
 

 

      

A
B

ST
R

A
C

T
 

Volume 19| June 2023 ISSN: 2795-7667 
 
 
 

Full- Discrete Petrov Weak Galerkin 
Finite Element Method for Solving 

Coupled Burgers' Problem 
 
 
 

Maryam Mohammed Shnawa1 

 
 

Hashim A Kashkool2 

. 

Department of Mathematics, College of Education for Pure Sciences, 
University of Basrah, Basrah, Iraq. 

maryammohammedshnawa994@gmail.com1 
Department of Mathematics, College of Education for Pure Sciences, 

University of Basrah, Basrah, Iraq. 
hashim.kashkool@ubasrah.edu.iq2. 

 

In this paper, we introduce full- discrete Petrov weak Galerkin finite element method 
(PWG-FEM) for solving coupled Burgers' equations in two dimensions. The slicing in the 
full-discrete Petrov weak Galerkin finite element method (FDPWG-FEM) is done for both 
space and time. The backward Euler method is used to approximate the time derivative 
method with (PWG-FEM). We proved the optimal order error in 𝐿2 −norm for FDPWG-
FEM. We obtained the numerical experiment for confirm the theoretical results obtained. 

 
 

Keywords: 
Petrov weak Galerkin finite element, Full-discrete, Coupled 
Burgersequations, Optimal order error 

 

1: Introduction 
In this study, we consider the nonlinear time-
dependent coupled Burger𝑠 , problem in two 
dimensions [1]. 
∂𝑢 

− 𝜀∆𝑢 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝑓(𝑥, 𝑦, 𝑡), (𝑥, 𝑦, 𝑡) ∈ 

𝛺 × (0,𝑇],                           (1.1) 

∂𝑡 
− ε∆𝑣 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = 𝑔(𝑥, 𝑦, 𝑡), (𝑥, 𝑦, 𝑡) ∈ 𝛺 

× (0, 𝑇],                       (1.2) 

with Dirichlet boundary conditions 
𝑢(𝑥 , 𝑦 , 𝑡) = 𝜁 (𝑥, 𝑦, 𝑡),                   
(𝑥 , 𝑦 , 𝑡) ∈ 𝜕𝛺 𝑥 (0, 𝑇],         (1.3) 
𝑣(𝑥 , 𝑦 , 𝑡) = 𝜂 (𝑥, 𝑦, 𝑡),                    
(𝑥 , 𝑦 , 𝑡) ∈ 𝜕𝛺 𝑥 (0, 𝑇],                                      (1.4) 

and initial conditions 
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥 , 𝑦),                                        
(𝑥 , 𝑦) ∈ 𝛺,                                                         (1.5) 
𝑣(𝑥, 𝑦, 0) =𝑣0(𝑥 ,𝑦),                                 
(𝑥 , 𝑦) ∈ 𝛺                                                            (1.6) 
Where 𝛺 = {(𝑥 , 𝑦),𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} is 
the computational domain and 𝜕𝛺 its 
boundary, 𝑢(𝑥 ,𝑦 , 𝑡) and 𝑣(𝑥 , 𝑦 , 𝑡)     are     the 
velocity components to be 
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determined,𝑢0, 𝑣0, 𝜁 and 𝜂 are known 

functions, 
∂𝑡

, 
∂𝑡     

are unsteady terms,𝑢𝑢𝑥 , 𝑣𝑣𝑦 

are the nonlinear convection terms, 𝜀∆𝑢, 𝜀∆𝑣 
are the diffusion terms, 𝑓,𝑔 ∈ 𝐿2(𝛺 , 𝑡) are 
source terms (often equal to zero). For the 
numerical solution of Burgers' equations, 
several approaches have been developed . 
These methods mainly include finite difference, 
finite volume, finite element method, homotopy 
method, decompstion method,       differential 
transformation method,         and     boundary 
element etc., see [2,3,4,5,6,7,8]. It is common 
knowledge that the direct application of the 
Galerkin finite element approach to singularly 
perturbed Burgers’ equations may produce 
spurious      oscillation      in      the approximate 
solution. Several approaches have been used by 
researchers      to      address      this      oscillation 
including. Petrov-Galerkin approach [9,10,11] 
Petrov       -discontinuous       Galerkin       method 
[12,13]. Weak Galerkin is a finite element 
method     for PDEs where     the     differential 
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operators (gradient, divergence, curl, Laplacian 
etc.) in the weak forms are approximated by 
discrete generalized distributions . These weak 
differential operators shall serve as building 
blocks for WG-FEM to partial differential 
equations.       The       fundamental       distinction 
between WG-FEM and other techniques is the 
use of weak functions and weak derivatives 
(i.e.,        locally        reconstructed        differential 
operators)     in     the     creation     of     numerical 
schemes based on known weak forms for the 
underlying PDEs, see [14,15].      In this paper, 
we show The FDPWG-FEM for solving two-
dimensional     coupled     Burger𝑠 ,       problem     is 
intended to eliminate the inaccuracies and 
oscillations obtained using WG-FEM when  > 
𝜀 (where 𝜀 is the diffusion coefficient and 
 𝑖𝑠 𝑚𝑒𝑠 𝑠𝑖𝑧𝑒 ). 
The rest of the paper is organized as follows. In 
section 2 we introduce the definition of PWG-
FE space. In section 3, we define Petrov weak 
variational form. In section 4 we introduce the 
definition of the full-discrete of PWG-FEM and 
some lemmas which are necessary for error 
estimate. In section 5 we prove the error 
analysis of full-discrete PWG-FEM. In section 6, 
a numerical experiment is given. Finally, in 
section 7, Discussion and Conclusion. 
2: A Petrov Weak Galerkin Spaces 
Let U, V be two trial spaces and 𝜑,∅ be test 
spaces defined as follows: 

