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1- Introduction 
The most important scientific approach to 
studying and constructing the largest variety of 
objects and phenomena in the real world is 
mathematical modeling. The essence of this 
methodology is the construction of 
mathematical models of the objects or 
phenomena under consideration and their 
further study [1]. A common example of a 
mathematical model is a dynamical system [2]. 
Dynamic systems act as a mathematical 

description of a wide variety of objects and 
phenomena that develop over time in the real 
world. Controlled dynamic systems are 
understood as dynamic systems that have 
controlled parameters. These parameters 
simulate the magnitude of control disturbances 
affecting the simulated object. The law by 
which the values of the controlled parameters 
are determined at each moment of time is 
called the control or control function. A 
controlled dynamic system with control is a 
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mathematical model of a control system [3]. 
Control systems are the main object of study of 
control theory, which plays a key role in such 
areas as the management of industrial and 
chemical processes, reactors, main Power 
Systems, Aerospace Engineering, and The 
Theory of quantum systems and the theory of 
computer systems [4]. The control function's 
values can be chosen based on specific 
parameters from the mathematical model. 
These parameters determine the minimum 
requirements for certain predefined functions. 
The quality of control achieved through this 
function is referred to as functional control 
quality, and tasks aiming to optimize control 
are known as optimal control tasks [3]. In 
practice, there are often situations [7] when it 
is not possible to accurately determine any 
parameters of the control object at the 
modeling stage. For example, such a situation 
arises if the control system cannot be actually 
implemented with the required accuracy, or if 
it is necessary to design a control device for an 
already existing object, and its exact 
parameters cannot be determined. Therefore, 
the solution of the problem of synthesis of 
control of dynamic systems in the presence of 
uncertainties is of particular importance [4]. An 
example of this type of uncertainty is the 
uncertainty of uncontrollable external 
disturbances that affect the control object. 
Although there is no complete information 
about the existing perturbations in the system, 
sometimes there is a priori auxiliary 
information about their properties, for 
example: perturbations are limited in 
magnitude by some constant, are continuous 
functions of time, described by some ordinary 
differential equation [5], etc. Examples of 
dynamical systems in which nonspecific 
external disturbances are random are well 
known [6]. It is natural to think that the more 
information about the characteristics of 
uncontrolled external influences is taken into 
account in modeling, the better the result of 
mathematical modeling. Among dynamical 
systems with continuous trajectories, there is a 
rich subclass of mathematical models 
described by ordinary differential equations. 
This allows you to apply. 

In the problems of analysis and synthesis of 
controls for mathematical models of this type, 
there is a rich apparatus of the theory of 
ordinary differential equations. However, 
within the framework of the theory of ordinary 
differential equations, in general, a strict 
mathematical description of continuous 
dynamical systems in the presence of random 
perturbations cannot be given [7, 8]. K. I 
managed to overcome this problem. It is ERMO, 
who in his works [8-10] introduced and 
justified the concept of stochastic integration 
and the related concept of stochastic 
differential. The construction of stochastic 
integration allowed us to describe the 
evolution of dynamical systems, which can be 
formally represented as ordinary differential 
equations containing random differentials of 
stochastic processes. Such relations are called 
stochastic differential equations, and the above 
dynamical systems are called stochastic. The 
models described by stochastic differential 
equations have found wide application in 
economics, physics, biology, sociology, aviation, 
rocket and Space Technology [4, 11, 12]. At the 
same time, various problems of control 
synthesis of systems of this type and, in 
particular, installation tasks are of normal 
importance. 
2- Formulation of the optimal stability 

problem for nonlinear stochastic systems 
with controlled parameters 
Semi-linear stochastic systems with 
controlled parameters are described by 
stochastic differential equations of the 
following model  

𝑑𝑥(𝑡) = 𝐴
(0)(𝑢(𝑡))𝑥(𝑡)𝑑𝑡 +

∑ 𝐴(𝑖)(𝑢(𝑡))𝑥(𝑡)𝑑𝛽𝑖(𝑡)
𝑏
𝑖=1     , 𝑥(0) = 𝑥0              

(1)  
Where  𝑡 ≥ 0 is time ; 𝑥  A random operation 
with values in  𝑅𝑛 ;  𝛽  The standard Wiener 
process with values in  𝑅𝑏 ;  𝑢: 𝑅+ → 𝑅𝑚 

Software management ; 𝐴(𝑖): 𝑅𝑚 → 𝑅𝑛×𝑛, 𝑖 =
0, 𝑏 Continuously differentiable Matrix-valued 
functions on 𝑅𝑚 ;  𝑥0 A random vector that 
does not depend on 𝛽(𝑡), 𝑡 ≥ 0  and Satisfies 
the condition 𝐸‖𝑥0‖ < +∞ .  
Denoted by 𝐷𝑥0  The set of valid control 

operations 𝑧 = (𝑥, 𝑢), which are pairs of 
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random operations 𝑥   and control functions 𝑢, 
such as   

