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1- Introduction 
Laplace equation ,0=+ uutt  the value 

specified in the rectangle is changed to the 
form by replacing variables ,021 =+ ucuc tt (in 

terms of new variables from the square 
2]1,0[=   ) Let , 01 c , 02 c  a continuous 

functions Rggff →]1,0[:,,, 1010  such that 
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1g and the equalities are 

met 
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Function ),( tuu =  , ),( t  which is the 

solution to the equation 
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Represent table in the form  
)2()1()0( uuuu ++= where  
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a bilinear function, and functions ),(11 tuu =  

and ),(22 tuu =  solve equations 
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respectively. The decomposition uses the 

following notation: 

1,0),)(1(
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1
)23)(0(
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1
)( 3"23" =−++−−= iffp iii  

 

1,0),)(1(
12

1
)23)(0(

12

1
)( 3"23" =−++−−= ittgtttgq iii 

 
cubic polynomials, 

1,0),()1()1)(0()()(
~

=−−−−= ipffff iiiii    

1,0),()1()1)(0()()(~ =−−−−= itqtgtgtgtg iiiii   

 These are functions generated by boundary 
functions of the original problem. In this paper, 
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we discuss a special optimization problem 
generated by  (1), and a similar equation 
generated by (2) is symmetric, so we only need 
to perform substitutions 21 cc  , t , 

(.)(.) ii qp  ,  (.)(.) ii fg   

 
2. Statement of the problem of constructing 

the optimal spline 
From equation (1) generates the equation of 

finding the optimal spline of the equation  

   min)(
2

)(21
2

→+=
Ltt ucucuJ    )(u        

(3)  
Where )( this is a space consisting of 

acceptable splines that depend on the 

coefficients 13,......,1,0,, 21 −= Niuu ii  (where 

N the parameter responsible for the number of 
nodes of the difference diagram), and defined 
in the square of Π. Let, then, be the parameter 
responsible for the number of nodes of the 
difference diagram), and defined in the square 

of Π. Let, then , 1−= Nn   ,
N3

1
=    ,   

3

1
=h      ,  

2aN

b
=  and the points ),( ji h  such that 

 ii =  , Ni 3,.....,1,0= , jhh j =  .3,2,1,0=j  set 

( )i

ju    Ni 3,......,1,0, =   3,2,1,0, =j   it is called 

valid if:  

1) )(~
00 i

i gu = ,  )(~
13 i

i gu =  , Ni 3,......,1,0, = ; 

2) )(0

0

jj hpu = ,  )(1

3

j

N

j hpu =  , 3,2,1,0, =j ; 

One-dimensional Lagrange interpolation 
polynomials  
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)(      R,  , 3,2,1,0, =k         

(such that  kk =)(  for all 3,2,1,0, =k  

where  k  Kronecker symbol) and a valid array 

( )i

ju    Ni 3,......,1,0, =   3,2,1,0, =j  generate a 

family of two-dimensional polynomials  

   
= =

+−=
3

0

3

0

33 )()(),(
i j

ji

ik

j

k susQ    ,  Rs ,  

Nk ,......,1,0, =  

Let,, next, ),(),(  sQtP kk =  where 
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t

s


    


 3==
h

  . Then 

ik

jjik

k uhP +−

+− = 33

33 ),(  for all Nk ,......,1,0, = and 

3,2,1,0,, =ji  . Hence, the polynomial (.,.)kP  is 

a two-dimensional Lagrange interpolation 
polynomial defined at 16 nodes of the band  

}.10,:),{( 333 = −  kk

k tt             

Thus, a continuous function is defined 

Ru →: such that ),(),(  tPtu k=   by 
kt ),(  .In other words, every valid array 

generates a bicubic spline, which we call an 
approximating spline. The variety of such 
splines is determined only by sets of numbers 

13,......,1,0,, 21 −= Niuu ii . This means that the 

approximating splines form a finite-
dimensional space. Let's denote it 

)()( = N  .  

 
3. The finite difference approximating 
splines 

Any valid array ( )i

ju    Ni 3,......,1,0, =   

3,2,1,0, =j  generates a term   
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          kkk wzp 000 += ,  kkk wzq 000 −= ,  

          kkk wzp 111 += ,  kkk wzq 111 −= , Nk ,....,1, =                           

(5) 

(recall that 
2aN

b
= ; see comments on  (4)) 
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01
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1
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4. The results 
 
1. For any )( Nu   , the equality holds 
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2. The Coefficients 13,......,1,0,, 21 −= Niuu ii  of 

the optimal approximating spline )( Nu   

are computable by formulas (6) in terms of the 

values kx3  , ky3  Nk ,....,1,0, = , kX 0 , ky0 , 
kX1 , kY1 Nk ,....,1, = satisfying the system of 

equations 
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The system includes constants 0x , Nx3 , 0y , Ny3  

(according to definitions (4), they are known a 
priori), and numbers 
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(true 00    , 11     , 2y , 2x )  and 

boundary elements  
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The first vector equation in (7) has an 
independent character, that is, it is a system 

containing only unknown mx3 . The matrix of 
this system has a three diagonal form with the 
dominant main diagonal (since y > 2), so the 
system has a unique solution (which is easy to 
find by the run-through method). After 

determining the unknown mx3  from the second 
and third vector equations in (7), all the values 

of kX 0  and ky0    are explicitly calculated . 

Similarly, the fourth (where x > 2), the fifth and 
sixth vector equations in (7). the Obtained 
values ultimately allow us to find the values 

13,......,1,0,, 21 −= Niuu ii  ,  that generate the 

optimal approximating spline. 
 
3. The only solution of the first and fourth 
subsystems in the system (7) are numbers 
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The representation uses Chebyshev 
polynomials of the 2nd kind (.)nU , (according 

to 5, p. 96, inequalities y > 2, x > 2 entail the 
inequality 0)( yUn , 0)( xUn  ) . They 

generate functional matrices (.))((.) kiBB =  ,  

(.)](.)(.)(.)[)1((.) 11,1 −−



−−



−

+ +−= iknkiknkki

ik

ki UUUUB 

                                nik ,...,1,, =  

The symbol 

ki is used such that 0=

ki  for 

ik   and 1=

ki for ik  .  

4. For the minimum (.)min JJN = of the 

functional (4), the exact formula holds 
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The representation uses Chebyshev 
polynomials of the 1st kind (.)nT , that generate 

functional matrices (.))
~

((.)
~

kiBB =  such that  
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,1 ikNkiiNkki
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−
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+ +−=                                   

Nik ,...,1,, =  

The vectors   and   are boundary elements 

(6), and the scalar product .,.  of the space 
NR +1  is used to write quadratic forms 

5. If ]1,0[, 5

10 Cgg  ,  then the sequence }{ mu  is 

fundamental by the norm of the space )(2 L  .  
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