Let U, V be two trial spaces  and 𝜑 ∅  be test 

spaces defined as follows:  

  *𝑢  *𝑢  𝑢  + *𝑢  𝑢 + ∈ 𝐿 ( )  𝐿 (∂ )    ∈

𝑇 +                                                                              (   )  

  *𝑣  *𝑣   𝑣 + *𝑣  𝑣 + ∈ 𝐿
 ( )  𝐿 (∂ )     

∈ 𝑇 +                                           (   )  

𝜑  *       𝑤  +       𝑤 :  𝑤 ∈    },    (2.3)                                                        

∅   {  :    𝑝  +   .    𝑝 :  𝑝 ∈   }.              (2.4)                                                             

We define PWG – FE spaces, 

There are two trial finite element spaces 

defined as follows: 

   *𝑢  *𝑢  𝑢  + *𝑢  𝑢 +   ∈ 𝑝 ( )  𝑝 (𝜕 ) 

    ∈ 𝑇  +                                                               (   )  

   = {  {𝑣 , 𝑣 }:{𝑣   𝑣 }   ∈   ( )    (∂ )  

    ∈    +                                                                 (2.6) 

Define two test spaces by,  

φ={ :  = 𝑤0  +   . 𝑑,𝑟 𝑤 :𝑤 ∈   },         (2.7) 

 
 

Eurasian Journal of Physics, Chemistry and Mathematics 

ISSN: 2795-7667 

∅ = {  :    𝑝  +   .      𝑝 :  𝑝 ∈    },         (2.8)  

and  
  
 = {  = {   ,   } ∈   :               = 0 },      (2.9)                                                        

  
 = {  𝑤  +   .     𝑤:  𝑤 ∈    

  +           (    ) 

and 

  
  *𝑣  * 𝑣  𝑣 + ∈      𝑣             + (    )                                                    

∅ 
 = {  = 𝑝 +   .     𝑝 : 𝑝 ∈   

  },                      (2.12)                                                                                       

a constant stability parameter is shown here by 

the symbol  . The selection will be [16]: 

 

                 𝜂      𝑖𝑓 𝜀 <  

   =                                               ; 0 < 𝜂 < 
 

 
   

0       𝑖𝑓 𝜀 ≥  
 

and dim U, V = dim 𝜑, ∅, respectively. 

Here   indicate the convection coefficient and 

𝜀 represent diffusion coefficient 

T represent a collection of all triangulation on 

  

𝐿2(𝛺) indicates space of square-integrable 

functions 

𝑝𝑙(K) indicates the set of polynomials on K with             

                      𝑙                                                          

𝑝𝑗(∂K) represent the set of polynomials on ∂K 

with a degree no more than j 

  represent gradient operator 

K indicates a triangle element 

∂K indicates the boundary for the polygonal domain 

3. Petrov Weak Variational Form 

Multiply equations (1.1) and (1.2) by the test 

functions (𝑤       𝑤)  and ( 𝑝          𝑝 )  

respectively and integrating by part, we get 

.𝑢    𝑤       𝑤/  𝜀 ( 𝑢, 𝑤) + (𝑢𝑢   𝑤        𝑤) 

+ (𝑣𝑢   𝑤        ) = (𝑓, 𝑤 +     𝑤),  

                         𝑤 ∈                                                       (   )    

(𝑣    𝑝         𝑝)    ( 𝑣,  𝑝 ) + (𝑢𝑣 ,  𝑝        𝑝) + 

(𝑣𝑣   𝑝        𝑝) =  ( 𝑔,  𝑝        𝑝),            

               𝑝 ∈                                                           (3.2) 
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and 
(𝑢(𝑥, 𝑦, 0),𝑤0+    𝑑𝑤)=(𝑢0, 𝑤0+     𝑑𝑤), 
(𝑣 (𝑥, 𝑦, 0), 𝑝0 +   . d 𝑝)=(𝑣0, 𝑝0 +   .  d 𝑝). 
We can write the nonlinear terms 𝑢𝑢𝑥 and 𝑣𝑣𝑦 

in conservation form and integrating by part, 
we get 
 

(𝑢𝑡 , 𝑤0 +     𝑑𝑤) + (𝜀  𝑢, 𝑤 ) − 
1 

(𝑢2, 𝑤𝑥) 

+(𝑣𝑢𝑦,𝑤0+   𝑑𝑤) = ( 𝑓, 𝑤0 +     𝑑𝑤),    𝑢(𝑥, 𝑦, 0) 
=𝑢0(𝑥, 𝑦)   (𝑥,𝑦 ) ∈ 𝛺   𝑤 ∈  , 

                                                                  ISSN: 2795-7667 

(𝑢𝑢𝑥 , 𝑤0 +   . 𝑑𝑤) = 
2 

((𝑢2)𝑥, 𝑤0 +      𝑤) 

= − 
2 

(𝑢2, 𝑤𝑥), 

(𝑣𝑣𝑦 , 𝑝0 +   . d 𝑝 ) = 
1 

(( 𝑣2)𝑦, 𝑝0 +   .  𝑝) 

= − 
1 

(𝑣2, 𝑝𝑦). 