1. The function U is bounded by a 
continuous defined manifold in every 
finite time interval.  

2. A continuous stochastic process 𝑥     is 
the solution of equation (1) with the 
given 𝑥0 and  .  

3. The condition is met 

                                        𝐸 ∫ ‖𝑥(𝑠)‖2𝑑𝑠 <
+∞

0

+∞                                                                 (2) 
Definition 1. Management  , in which there is 
an acceptable management process                        
𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0  , we will call acceptable. 

Definition 2 . Management  , We will call it a 
stabilizer if it is valid for any 𝑥0 , 𝐸‖𝑥0‖

2 < +∞ 
Note 1. The 𝑢 -control stabilizes if and only if 
the system is closed in 𝑢 is asymptotically 
stable in the mean square. On a set 𝑥0  we 
define a functional 𝐽: 𝐷𝑥0 → 𝑅 

                                        𝐽(𝑧) =

𝐸 ∫ 𝑥(𝑠)𝑇𝐿(𝑢(𝑠))𝑥(𝑠)𝑑𝑠
+∞

0
                                                             

(3) 
Where 𝐿: 𝑅𝑚 → 𝑆𝑛 -  Is differentiable 𝑅𝑚  by  a 
matrix-valued function such that 𝐿(𝑣) ≥ 0 , 𝑣 ∈
𝑅𝑚 .  
The task is to find the management process 𝑧̅ =
(𝑥̅, 𝑢̅) ∈ 𝐷𝑥0 Which reduces the criterion (1.3) 

for example 𝐷𝑥0 

                                                      𝐽(𝑧̅) = min
𝑧∈𝐷𝑥0

𝐽(𝑧)                                                                        

(4) 
3- LaGrange-Krutov functional 
Following the Lyapunov-LaGrange method [ 
12], we build an additional control quality 
function for this task. To do this, we fix some 
control operations   𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0 . It is 

known [4, theorem 4.2.1] that for every 
function  (𝑡, 𝑦) → 𝜑(𝑡, 𝑦): 𝑅+ × 𝑅

𝑛 → 𝑅, the 

presence of continuous partial derivatives   
𝜕𝜑

𝜕𝑡
  ,   

𝜕2𝜑

𝜕𝑦𝑖𝜕𝑦𝑗
  , 𝑖, 𝑗 = 1,……𝑛  , the formula is correct  

               𝜑(𝑡) = 𝜑(0, 𝑥0) + ∫ (
𝜕𝜑

𝜕𝑡

𝑡

0
(𝑠, 𝑥(𝑠)) +

∇𝑦𝜑(𝑠, 𝑥(𝑠))
𝑇
𝐴(0)(𝑢(𝑠))𝑥(𝑠) 

                       

+    
1

2
 ∑ 𝑥(𝑠)𝑇𝐴(𝑖)(𝑢(𝑡))

𝑇
𝐻𝑥
𝜑
(𝑠, 𝑥(𝑠))𝐴(𝑖)(𝑢(𝑠)𝑥(𝑠))𝑑𝑠𝑏

𝑖=1            

                       

+∑ ∫
𝑡

0
∇𝑦𝜑(𝑠, 𝑥(𝑠))

𝑇
𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠)𝑏

𝑖=0 𝑑𝛽𝑖(𝑠)         

𝑡 ≥ 0                       (5) 
Where ∇𝑦𝜑(𝑡, 𝑦) - the gradient of the function  ,  

𝜑(𝑡, . ), ∇𝑦𝜑 ≔ (
𝜕𝜑

𝜕𝑦1
, ………… ,

𝜕𝜑

𝜕𝑦𝑛
)
𝑇

 ;       

