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optimal splines is fundamental

ABSTRACT

The Laplace equation generates in each such space the equation of minimizing the
residual functional. The existence and uniqueness of optimal splines are proved. For their
coefficients and residuals, exact formulas are obtained. It is shown that with increasing N,

the minimum of the residual functional is O(N ), and the special sequence consisting of
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1- Introduction
Laplace equation u,+u, =0, the value

specified in the rectangle is changed to the
form by replacing variables c,u, +c,u,, =0, (in
terms of new variables from the square
IM=[01]* ) Let ,c, >0, c,>0 a continuous
functions f,, f;,d,,9, :[0,1]] > R such that
fo(0)=9,(0), f, (1) = 9,(0),
f(0)=9,@, 1) =9,
there are derivatives f, (0), f, (1), f, (0), f, (),
9,(0),9,@, 9,(0),9,()and the equalities are
met
Clg; (0) + C, fon (0)=0, Clg:;.'(o) +C, fo" @®=0
c,0,)+c,f, (0)=0,
¢,9, () +c,f, =0
Function u =u(t, &) , (t,&) e IT which is the
solution to the equation
C Uy, +CyU,, =0,
{U(Oy ¢)= (), uL &) = f,(£) u(t.0) = g, (1), u(t1) = 9, (1)
Represent table in the form
u=u? +u® +u® where

u® =u’(t,&) = f,(O)L-DA-&) + f, A -1)¢
+ £ (OtA-8)+ f,DtS
a bilinear function, and functions u* = u'(t, &)
and u® =u’(t,&) solve equations
CU, +CU. =0,
{U(O, &) = po(£), U@, &) = (&), u(t,0) == Gy (t), u(t.1) = G, (t)

{clutt +CU, =0,

u(0, &) = f,(£),u &) = £,(&), u(t,0) = gy (), u(t,) = gy (t)

respectively. The decomposition uses the
following notation:

1. 3 Qg2 i " 3 _ gy i
Pi(e)=-5 T (O™ =367 +26) + = T (D)(e” —£).1=01

. 1 " 3 _nt2 i " 3 i—
qi(§)=—ﬁgi(0)(t 3t +2t)+129i(1)(t 1),i=01

c~ubic polynomials,

fi(&) = £i(&) - f(0)A-2) - i - pi(£).i=01

gi() = g,(t) - g,(OA-t) gDt —q;(t),i=01

These are functions generated by boundary
functions of the original problem. In this paper,
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we discuss a special optimization problem
generated by (1), and a similar equation
generated by (2) is symmetric, so we only need
to perform substitutions ¢, <c,, to &,

p.i() <> a.(), 9,()« ()

2. Statement of the problem of constructing
the optimal spline

From equation (1) generates the equation of
finding the optimal spline of the equation

J(u)= Hclutt ’ u e o(I1)
(3)

Where o(IT)this is a space consisting of
splines that depend on the

u,uy,i=01....3N -1 (where
N the parameter responsible for the number of
nodes of the difference diagram), and defined
in the square of II. Let, then, be the parameter
responsible for the number of nodes of the
difference diagram), and defined in the square

1 1

— min
L, (IT)

+CU,,

acceptable
coefficients

of I. Let, then, n=N-1,7=— , h== |
3N 3

0= NE and the points (z;,h;) €IT such that

7, =it , i=01.....3N, hj =jh j=0123. set

(u})
valid if;
1) uézgo(ri)! Uézgl(fi),,i=o,l, ...... ,3N,
2) U? = po(hj)’ U?N = pl(hj) IR} J :0111213;
One-dimensional
polynomials

0©= ] 2

@=0,1,2,3a#k K-a

(such that o (4)=0,, for all k,u=0123

where ¢,

W i

i=01.....3N ,j=0123 itis called

Lagrange interpolation

’é/ER 4 1k=01112’3

Kronecker symbol) and a valid array
,i=01,......3N

family of two-dimensional polynomials

Qs =3 > ui " o()e;m) , sneR

,j=012,3 generate a

i=0 j=0

,k=01.....,N

Let,, next, P (t,£) =Q (s, 7) where

Si£—3k+3 77&£=3§ Then
T h

P*(z3s,,h;) =ui**" for all ,k=01,.....,Nand
,1,1=0123 . Hence, the polynomial Pk(.,.) is
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a two-dimensional Lagrange interpolation
polynomial defined at 16 nodes of the band

I  ={(t,&) ez, , <t<r, 0<E<I}
Thus, a
u:IT— Rsuch

continuous function is defined
that u(t,&) =P(t, &) by
(t,&) eTT*.In other words, every valid array
generates a bicubic spline, which we call an
approximating spline. The variety of such
splines is determined only by sets of numbers
u;,uy,i=01......3N —1. This means that the

approximating splines form a finite-
dimensional  space. Let's denote it
o(IT) = o (1) .