Substituting in the equation (3.1) and (3.2) the 
Petrov weak variational form is find 𝑢 ∈ 
  𝑎𝑛𝑑 𝑣 ∈  , such that 
 
                                (3.3) 
 
 

 

(𝑣𝑡 , 𝑝0 +   .  𝑝) + ( 𝜀  𝑣, 𝑝 ) + (𝑢𝑣𝑥 , 𝑝0 +   .  𝑝) 

−
1 

(𝑣2, 𝑝𝑦) = ( 𝑔 , 𝑝0 +   . d 𝑝), 

𝑣(𝑥 , 𝑦 ,0) = 𝑣0( 𝑥 , 𝑦)   (𝑥, 𝑦)∈𝛺   𝑝 ∈  ,                                        (3.4) 
 

where    𝑎(𝑢  𝑤) = (𝜀  𝑢  𝑤 ) − 
 

 
 (𝑢 ,𝑤 ) + (𝑣𝑢 , 𝑤       𝑤)     

                𝑎(𝑣 𝑝)= (𝜀 𝑣  𝑝 )   (𝑢𝑣  , 𝑝        𝑝) −
 

 
 (𝑣 , 𝑝 )     

And for  1, 2 > 0 the property (coercive) hold. i.e, [17] 
𝑎(𝑢  𝑢)      ‖   𝑢‖

        𝑢 ∈                                                                                 (3.5)   

𝑎(𝑣  𝑣)        ‖   𝑣‖
         𝑣 ∈    

4. The Fill-discrete PWG – FEM 
we shall establish the Fill-discrete PWG-FEM for Burgers’ equations and derive the error estimation in 
𝐿2– norm. Let 0 = 𝑡0 < 𝑡1 < …. < 𝑡𝑛 = T be a partition for time interval [ 0,𝑇] and the time level 𝑡 = 𝑡𝑛 = 
𝑛𝜏 where 𝑛 is non-negative integer. The backward Euler method is used to approximate the time 
derivative method with (PWG-FEM). 𝜕 𝑢 

  = (𝑢 
 − 𝑢 

   )  𝜏 𝑎𝑛𝑑 𝜕 𝑣 
  (𝑣 

 − 𝑣 
   )  𝜏.                             

The Fill-discrete PWG – FEM is find 𝑢 
  ∈    and 𝑣 

 ∈    such that 

 (𝜕 𝑢 
  𝑤 ) + (𝜕 𝑢 

          ) + 𝜀 (     𝑢 
       ) −

 

 
 (𝑢 

  𝑢 
   

     

  
) 

             + (𝑣 
  .

       
 

  
/  𝑤 ) + (𝑣 

 .
       

 

  
/          ) 

             = (𝑓 𝑤 )+  (𝑓         )                                    w ∈   
                                   (   )   

(𝜕 𝑣 
  𝑝 ) + ( 𝜕 𝑣 

         𝑝) + 𝜀 (    𝑣 
       ) − 

  

 
.𝑣 

  𝑣 
  
      

  
/ 

               (𝑢 
  .

       
 

  
/  𝑝 ) + (𝑢 

 .
       

 

  
/          ) 

                 = (  𝑝 ) + (            ),                            𝑝 ∈    
                              (4.2) 

or 

(𝜕 𝑢 
  𝑤 )+ (𝜕 𝑢 

          )    𝑎   ( 𝑢 
  𝑤)   

                  (𝑓 𝑤 ) +  (𝑓         )                               w ∈   
                                    (4.3) 

(𝜕 𝑣 
  𝑝 ) + ( 𝜕 𝑣 

          )   𝑎   ( 𝑣 
  𝑝) 

                  =  (  𝑝 )+ (           ),                                 𝑝 ∈   
                                    (4.4) 

where,   

𝑎   ( 𝑢 
  𝑤)     𝜀 (    𝑢 

       )−
 

 
 (𝑢 

  𝑢 
   

     

  
) + (𝑣 

  .
       

 

  
/  𝑤 )   

  (𝑣 
 .

       
 

  
/          ), 

𝑎   ( 𝑣 
  𝑝)  𝜀 (    𝑣 

       ) − 
  

 
.𝑣 

  𝑣 
  
      

  
/   (𝑢 

  .
       

 

  
/  𝑝 ) 
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+ (𝑢𝑛 (
𝜕𝑑,𝑟 𝑣 ) ,  β  𝑑,𝑟p). 

Lemma 4.1. [18] If 𝑢 ∈   
 (Ω)       (Ω),   𝑢    

 or   𝑣 ∈    
 . Then  

‖  𝑢 − 𝑢‖     ‖𝑢‖                                       𝑧   𝑘                                             (4.5) 

‖     𝑢 −  𝑢‖    
  ‖𝑢‖                    𝑧   𝑘                                         (4.6)  

  𝑢 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡𝑒 𝐿
 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓   ( )𝑜𝑛 𝑡𝑜   ( )    (𝜕 ) 

Lemma 4.2. [19] for 𝑢 ∈      with 𝑧      we have 
‖𝑢 −  𝑢‖      ‖𝑢‖                                                                                                   (4.7) 

‖ 𝑢 −    𝑢‖    
 ‖𝑢‖   .                                                                                         (4.8) 

     𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒  𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑧     
  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓  (𝑑𝑖𝑣 𝛺) 
5. The Error Analysis of PWG – FEM 
The goal of this section is to e prove the error estimates for full-discrete PWG – FEM, in the 𝐿2 −norm. 
Lemma 5.1. (𝑳𝟐– error in FDPWG) Let 𝑢𝑛,𝑣𝑛 and 𝑢𝑛 , 𝑣𝑛 be the solutions of (3.3), (3.4.) and (4.1), 
(4.2) respectively, then exists a constant 𝐶 that is independent of , such that; 