𝐻𝑦
𝜑(𝑡, . ) - the Hess matrix of the function  , 

𝜑(𝑡, 𝑦) , (𝐻𝑦
𝜑
)
𝑖𝑗
=

𝜕2𝜑

𝜕𝑦𝑖𝜕𝑦𝑗
  , 𝑖, 𝑗 = 1,……𝑛 − 

applying this formula to  𝜑(𝑡, 𝑦) = 𝑦𝑇𝑀𝑦     
(𝑡, 𝑦) ∈ 𝑅+ × 𝑅

𝑛 . Where  𝑀 ∈ 𝑆𝑛 , We get the 
Equality 
        𝑥(𝑡)𝑇𝑀𝑥(𝑡) = 𝑥0

𝑇𝑀𝑥0 +

∫ 𝑥(𝑠)𝑇
𝑡

0
(𝑀𝐴(0)(𝑢(𝑠)) + 𝐴(0)(𝑢(𝑠))𝑇M 

+ ∑ 𝐴(𝑖)𝑢(𝑠)𝑇𝑀𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠))𝑑𝑠𝑏
𝑖=1   

+2∑ ∫ 𝑥(𝑠)𝑇
𝑡

0
𝑀𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠)𝑏

𝑖=0 𝑑𝛽𝑖(𝑠)  , 𝑡 ≥ 0     

Let's take the mathematical expectation from 
the left and right sides of this equality. Then, 
taking into account the properties of the 
stochastic integral of   [4, theorem 3.2.1], we 
will have 
𝐸(𝑥(𝑡)𝑇𝑀𝑥(𝑡)) = 𝐸(𝑥0

𝑇𝑀𝑥0) +

𝐸 ∫ 𝑥(𝑠)𝑇
𝑡

0
(𝑀𝐴(0)(𝑢(𝑠)) + 𝐴(0)(𝑢(𝑠))𝑇M 

                                  

+ ∑ 𝐴(𝑖)𝑢(𝑠)𝑇𝑀𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠))𝑑𝑠𝑏
𝑖=1      ,                             

𝑡 ≥ 0 
Aiming   𝑡 at Infinity, taking into account (1.2),  
we get 

     𝐸(𝑥0
𝑇𝑀𝑥0) + 𝐸 ∫ 𝑥(𝑠)𝑇

𝑡

0
(𝑀𝐴(0)(𝑢(𝑠)) +

𝐴(0)(𝑢(𝑠))𝑇M               
                                    

+ ∑ 𝐴(𝑖)𝑢(𝑠)𝑇𝑀𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠))𝑑𝑠𝑏
𝑖=1  =  0                                               

(6) 
Now let's take a look at the auxiliary 
management quality function   𝐺:𝐷𝑥0 → 𝑅     

              𝐺(𝑧) ≔ 𝐸(𝑥0
𝑇𝑀𝑥0) +

𝐸 ∫ 𝑥(𝑠)𝑇
𝑡

0
(𝑀𝐴(0)(𝑢(𝑠)) + 𝐴(0)(𝑢(𝑠))𝑇M               

                                            

+ ∑ 𝐴(𝑖)𝑢(𝑠)𝑇𝑀𝐴(𝑖)(𝑢(𝑠))𝑥(𝑠))𝑑𝑠𝑏
𝑖=1   

It is easy to see that by virtue of equality (6) 
and the arbitrariness of the choice of the 
control operation Z  , the following important 
property is satisfied 
                              𝐺(𝑧) ≡ 𝐽(𝑧)   ,   𝑧 ∈ 𝐷𝑥0                                                                                     

(7) 
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Which does not depend on the choice of the 
Matrix 𝑀 ∈ 𝑆𝑛. Let 's introduce the mapping 
into consideration   𝐻:𝑅𝑚 × 𝑅𝑛×𝑛 → 𝑅𝑛×𝑛     
 

𝐻(𝑣,𝑀) ≔ 𝑀𝐴(0)(𝑣) + 𝐴(0)(𝑣)𝑇M   

+ ∑ 𝐴(𝑖)(𝑣)𝑇𝑀𝐴(𝑖)(𝑣))𝑏
𝑖=1 + 𝐿(𝑣)                         

(8) 
With the help of 𝐻 -mapping, it is possible to 
rewrite the functional 𝐺 in a more compact 
form 
                       𝐺(𝑧) = 𝑡𝑟[𝑀𝑃0] +

𝐸 ∫ 𝑥(𝑠)𝑇𝐻(𝑢(𝑠),𝑀)𝑥(𝑠)𝑑𝑠
+∞

0
                                        

(9) 
Where 𝑃0 ∈ 𝑅

𝑛×𝑛 - The matrix of the first-
second moments of the vector 𝑥0 
4- Stability of vector parameters 
In this section and the next, continuous time 
management strategies will be considered  
  𝑢(𝑡) ≡ 𝑣 ∈ 𝑅𝑛 . At the same time, we will 
determine the vector of parameters  𝑡  and the 
control strategy corresponding to this vector 
𝑢(𝑡) ≡ 𝑣 and writing  𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0 . If the 

program control corresponding to the vector is 
valid or stable, then we will also call the vector 
acceptable or stable, respectively. We denote 
the set of all stabilization vectors 𝑉 ∈ 𝑅𝑚  , and 
the set of corresponding control operations 𝐷𝑥0

