, -a’u"(£)=0,
28,

¢e(0,1), (13)
u(0)=1 u(@)=0. (14)
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a?A?

& 24
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