‖𝑒 ‖   ‖𝑒 ‖   𝐶   ∑ ‖𝑢 ‖    
  

     𝜏 ∫ ‖𝑢  ‖
  𝑑𝑡 

  
    

                                  (5.1) 

‖𝑒 ‖   ‖𝑒 ‖   𝐶   ∑ ‖𝑣 ‖    
  

     𝜏 ∫ ‖𝑣  ‖
  𝑑𝑡 

  
    

                                  (5.2)      

Proof. Let 𝑡 = 𝑡𝑛 𝑖𝑛 equation (3.3), and applying the fact 
(  𝑢

𝑛, 𝑤0) = (𝑢𝑛,𝑤0), we get 

(𝑢  (𝑡
 ) 𝑤 )  (𝑢  (𝑡

 )        𝑤 )  𝜀 (   𝑢 (𝑡
 )     𝑤) −    

  

 
 (  𝑢

 (𝑡 ) 
     

  
)   (𝑣 (𝑡 ) 𝑢  (𝑡

 ) 𝑤 )  ( 𝑣 (𝑡
 )𝑢  (𝑡

 )        𝑤) 

= ( 𝑓 ,𝑤0) + (𝑓 ,  β.  𝑑,𝑟𝑤). (5.3) 

By adding and subtracting 
(𝜕𝑡𝑢𝑛,𝑤0) + (𝜕𝑡𝑢𝑛,   . 𝑑,𝑟𝑤 ) + 𝑎 𝑊 (𝑢𝑛,𝑤) 

to equation (5.3), and using the fact (  𝑢𝑛 )= ( 𝑢𝑛), 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 
(𝑢𝑡 (𝑡𝑛),𝑤0) + (𝑢𝑡 (𝑡𝑛),   . 𝑑,𝑟𝑤 ) + 𝜀 (   𝑢 (𝑡𝑛), 𝑑,𝑟𝑤) 

− 
 2 

 (  𝑢
2(𝑡𝑛),

𝜕𝑑,𝑟 𝑊 ) +(𝑣 (𝑡𝑛) 𝑢𝑦 (𝑡
𝑛),𝑤0) + (𝑣(𝑡𝑛)𝑢𝑦(𝑡𝑛),  . 𝑑,𝑟𝑤) + 

(𝜕𝑡( 𝑢𝑛),𝑤0) + (𝜕𝑡( 𝑢𝑛),   . 𝑑,𝑟𝑤 ) − (𝜕𝑡( 𝑢𝑛),𝑤0) 

− (𝜕𝑡( 𝑢𝑛),  . 𝑑,𝑟𝑤 ) + 𝑎 𝑊 ( 𝑢𝑛,𝑤) − 𝑎 𝑊 ( 𝑢𝑛,𝑤) 

= (𝑓 ,𝑤0) + (𝑓 ,  . 𝑑,𝑟𝑤) . (5.4) 
Where, 

𝑎 𝑊 ( 𝑢𝑛,𝑤) = 𝜀( 𝑑,𝑟  𝑢𝑛, 𝑑,𝑟𝑤) − 
    2

 (( 𝑢𝑛)2,
𝜕𝑑,𝑟 𝑤) + 

(𝑣𝑛 (
𝜕𝑑,𝑟 ( 𝑢

𝑛)
) ,𝑤0) + (𝑣𝑛 (

𝜕𝑑,𝑟 ( 𝑢
𝑛)

) ,   . 𝑑,𝑟𝑤). 

Subtract equation (5.4) from (4.3), we get 

(𝜕  (  𝑢
 − 𝑢 

 ) 𝑤  )   ( 𝜕  (  𝑢
 − 𝑢 

 )        𝑤 )   𝑎   (  𝑢
 − 𝑢 

  𝑤)  

   ( �̃� 𝑢
 − 𝑢 

  𝑤 )   ( 𝜕 𝑢
 − 𝑢 

          𝑤)    𝜀 (     𝑢
        ) 

− 𝜀 (   𝑢
       )    

  

 
 (   (𝑢

 )  
     

  
) − 

 

 
 ((𝑢 )  

     

  
 ) 

 (𝑣 (
𝜕    𝑢

 

∂ 
) − 𝑣  𝑢 

  𝑤 )   (𝑣
 (
𝜕    𝑢

 

∂ 
)  − 𝑣   𝑢  

         𝑤 )              

 (𝑣 (
𝜕    𝑢

 

∂ 
)  − 𝑣  𝑢 

  𝑤 )   (𝑣
 (
𝜕    𝑢

 

∂ 
) − 𝑣   𝑢  

         𝑤 )     (    ) 

where, 
𝑎   (  𝑢

 − 𝑢 
  𝑤)    (𝜀      (  𝑢

 − 𝑢 
 )      𝑤 )  

 −
 

 
(((  𝑢

 ) − 𝑢 
  𝑢 

 ) 
𝜕   𝑤

𝜕𝑥
)    (𝑣 (

𝜕   (  𝑢
 )

∂ 
) − 𝑣 

  (
𝜕    𝑢 

 

∂ 
)  𝑤 ) 
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+( 𝑣 .
    (   

 )

  
/ − 𝑣 

  .
       