𝑉  

,  
𝐷𝑥0
𝑉 ≔ {(𝑥, 𝑣): (𝑥, 𝑣) ∈ 𝐷𝑥0 , 𝑣 ∈ 𝑉} 

Later we will need the following result 
concerning stabilizing vectors.  
Lemma 1. If the vector v is stabilizing, then 
there is a non-negatively defined matrix 𝑀 ∈
𝑆𝑛, which is the only solution to the equation  

                          𝑀𝐴(0)(𝑣) + 𝐴(0)(𝑣)𝑇M   

+ ∑ 𝐴(𝑖)(𝑣)𝑇𝑀𝐴(𝑖)(𝑣))𝑏
𝑖=1 = −𝐿(𝑣)                     

(10) 
The linear Matrix equation (10) is called the 
generalized Lyapunov equation, and it plays a 
key role in the analysis of the stability of 
equation (1). A detailed study of the properties 
of this equation is available in the monograph 
[14]. The proof of Lima 1 is given in [122, P. 
68]. A direct consequence of this Lemma is 
equality (7), (8), (9) is the following statement. 
Statement 1.   Let there be a management 
process 𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0 . The value of the 

criterion 𝐽(𝑧) can be calculated by the formula 

                                                       𝐽(𝑧) = 𝑡𝑟[𝑀𝑃0] ,                                                                         
(11) 
Where is a matrix that is not negatively defined 
𝑀 ∈ 𝑆𝑛, - The only solution of the equation 
(10).  
Now we show that in the group 𝐷𝑥0

𝑉  functional 

𝐺 can be represented as a function 𝐺̂ from the 
variable 𝑣 is differentiable by  . Let there be a 
management process = (𝑥, 𝑢) ∈ 𝐷𝑥0  . It is 

known (See, for example, [14, P.9]) that the 
matrix of the second initial moments 𝑃(𝑡) of a 
random variable 𝑥(𝑡) is described by a linear 
ordinary matrix differential equation. 

             𝑃̇ = 𝐴(0)(𝑢(𝑡))𝑃(𝑡) + 𝑃(𝑡)𝐴(0)(𝑢(𝑡))𝑇   

                             + ∑ 𝐴(𝑖)(𝑢(𝑡))𝑃(𝑡)𝐴(𝑖)𝑏
𝑖=1 (𝑢(𝑡))𝑇                    

 𝑡 ≥ 0, 𝑃(0) = 𝑃0                     (12) 
Suppose that (𝑡) ≡ 𝑣 ∈ 𝑅𝑚 . Let's integrate 
equation (12) on the interval [0, +∞). At the 
same time, we will take into account that as 
follows from (2), limit ‖𝑃(𝑡)‖ at 𝑡 → +∞ equal 
to zero. We obtain a linear Matrix equation  

                −𝑃0 = 𝑃̂𝐴(0)(𝑣) + 𝑃̂𝐴(0)𝑣)𝑇   

+ ∑ 𝐴(𝑖)(𝑣)𝑏
𝑖=1 𝑃̂𝐴(𝑖)(𝑣)𝑇                                              

(13) 

Where 𝑃̂ ≔ ∫ 𝑃(𝑠)𝑑𝑠
+∞

0
 .  

Using the symmetric Kronecker product and 
the symmetric vectorization operator, 
equations (12) and (13) can be rewritten as 
linear vector equations with respect to 𝑠𝑣𝑒c  
[𝑃(𝑡)] and svec [𝑃̂]  
            𝑠𝑣𝑒c [𝑃 ̂(𝑡)]0=𝜔(𝑣)𝑠𝑣𝑒c[𝑃(𝑡)]     , 𝑡 ≥ 0                                                                           
(14) 
            𝑠𝑣𝑒c[𝑃(0)] =  𝑠𝑣𝑒c[𝑃0]      
          𝜔(𝑣)𝑠𝑣𝑒c[𝑃̂] =  - 𝑠𝑣𝑒c[𝑃0]                                                                                                    
(15) 

      𝜔(𝑣) ≔ [2𝐴(0)(𝑣) × 𝐼 + ∑ 𝐴(𝑖)(𝑣)𝐴(𝑖)(𝑣)𝑏
𝑖=0  

Where 𝐼 ∈ 𝑆𝑛 - the unit matrix. The following 
statements are true.  
Statement 2.   The vector v is stabilizing if and 
only if the real parts of the eigenvalues of the 
matrix 𝜔(𝑣) are strictly less than zero.  
Proof : As noted in Lemma 1, the vector v is 
stabilizing if and only if the closed system is 
asymptotically stable in the mean square. It is 
known (see, for example, [14, pp. 11-13]) that 
the system (1) is asymptotically stable in the 
mean quadratic if and only if the matrix 
differential equation (12) or the equivalent 
system of linear differential equations (14) is 
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asymptotically stable. It is well known from the 
stability theory of deterministic systems that a 
linear system with constant coefficients (14) is 
asymptotically stable if and only if the 
spectrum of the matrix of the system 𝜔(𝑣) 
belongs to the left open half-plane. 
Statement 3. The set of  𝑉 is open.  
Proof : From the properties of the symmetric 
Kronecker product and the differentiability of 
maps 𝐴(𝑖), 𝑖 = 1,…… . . , 𝑚  by 𝑣  on 𝑅𝑚  it 