3. The finite difference approximating
splines

Any wvalid array (u'l)

, ] =01,2,3 generates a term

i i i i i i i i i i
X' =Uy—U +U, +U; , y =U, —3u, +3U, — U,

X(IJ( - X3k—3 _ X3k—2 _ XSk—l + X3k

Yok - X3k—3 _ 3X3k—2 + 3X3k—l _ X3k
3k-1 3k

Xlk - y3k73 _ y3k72 _ y + y

(4)
Yk . y3k—3 _3y3k—2 + 3y3k—l _ y3k k _ 1 N
L= k=1...,
and boundary elements
1

Zg i—Hfl[ugkfs _ugkfz _ugk—l +ugk

2

3k-3

3k-2
+Uj

3k-1
- u3

—udt +ud]

ngg

+ud? —3ud? 4 3udt —ud

O [ud® —3ud? +3udt —u

k;l —1r, ,3k-3 3k-2 3k-1 3k
z; ==60 " [uy " —u; " —uy  +U,

6
_ugk—S_'_ugk—Z +u§k—1_u33k]
1 10 3 _ _
w==g 1[u3k 3 _g3k2 gyl 3
1 2 0 0 0 0
—ud? 4+ 3ud? —3ud +ud
k . Sk k k . Sk k
Po =2Zp +Wo, Up =2Zo —Wp,
Pl =z +w, o =z -w, k=1..,N
(5)
(recall that 0 = NE ; see comments on (4))
0 . 1 0 k . k+1 k N 3N N
§::%+X'§::% _%;§ ==X —Q



k+1

n°=pi+y°,n* = pl
k=1..n (6)

éiCOI(go’gl!'"lgN) » 7 iCO'(UO,Ul,---aUN)

_q1k;77N i—ySN _q1N

4. The results
1. For any u € o, (IT) , the equality holds
. 3a° &
u)=
J(w 647° &

1€ = 46212 + x* + 224

—6OL+O)[x* 2+ x* + 225 X

+%(3+5¢9+3¢92)[Xf‘§]2 +%02[x3"‘3 —x* 2w
6 3k=3 _ 3k kvk L 27 2\py k72
59(5+9)[x X7+ 2w, IY, + 0 (21+760+0°)[Y,y ]

1207[y* 2 + y* + 22 ——9(1+59)[y3k By 27 P XS

+%(1+ 70+ 210°)[ XS +40°[y*° — y* + 2wk )?
_@ 3k-3 _ ,3k k k ﬂ 2 k12
= oL+ a)y y >+ 2w 1Y, +350 (5+70+50°)[Y,]

2. The Coefficients u;,u},i=01,......3N -1 of
the optimal approximating spline u e o, (IT)
are computable by formulas (6) in terms of the

values x* , y* k=01..,N, X&vy5,
XYk =1,...,N satisfying the system of
equations
¥ 2yx* 4+ x¥ P v =0,k =1,...,n
S=p D3 x¥* 4228k =1,......N
Y =5, [x* P —x* + 2w ],k =1.......N
(7)
y3k‘3 +2xy* + y¥ P vk =0,k =1,...,n
X =nly*  +y* +228,k=1,.....N
\(k =o[y* 2 —y* +2w ]k =1.....N
The system includes constants x°, x*", y°, y*"

(according to definitions (4), they are known a
priori), and numbers
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a, ﬁ%(1+ 0%)/(3+56 +36%),

B, = 3—10(35+392)/(21+ 70+ 6?),

:%em 0)/(3+50+30%),

5, i%e(sw)/(zu 70+ 6%,

a, = %(3+35<92)/(1+ 70+ 216%),

B ﬁg(1+92)/(5+79+592),

:Ee(5+0)/(1+ 70 +216%),

5, _—9(1+ 0)/(5+70+56%),

y= (ao +Bo)/ (e = By)
x= (o, + )/ (e, — )
(true o, >f, , o, > pf
boundary elements

U(I; =1+ Y)[Zo + Z(i)Hl] +(1- y)[a)o - a)(l;H]

o =1+ x)[z + 27+ Q- X)) — o]

The first vector equation in (7) has an
independent character, that is, it is a system
containing only unknown x*". The matrix of
this system has a three diagonal form with the
dominant main diagonal (since y > 2), so the

system has a unique solution (which is easy to
find by the run-through method). After

determining the unknown x*" from the second
and third vector equations in (7), all the values
of X¥ and vy are explicitly calculated .
Similarly, the fourth (where x > 2), the fifth and
sixth vector equations in (7). the Obtained
values ultimately allow us to find the values
u,,uy,i=01....3N -1 , that generate the
optimal approximating spline.

, ¥Y>2,x>2) and

3. The only solution of the first and fourth
subsystems in the system (7) are numbers

o = —ﬁ[Bm(y)x() 4By ()X +§Bki(y)u;]
k=1..
ygk = U ™ )[Bkl(x)y + Bkn(x)ysN +|Z1:BkI(X)Ul]
k=1...,n



The representation uses Chebyshev
polynomials of the 2nd kind U (.), (according
to 5, p. 96, inequalities y > 2, x > 2 entail the
inequality U (y)#0, U, (x)#=0 ) They
generate functional matrices B(.) = (B,(.)) ,

B ()= (_1)k+i[5i2-1,kuk—1(-)u nk () + 5k2iU k(Ui ()]
k,i=1,..,n

The symbol & is used such that &, =0 for

k<i and &, =1for k >i.

4. For the minimum J,=minJ(.)of the

functional (4), the exact formula holds

81b* 0" Fo/eRg R WY
el gy (6 B0+ B Boon))

The representation uses Chebyshev
polynomials of the 1st kind T, (.), that generate

functional matrices I§(.) = (I§ki(.)) such that

B,() = (-1 [57 1T Ty () + 8Ty L T, ()]
Jk,i=1..,N
The vectors & and 7 are boundary elements

(6), and the scalar product (.,.) of the space

R*" is used to write quadratic forms
5.1f g,,9, €C°[01], then the sequence {U,} is

fundamental by the norm of the space L,(IT) .
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