 

  
/         𝑤)                                                         (    ) 

Using 𝑒  =   𝑢
 − 𝑢 

  and 𝑤  𝑒  in equation (5.5), we get   

(𝜕 𝑒
  𝑒  )   (�̃� 𝑒

         𝑒
  )   𝑎   (𝑒

  𝑒 )  ( 𝜕 𝑢
 − 𝑢 

  𝑒 )  

  ( �̃� 𝑢
 − 𝑢 

          𝑒
 )   𝜀 (     𝑢

        𝑒
 )   −  𝜀 (   𝑢

      𝑒
 )            

    
  

 
 (   (𝑢

 )  
      

 

  
)  −  

 

 
 ((𝑢 )  

     
 

  
 )   .𝑣 .

      
 

  
/  − 𝑣  𝑢 

  𝑒 /                    

 (𝑣 (
𝜕   𝑢

 

∂ 
) − 𝑣  𝑢  

         𝑒
  )                                                                           (   ) 

Hence 

(
   –     

 
 𝑒  )    .

   –     

 
        𝑒

  /   𝑎   (𝑒
  𝑒 )   ( 𝜕 𝑢

 − 𝑢 
   𝑒 )    

 ( 𝜕 𝑢
 − 𝑢 

          𝑒
 )   𝜀 (     𝑢

        𝑒
 ) −  𝜀 (   𝑢

      𝑒
 )   

  
  

 
 (   (𝑢

 )  
      

 

  
 ) −   

 

 
 .(𝑢 )  

     
 

  
 /   .𝑣 .

      
 

  
/ − 𝑣  𝑢 

  𝑒 / 

 .𝑣 .
     

 

  
/  − 𝑣   𝑢  

         𝑒
  /.                                                                                                      (   ) 

By using Property (3.5 ) and  the Cauchy-Schwartz inequality, we get  
‖𝑒 ‖ − ( 𝑒    𝑒  )   (𝑒         𝑒

 ) − (𝑒           𝑒
 )  𝜏‖𝑒 ‖  

   

  𝜏( �̃� 𝑢
 − 𝑢 

  𝑒 )   𝜏 ( �̃� 𝑢
 − 𝑢 

          𝑒
 )   𝜏 𝜀 (     𝑢

        𝑒
 )                

− 𝜏 𝜀 (   𝑢
      𝑒

 )    
  

 
 (   (𝑢

 )  
      

 

  
 ) − 

 

 
 ((𝑢 )  

     
 

  
 ) 

  𝜏 (𝑣 (
𝜕    𝑢

 

∂ 
) − 𝑣  𝑢 

  𝑒 )   𝜏 (𝑣 (
𝜕   𝑢

 

∂ 
) − 𝑣   𝑢  

         𝑒
  )       

Using  Cauchy-Schwartz inequality and Young’s- inequality, we get 
             ‖𝑒 ‖   𝜏‖𝑒 ‖  

 − ‖𝑒   ‖  𝜏∑   
  

   ,                                                 (5.9) 
where, 
  
   ( 𝜕 𝑢

 − 𝑢 
  𝑒 )   

  
   ( �̃� 𝑢

 − 𝑢 
          𝑒

 )    

  
   𝜀 (     𝑢

        𝑒
 ) −  𝜀 (   𝑢

      𝑒
 )  

  
  =  

  

 
 (   (𝑢

 )  
      

 

  
) − 

 

 
 .(𝑢 )  

     
 

  
 /  

  
    .𝑣 .

      
 

  
/ − 𝑣  𝑢 

  𝑒 /  

  
  .𝑣 .

     
 

  
/  − 𝑣   𝑢  

         𝑒
  /. 

To estimate    
   of equation (5.9) 

  
   ( 𝜕 𝑢

 − 𝑢 
  𝑒 ), 

Cauchy-Schwartz  inequality, Young's -inequality and Poincare inequality [20] provide the following 
results 

   
    

 

 
‖( 𝜕 𝑢

 − 𝑢 
 )‖

 
  

 

 
‖    𝑒

 ‖
 
                                                                   (    ) 

To estimate    
  of  equation (5.9) 

  
   ( 𝜕 𝑢

 − 𝑢 
          𝑒

 ), 
by Cauchy – Schwartz  inequality and Young's-inequality, we obtain 

   
    

 

 
‖( 𝜕 𝑢

 − 𝑢 
 )‖

 
 
 

 
‖(       𝑒

 )‖
𝟐
                                                   (    ) 

To estimate    
  of equation (5.9), we add and subtract  𝜀( 𝑢 ,     𝑒

 ), we get 

  
  𝜀 (    𝑢

 −  𝑢        𝑒
 )   𝜀 ( 𝑢 −   𝑢

      𝑒
 )  

again by Cauchy – Schwartz inequality and Young's-inequality, we get 

   
   

 

 
‖(     𝑢

 −  𝑢 )‖
 
 
 

 
‖ 𝑢 −    𝑢

 ‖𝟐  𝜀 ‖    𝑒
 ‖
 
                   (    )  
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To estimate   
  of equation (5.9), we add and subtract  ((𝑢 )  

      
 

  
)  we get 

  
   =  

  

 
 (   (𝑢

 ) – (𝑢 )  
      

 

  
) − 

 

 
 ((𝑢 ) – (  𝑢

 )  
     

 

  
 ), 

by Cauchy – Schwartz inequality and Young's-inequality, we obtain 

   
      

 

 
‖(   (𝑢

 ) – (𝑢 )  )‖
 
 
 

 
‖(𝑢 ) – (  𝑢

 ) ‖
𝟐
 ‖

      
 

  
‖
 

                      (5.13)  

To estimate   
     we add and subtract (  𝑣

     𝑢  
 , 𝑒 )  we get 

  
  