follows,  that the mapping 𝜔:𝑅𝑚 → 𝑅
𝑛2+𝑛

2
×
𝑛2+𝑛

2  
is also differentiable by 𝑣  on 𝑅𝑚   . In 
particular, it is continuous. It follows from 
statement 2 that when mapping 𝜔, the set 𝑉 is 
a complete prototype of the set of 
asymptotically stable matrices, which is open 
.Thus, the set 𝑉, as a prototype of an open set 
under continuous mapping, is open. 
Statement 4. If 𝑣 ∈ 𝑉 then there is a matrix 
that is not negatively defined 𝑃̂ ∈ 𝑆𝑛 , which is 
the only solution to equation (13). In this case, 
𝑃̂ can be considered as a differentiable function 
of 𝑣. 
Proof: Consider the equivalent (13) linear 
vector equation with constant coefficients (15). 
From statement 2 it follows that the matrix of 
the system is non-degenerate and, therefore, 
there is a unique solution to this equation 
                                                𝑠𝑣𝑒c[𝑃̂] =  - 
𝜔(𝑣)−1𝑠𝑣𝑒c[𝑃0]                                                           
(16) 
The obtained Matrix 𝑃̂ It will satisfy equation 
(13) and the construction is non negatively 
indeterminate. Since in which 𝑣 ∈ 𝑉 the 
corresponding matrix is defined 𝑃̂, we will 
further assume that there is a mapping  𝑃̂: 𝑉 →
𝑅𝑛×𝑛 , determined by equality (16). Moreover, 
the function 𝑃̂ is a differentiable function on 
𝑅𝑚 , the values of the partial derivatives  
𝜕

𝜕𝑣𝑖
𝑃̂(𝑣)     ,           𝑖 = 1,…… . . , 𝑚 ,they can be 

found from equality (13) or (15) as derivatives 
of an implicit function. Differentiating , for 
example, (15) by 𝑣𝑖 and we get that 

[
𝜕

𝜕𝑣𝑖
𝐴(𝑣)] [𝑠𝑣𝑒c[𝑃̂(𝑣)] + 𝜔(𝑣)𝑠𝑣𝑒c [

𝜕

𝜕𝑣𝑖
𝑃̂(𝑣)]

= 0 
From where 

𝑠𝑣𝑒c [
𝜕

𝜕𝑣𝑖
[𝑃̂(𝑣)]]

= −𝜔(𝑣)−1
𝜕

𝜕𝑣𝑖
𝜔(𝑣)𝑠𝑣𝑒c[𝑃̂(𝑣)] 

                                                                         =

−𝜔(𝑣)−1
𝜕

𝜕𝑣𝑖
𝜔(𝑣)𝜔(𝑣)−1𝑠𝑣𝑒c[𝑃0]                   (17) 

In the problem statement it is indicated that 
the assignments 𝐴(𝑖), 𝑖 = 1, …… . . , 𝑏 , is 
continuously differentiable by 𝑅𝑚 , and from 
equality (17) it follows that the partial 

derivatives 
𝜕

𝜕𝑣𝑖
𝑃̂(𝑣)     ,     𝑖 = 1,…… . . , 𝑚  are 

also continuous functions on the set 𝑉. Thus, 
sufficient conditions for differential mapping 
are satisfied 𝑃̂ on the set  .  
Let's 𝑀 ∈ 𝑆𝑚 - Some Matrix. Using the Integral 
of the matrix of the second moments 𝑃̂(𝑣)  , we 
can offer the function 𝐺 on the set 𝐷𝑥0

𝑉  in the 

following form 
                       𝐺(𝑧) = 𝑡𝑟[𝑀𝑃0] +

𝐸 ∫ 𝑥(𝑠)𝑇𝐻(𝑣,𝑀)𝑥(𝑠)𝑑𝑠
+∞

0
 

                                = 𝑡𝑟[𝑀𝑃0] +

∫ 𝐸𝑡𝑟[𝐻(𝑣,𝑀)𝑥(𝑠)𝑥(𝑠)𝑇]𝑑𝑠
+∞

0
 

                                = 𝑡𝑟[𝑀𝑃0] +

𝑡𝑟[𝐻(𝑣,𝑀) ∫ 𝑃(𝑠)𝑑𝑠]
+∞

0
 

                               = 𝑡𝑟[𝑀𝑃0] +

𝑡𝑟[𝐻(𝑣,𝑀)𝑃̂(𝑣)] =: 𝐺̂(𝑣),    𝑧 = (𝑥, 𝑣) 