  = (𝑣 (   𝑢 
  – 𝑢 

  ) 𝑒 )   – (  𝑣
    𝑢 

  – 𝑣  
      

 

  
  𝑒 ), 

again by Cauchy-Schwartz inequality, Young's-inequality and Poincare inequality [20], we obtain 

   
     ‖𝑣 ‖ 

  ‖(   𝑢 
  – 𝑢 

  )‖
 
 ‖.  𝑣

    𝑢 
  – 𝑣  

     
 

  
 /‖

 

   
 

 
‖    𝑒

 ‖
 
   (5.14) 

   estimate   
  , we add and subtract (  𝑣

     𝑢 
 ,        𝑒

 )   we get 

  
  

  = (𝑣 (   𝑢 
  – 𝑢 

  )        𝑒
 ) – (  𝑣

    𝑢 
  – 𝑣  

      
 

  
         𝑒

 )  

using Cauchy-Schwartz inequality and Young's-inequality once more, we arrive to 

   
     ‖𝑣 ‖ 

  ‖(   𝑢 
  – 𝑢 

  )‖
 
 ‖(  𝑣

    𝑢 
  – 𝑣  

𝜕    𝑢
 

𝜕𝑦
 )‖

 

 

  
 

 
 ‖(       𝑒

 )‖
𝟐
                                                          (    )                                                                                     

 Substituting (5.10), (5.11), (5.12), (5.13), (5.14) and (5.15)  in equation (5.9) with noting 

that ‖(𝑢 ) − (  𝑢
 ) ‖  and‖.  𝑣

    𝑢 
  – 𝑣  

     
 

  
 /‖

 

 are non-negative terms, we get  

‖𝑒 ‖   𝜏‖𝑒 ‖  
 − ‖𝑒   ‖   𝜏‖( 𝜕 𝑢

 − 𝑢 
 )‖

 
  

  𝜏  
 

 
 ‖(      𝑢

 −  𝑢 )‖
 
 𝜏 

 

 
 ‖ 𝑢 −    𝑢

 ‖𝟐                             

  
𝜏

 
‖(   (𝑢

 ) – (𝑢 )  )‖    𝜏 ‖𝑣 ‖ 
 ‖(   𝑢 

  – 𝑢 
  )‖

 
                    

  𝜏‖(       𝑒
 )‖

𝟐
+  𝜏 ‖    𝑒

 ‖
 
 𝜏 ‖

      
 

  
‖
 

                                                                 (    )                                                                             

Where   𝐶  𝜀 𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒                                                                                         

𝜏‖(       𝑒
 )‖

𝟐
+   𝜏 ‖    𝑒

 ‖
 
 𝜏‖

      
 

  
‖
 

  𝜏‖𝑒 ‖  
 . 

This will lead to 

‖𝑒 ‖  – ‖𝑒   ‖   𝜏‖𝑒 ‖  
 −  𝜏‖𝑒 ‖  

   𝜏 ‖( 𝜕 𝑢
 − 𝑢 

 )‖
 

  

  𝜏 
 

 
 ‖(      𝑢

 −  𝑢 )‖
 
 𝜏

 

 
‖ 𝑢 −    𝑢

 ‖𝟐 

  
𝜏

 
‖(   (𝑢

 ) – (𝑢 )  )‖    𝜏 ‖𝑣 ‖ 
 ‖(   𝑢 

  – 𝑢 
  )‖

 
                                                  (    )   

equation ) 5.17) can be expressed simply as follows. 

‖𝑒 ‖   ‖𝑒   ‖    𝜏 ‖( 𝜕 𝑢
 − 𝑢 

 )‖
 
   

     
  +  

                                                         (    )   

Where,      
   𝜏

 

 
‖(      𝑢

 −  𝑢 )‖
 
 𝜏 

 

 
‖ 𝑢 −    𝑢

 ‖𝟐 

                  
    

 

 
‖(   (𝑢

 ) – (𝑢 )  )‖
 
 

                  
     𝜏 ‖𝑣 ‖ 

 ‖(   𝑢 
  – 𝑢 

  )‖
 
  

by taking summation from (  to  ) of  equation (    ), we arrive to 

‖𝑒 ‖   ‖𝑒 ‖  𝜏∑ ‖( 𝜕 𝑢
 − 𝑢 

 
)‖
 
  ∑   

  
     ∑   

  
      ∑   

  
                       (    )  

    

In the first term  for the right-hand side of  equation (5.19),  we can                       

      𝑢 
 
− 𝜕 (𝑢

 )  𝑢 
 
− 

 

 
 (𝑢 − 𝑢   ), 
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𝜏    =  𝜏 𝑢 
 
 – ∫ 𝑢 (𝑡) 

  
    

𝑑𝑡  (𝑡 − 𝑡    )𝑢 
 
− ∫ 𝑢 (𝑡) 

  
    

𝑑𝑡, 

adding and subtracting  𝑡   𝑢 
   

,  we get 

𝜏   𝑡  𝑢 
 
− 𝑡   𝑢 

   
− (𝑡   𝑢 

 
− 𝑡   𝑢 

   
) − ∫ 𝑢 (𝑡)

  

    

𝑑𝑡                  

=  ∫ 𝑡 𝑢   
  
    

𝑑𝑡 − 𝑡   ∫ 𝑢   (𝑡)
  
    

𝑑𝑡 = ∫ (𝑡 − 𝑡   ) 𝑢   
  
    

𝑑𝑡. 

 

𝜏  𝑗 = ∫
𝑡𝑗 𝜏 𝑢 𝑑𝑡. 
𝑗−1 

𝜏‖  ‖   𝜏 ∫ ‖𝑢  ‖ 
  
    

𝑑𝑡  

 
Using Jensen's inequality, we get  

 

‖  ‖
 
   ( ∫ ‖𝑢  ‖ 

  
    

𝑑𝑡 )  = 𝜏  ( ∫ ‖𝑢  ‖ 
  
    

  

 
 )   

 

‖  ‖
 
  𝜏 ∫ ‖𝑢  ‖

   
  

 
 𝜏

  
    

 ∫ ‖𝑢  ‖
  𝑑𝑡 

  
    

                                         (    )  

To approximation   
 
    by Lemma (4.1) and Lemma (4.2), we have 

 ∑   
  

     𝐶   ∑ ‖𝑢 ‖    
  

   .                                                                       (5.21)   

To approximation   
 
   by Lemma (4.2), we have 

∑   
  

     𝐶   ∑ ‖𝑢 ‖    
  

                                                                             (5.22)  

To approximation   
 
 𝑏𝑦 Lemma (4.1), we have 

∑   
  

     𝐶   ∑ ‖𝑢 ‖    
  

   .                                                                         (5.23) 

Substituting (5.20), (5.21), (5.22) and (5.23)  in equation (5.19), we obtain 

‖𝑒 ‖   ‖𝑒 ‖   𝐶   ∑ ‖𝑢 ‖    
  

     𝜏 ∫ ‖𝑢  ‖
  𝑑𝑡 

  
    

                       (5.24) 

In the same way, the proof for equation (5.2). 

 
6. Numerical experiment 
In this section, we compute the error  −    of   - norm of the  PWG-FEM in the case of FDPWG-FEM 
FEM  by using  Matlab R2014a software.  We take into account the system of coupled Burger𝑠   
equations in two dimensions (1.1)and  (1.2) over the square domain   ,   -  ,   -. Burgers' 
equation in two dimensions linked has the following precise solutions [21]: 

𝑢(𝑥 𝑦 𝑡)  −  
  𝑒   

      (  𝑥)    ( 𝑦)

  𝑒   
      (  𝑥)    ( 𝑦)

  

𝑣(𝑥 𝑦 𝑡)  −  
 𝑒   

      (  𝑥)    ( 𝑦)

  𝑒   
      (  𝑥)    ( 𝑦)

  

 

 
Various computational meshes are utilized, and the computation's time step is satisfactory. 
𝜏 = 𝑐𝑓𝑙 ∗ 𝑚𝑖𝑛 (2), 

where the shortest length of all the triangles is 𝑚𝑖𝑛(), and 𝑐𝑓𝑙 is a parameter that depends on the 
issue. The exact solution is utilized to determine the boundary and initial conditions. In the test   = 
0.01 and 0.1 are employed to determine if the time step size 𝜏 and mesh size  have converged. 
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The 𝐿2 and  1 - errors for the velocities 𝑢 and 𝑣 are displayed in Tables 1,2,5 and 6 in the WG - FEM 

when   = 0, and Tables 3,4,7 and 8 in the PWG - FEM when   = 
32 

,  = [1,1]. The PWG and WG 

methods use a linear element and mesh size  = 
𝑛 

,𝑛 = 2,4,8,16,32, with 𝑇 = 1, and 𝑐𝑙𝑓 = 0.05. 

Figures 1 and 3 show the numerical and exactly solutions concerning 𝑢 and 𝑣 in the WG -FEM, and 
Figures 2 and 4 show the numerical and exactly solutions concerning 𝑢 and 𝑣 in the PWG -FEM. 

Table 1: 𝐿2 and   1error for 𝑢 in case 𝑇 = 1,   = 0.01 and 𝑐𝑙 𝑓 = 0.05 in WG -FEM. 
 

 ‖ 𝑑𝑒𝑢‖ 
 

1 4.4311e- 

 2  03 
1 3.7353e- 

 4  03 

1 2.6215e- 

 8  03 

1 2.1152e- 

 16  03 

1 1.8042e- 

 32  03 

 

Order 
‖ 𝑑𝑒𝑢‖ 
 
 
 
 

0.2464 
 

0.5107 
 

0.3096 
 

0.2294 

 

‖𝑒𝑢‖{𝐿2,𝑘} 

 
2.3154e-
03 

1.9237e-
03 

1.5077 e-
03 

1.4791e-
03 

1.0042e-
03 

Order 
‖𝑒𝑢‖{𝐿2,𝑘} 

 
 
 
 

0.2674 
 

0.3515 
 

0.0276 
 

0.5586 

 

‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
1.4754e-
02 

1.0224e-
02 

9.0776e-
03 

7.2465e-
03 

5.9241e-
03 

Order 
‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.5291 
 

0.1715 
 

0.3250 
 

0.2906 

 

Table 2: 𝐿2 and   1error for 𝑣 in case 𝑇 = 1,   = 0.01 and 𝑐𝑙 𝑓 = 0.05 in WG -FEM. 
 