Thus, on the set 𝐷𝑥0
𝑉  functional  , let's imagine in 

the form of a function 𝐺̂: 𝑅𝑚 → 𝑅 , 
differentiated by 𝑣  on 𝑉. Also note that if 𝑣 is a 
valid vector, then the value 𝐺̂(𝑣) it does not 
depend on the choice of the Matrix ∈ 𝑆𝑚 .  

5- Necessary conditions for optimizing 
the stability vector of parameters 

The following necessary conditions are 
obtained in the task of finding the control 
process 𝑧̅ = (𝑥̅, 𝑣̅) ∈ 𝐷𝑥0

𝑉 , which reduces the 

criterion (3) to a narrow range of acceptable 
control operations 𝐷𝑥0

𝑉  ,  

                                                     𝐽(𝑧̅) = min
𝑧∈𝐷𝑥0

𝑣
𝐽(𝑧)                                                                            

(18) 
Theory 1. If the control process 𝑧 = (𝑥, 𝑢) ∈
𝐷𝑥0
𝑉  optimal set 𝐷𝑥0

𝑉  in the equations  (1)–(3), 

(18), then the following .The conditions are met 
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𝑡𝑟[(𝑀
𝜕

𝜕𝑣𝑖
𝐴(0)(𝑣)   

+ ∑ 𝐴(𝑗)(𝑣)𝑇𝑀
𝜕

𝜕𝑣𝑖
𝐴(𝑗)(𝑣))𝑏

𝑗=1 +
1

2
𝐿(𝑣)𝑃̅] =

0   ,   𝑖 = 1,…… ,𝑚            (19) 
Where are the negatively indeterminate 
matrices 𝑀 ∈ 𝑆𝑛 and 𝑃̅ ∈ 𝑆𝑛 - The only 
solutions of equations  

                          𝑀𝐴(0)(𝑣) + 𝐴(0)(𝑣)𝑇M   

+ ∑ 𝐴(𝑖)(𝑣)𝑇𝑀𝐴(𝑖)(𝑣))𝑏
𝑖=1 = −𝐿(𝑣) 

                              𝑃̅𝐴(0)(𝑣)𝑇 + 𝑃̅𝐴(0)(𝑣) 

+ ∑ 𝐴(𝑖)(𝑣)𝑃̅𝐴(𝑖)(𝑣)𝑇𝑏
𝑖=1 = −𝑃0                                  

(20) 
Proof : There should be no valid control 
operation 𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0

𝑉 , from the lemma 1 

implies that there is a unique non-negatively 
defined matrix 𝑀 ∈ 𝑆𝑛satisfying the first 
equality in (20). Let's fix this matrix  . By 
definition, the mapping 𝐻 will be executed  
                                                             𝐻(𝑣,𝑀) = 0                                                                               
(21) 
It was previously shown that the functional 𝐺 
on the set 𝐷𝑥0

𝑉  it can be represented as 

differentiable by 𝑉 functions 𝐺̂ . Taking into 
account (21), we obtain the values of the 
partial derivatives of the function 𝐺̂  at this 
point  𝑣 ∈ 𝑉  

        
𝜕

𝜕𝑣𝑖
𝐺̂(𝑣) =

𝜕

𝜕𝑣𝑖
𝑡𝑟[𝐻(𝑣,𝑀)𝑃̂(𝑣)] 

                        = 𝑡𝑟[𝑃̂(𝑣)
𝜕

𝜕𝑣𝑖
𝐻(𝑣,𝑀) +

𝐻(𝑣,𝑀)
𝜕

𝜕𝑣𝑖
𝑃̂(𝑣)] 

                      = 𝑡𝑟[𝑃̂(𝑣)
𝜕

𝜕𝑣𝑖
𝐻(𝑣,𝑀)]                                                                                                  

(22) 

                 = 2𝑡𝑟[(𝑀
𝜕

𝜕𝑣𝑖
𝐴(0)(𝑣)   

+ ∑ 𝐴(𝑗)(𝑣)𝑇𝑀
𝜕

𝜕𝑣𝑖
𝐴(𝑗)(𝑣))𝑏

𝑗=1 +
1

2

𝜕

𝜕𝑣𝑖
𝐿(𝑣)𝑃̂(𝑣)] 

, 𝑖 = 1,… ,𝑚 
Where 𝐺̂(𝑣) by definition, it is a decision on 𝑃̅ 
the second equation of (20). 
Management process 𝑧 = (𝑥, 𝑢) ∈ 𝐷𝑥0

𝑉  is the 

minimum functional point 𝐺 on the set 𝐷𝑥0
𝑉  if 

and only if 𝑣 the minimum point of the function 
𝐺̂ on the set  . Considering that 𝐺̂ is 
differentiable by 𝑉, and 𝑉 is open, the 
necessary conditions for a first-order vector 𝑣 
are satisfied, namely 

𝜕

𝜕𝑣𝑖
𝑃̂(𝑣) = 0       , 𝑖 = 1, …… . . , 𝑚  

Submit an appointment     𝑃̅ = 𝑃̂(𝑣) , in total  
(22) we get the condition at (19). 
 

 
6- Numerical method for the synthesis of 

optimal stability vectors 
Expression (22) for partial derivatives of 
the function 𝐺̂ can be applied to construct 
the following gradient-type procedure. Let 
there be a management process 𝑧(𝑙) =

(𝑥(𝑙), 𝑢(𝑙)) ∈ 𝐷𝑥0
𝑉  . Then we can improve the 

functional quality value by choosing a new 
vector 𝑣(𝑙+1) according to the following 
formula 

                                 𝑣𝑖
(𝑙+1)

= 𝑣𝑖
(𝑙)
−

𝜃
𝜕

𝜕𝑣𝑖
𝐺̂(𝑣(𝑙)) ,      𝑖 = 1, … . .𝑚                                 

(23) 
Where 𝜃 > 0– a small enough step.  
Based on the procedure (23), the following 
Gradient-Type algorithm is proposed for 
synthesizing the optimal parameter 
stabilization vector: 
Step 1. Collection 𝜃 > 0 -step by step 
gradient method , 𝜀1 > 0 and 𝜀2 > 0 – 

required approximation errors , 𝑣(0) – 
initial approximation (stabilizing vector), 
and put the iteration number 𝑘 = 0 , 
number of successful iterations 𝑖 = 0 .  
Step 2. Numerically solve the system of 
matrix equations (20) by putting in them 

𝑣 = 𝑣(𝑘).  
Step 3. Numerically check that the 
resulting vector is stabilizing. If 𝑘 = 0 and 

vector 𝑣(𝑘)is not stabilizing, then finish the 

calculation. If 𝑘 > 0 and vector 𝑣(𝑘) is not 
stabilizing, then put 𝑖 = 0 , reduce θ by half 
, reduce k by one and go to step 7 .  

Step 4. Calculate the value 𝐽(𝑧(𝑘)) 
according to the formula (11). If = 0 , then 

go to step 6. If 𝐽(𝑧(𝑘)) > 𝐽(𝑧(𝑘−1)) ,then put 

𝑖 = 0 , reduce θ by half , reduce k by one 
and go to step 7 . Otherwise go to step 5.  
Step 5. If = 2 , double θ, put 𝑖 = 0 .  

Step 6. Calculate  
𝜕𝐺̂(𝑣𝑘)

𝜕𝑣𝑖
 , 𝑖 =

1,… . .𝑚 𝑎ccording to the formula (22) .  
Step 7. Calculate the value  ‖∇𝐺̂(𝑣(𝑘))‖ and 

check the fulfillment of the conditions 
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‖∇𝐺̂(𝑣(𝑘))‖ < 𝜀1 , 𝜃 < 𝜀2: if any of the 

conditions are met, the desired value 𝑣̅ put 
equal 𝑣(𝑘) and finish the calculation, 
otherwise calculate 𝑣(𝑘+1)by the formula 
(23) and go to step 7. 
Step 8. Increase k by one and go to step 2.  

 
7- Suboptimal software management 
              Finding the optimal program control in 
the problem (1)– (4) involves a number of 
difficulties, and the exact numerical algorithm 
for its solution is not known. Therefore, 
approximate algorithms for the synthesis of 
suboptimal software controls are attractive. 
Note the fact that the conditions obtained 
above in Theorem 1 contain the matrix 𝑃0the 
second initial moments of the vector 𝑥0 . This 
fact leads to the idea of an algorithm for the 
synthesis of piecewise constant program 
control based on the recurrent calculation of a 
stabilizing vector satisfying the conditions of 
Theorem 1. An example of such an algorithm is 
the following :  
Step 1. Set the split 0 = 𝑡0 < 𝑡1 < ………… <
𝑡𝑞 < +∞ interval [0, +∞); 𝑣(0) -initial 

approximation (stabilizing vector satisfying the 
conditions of Theorem 1); 𝜀 > 0 - the 
parameter of the algorithm responsible for the 
stop condition. Put the iteration number 𝑘 = 0  
.  
Step 2. Calculate 𝑃(𝑡𝑘+1) solving the Cauchy 
problem (12) on the time interval  [𝑡𝑘, 𝑡𝑘+1] for  
𝑢(𝑡) ≡ 𝑣(𝑘) with an initial condition 𝑃(𝑡𝑘), 
𝑃(𝑡0) = 𝑃0 .  
Step 3. Using the above procedure, calculate 
the stabilizing vector 𝑣(𝑘+1)satisfying the 
equations of theorem 1 for  𝑃0 = 𝑃(𝑡𝑘+1) . For 
the initial approximation of the algorithm , take 
𝑣(𝑘) .  
Step 4. Check the fulfillment of the conditions 
‖𝑃(𝑡𝑘+1)‖ < 𝜀 and 𝑘 + 1 < 𝑞  . If not done, then 
increase 𝑘   by one and proceed to step 2. 
Otherwise, put the desired strategy 𝑢(𝑡)   equal 
to a function of the form  
                 𝑢(𝑡) =

{
 

 
𝑣(0)                    𝑖𝑓        0 ≤ 𝑡 < 𝑡1
𝑣(1)                      𝑖𝑓       𝑡1 ≤ 𝑡 < 𝑡2

…… . .
𝑣(𝑘+1)                𝑖𝑓       𝑡𝑘+1 ≤ 𝑡 < +∞

    

A useful property of this algorithm is that it is 
non-degrading, that is, whatever the partition 
of the time interval, the value of the criterion 
corresponding to the found control 𝑢 will be no 

worse than the corresponding vector 𝑣(0). In 
addition, this algorithm is characterized by the 
relative simplicity of the calculations 
performed and is recurrent, that is, it is 
possible to perform calculations in real time. 
Among the disadvantages, it is worth noting 
that the result of the work can significantly 
depend on the choice of splitting the time 
interval. At the same time, the question of 
choosing the best partition remains open. 

8- Model example 
We will demonstrate the application of the 
obtained results on a model example. Let 
there be the following optimal stabilization 
problem  

                 

{
 
 

 
 𝑑𝑥1(𝑡) = 2𝑥2(𝑡)𝑑𝑡 +

1

2
𝑢(𝑡)𝑥1𝑑𝛽(𝑡),             𝑥1(0) = 1

                                                                                                                          𝑡 ≥ 0
𝑑𝑥2(𝑡) = −(𝑥1(𝑡) + 𝑢(𝑡)𝑥2)𝑑𝑡  ,                    𝑥2(0) = 1

 

                                        𝐽(𝑧̅) =

𝐸 ∫ (1 + 𝑢(𝑠)2𝑥1
2(𝑠) + 𝑥2

2(𝑠))𝑑𝑠
+∞

0
 

 
                                                     𝐽(𝑧̅) =
min
𝑧∈𝐷𝑥0

𝑣
𝐽(𝑧) 

This problem is a special case of problem (1)–
(4). If we limit ourselves to considering only 
permanent management strategies 𝑢(𝑡) ≡ 𝑣 ∈
𝑅 then we get the task (1)–(3),(18), for which, 
in section 5 , optimality conditions and a 
gradient procedure for the synthesis of an 
optimal regulator are obtained. The constant 
control 𝑢 found using the numerical method 
satisfying the conditions of Theorem 1 and the 
corresponding value of the criterion are equal 
to  

𝑢 ≈ 0.598               , 𝐽 = 5.997  
Using the algorithm for the synthesis of optimal 
program control proposed in Section 7, the 
program piecewise constant control function is 
found for the switchover at the time 𝑡1 =
1.3950 and the value of the criterion 
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𝑢(𝑡)

= {

0.598                       0 ≤ 𝑡 < 𝑡1
                                                                                     𝐽 ≈ 5.682

1.195                    𝑡1 ≤ 𝑡 < +∞
 

Thus, even using a fixed multi-definition 
control strategy with one key, it was possible to 
significantly improve the value of the criterion.  
 
9- Results 
The optimal stability problem for nonlinear 
stochastic systems with controlled parameters 
is formulated and the following results are 
obtained: 
1) The necessary optimal conditions are 
obtained and a numerical method is proposed 
for synthesizing the stabilization vector in the 
problem of optimal stabilization of semi-linear 
stochastic systems with controlled parameters. 
2) A numerical method for synthesizing 
optimal program control was proposed in the 
problem of optimal installation of semi-linear 
stochastic systems with controlled parameters. 
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