 ‖ 𝑑𝑒𝑣‖ 
 

1 2.7814e- 

 2  03 

1 1.7820e- 

 4  03 

1 1.1796e- 

 8  03 

1 9.4680e- 

 16  04 

1 7.1400e- 

 32  04 

 

Order 
‖ 𝑑𝑒𝑣‖ 
 
 
 

0.6422 
 

0.5952 
 

0.3171 
 

0.4071 

 

‖𝑒𝑣‖{𝐿2,𝑘} 

 
2.0142e-
03 

1.0772e-
03 

9.3677e-
04 

9.3645e-
04 

9.3610e-
04 

Order 
‖𝑒𝑣‖{𝐿2,𝑘} 

 
 
 
 

0.9028 
 

0.2015 
 

0.0004 
 

0.0005 

 

‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
9.2089e-
03 

7.7274e-
03 

5.5780e-
03 

5.3625 e-
03 

2.1549e-
03 

Order 
‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
 
 
 

1.5076 
 

1.1631 
 

1.2280 
 

0.0128 

 

Table 3: 𝐿2 and   1error for 𝑢 in case 𝑇 = 1,   = 0.01 and 𝑐𝑙 𝑓 = 0.05 in PWG -FEM. 
 

 ‖ 𝑑𝑒𝑢‖ 
 

1 2.2155e- 

 2  03 

1 1.2451e- 

 4  03 

1 8.7383e- 

 8  04 

1 7.0506e- 

 16  04 

 

Order 
‖ 𝑑𝑒𝑢‖ 
 
 
 
 

0.8313 
 

0.5108 
 

0.4659 

 

‖𝑒𝑢‖{𝐿2,𝑘} 

 
1.1577e-
03 

6.4123e-
04 

4.0256e-
04 

3.9303e-
04 

Order 
‖𝑒𝑢‖{𝐿2,𝑘} 

 
 
 
 

0.8523 
 

0.6716 
 

0.0345 

 

‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
7.3770e-
03 

4.4080e-
03 

3.0258e-
03 

2.1145e-
03 

Order 
‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.7429 
 

0.5427 
 

0.5170 
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1 5.0140e- 

 32  04 

 

0.4917 

 

2.3473e-
04 

 

0.7436 

 

1.4747e-
03 

 

0.5198 

 

Table 4: 𝐿2 and   1error for 𝑣 in case 𝑇 = 1,   = 0.01 and 𝑐𝑙 𝑓 = 0.05 in PWG -FEM. 
 

 ‖ 𝑑𝑒𝑣‖ 

 

Order 
‖ 𝑑𝑒𝑣‖ 

 

‖𝑒𝑣‖{𝐿2,𝑘} 
Order 
‖𝑒𝑣‖{𝐿2,𝑘 

 

‖𝑒𝑣‖{𝐿2,
𝜕
𝑘} 

Order 
‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 

1 1.3907e- 

 2  03 

1 7.9400e- 

 4  04 

1 4.9320 e- 

 8  04 

1 3.4720e- 

 16  04 

1 2.3800 e- 

 32  04 

 
 
 

0.8086 
 

0.6869 
 

0.5064 
 

0.5448 

 

1.0071e-
03 

4.5906e-
04 

2.1025e-
04 

1.1215e-
04 

7.8506e-
05 

 

3.0696e-03 
 

1.1334 1.9318e-03 0.6680 
 

1.1265 9.9450e-04 0.9579 
 

0.9067 5.9375e-04 1.2280 
 

0.5145 3.5915e-04 0.7252 

 
 

Table 5: 𝐿2 and   1error for 𝑢 in case 𝑇 = 1,   = 0.1 and 𝑐𝑙 𝑓 = 0.05 in WG -FEM. 
 

 ‖ 𝑑𝑒𝑢‖ 
 

1 1.3629e- 

 2  02 

1 8.6415e- 

 4  03 

1 4.5166e- 

 8  03 

1 3.7038e- 

 16  03 

1 2.8042e- 

 32  03 

 

Order 
‖ 𝑑𝑒𝑢‖ 
 
 
 

0.6573 
 

0.9360 
 

0.2862 
 

0.4014 

 

‖𝑒𝑢‖{𝐿2,𝑘} 

 
9.3221e-
03 

5.7382e-
03 

2.8956 e-
03 

2.2979e-
03 

2.0042e-
03 

Order 
‖𝑒𝑢‖{𝐿2,𝑘} 

 
 
 
 

0.7000 
 

0.9867 
 

0.3335 
 

0.1972 

 

‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
2.7260e-
02 

2.3664e-
02 

1.8933e-
02 

1.6873e-
02 

1.5146e-
02 

Order 
‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.2041 
 

0.3217 
 

0.1661 
 

0.1557 

 

Table 6: 𝐿2 and   1error for 𝑣 in case 𝑇 = 1,   = 0.1 and 𝑐𝑙 𝑓 = 0.05 in WG -FEM. 
 

 ‖ 𝑑𝑒𝑣‖ 
 

1 4.3700e- 

 2  03 

1 1.6399e- 

 4  03 

1 1.0282e- 

 8  03 

1 8.5023e- 

 16  04 

1 6.7241e- 

 32  04 

 

Order 
‖ 𝑑𝑒𝑣‖ 
 
 
 
 

1.4140 
 

0.6734 
 

0.2742 
 

0.3385 

 

‖𝑒𝑣‖{𝐿2,𝑘} 

 
2.6924e-
03 

1.0009e-
03 

6.0258e-
04 

4.7830e-
04 

3.4319e-
04 

Order 
‖𝑒𝑣‖{𝐿2,𝑘} 

 
 
 
 

1.4275 
 

0.7321 
 

0.3332 
 

0.4789 

 

‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
7.6324e-
03 

4.0860e-
03 

3.9348e-
03 

3.4942 e-
03 

2.8546e-
03 

Order 
‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.9014 
 

0.0543 
 

0.1713 
 

0.2916 
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Table 7: 𝐿2 and   1error for 𝑢 in case 𝑇 = 1,   = 0.1 and 𝑐𝑙 𝑓 = 0.05 in PWG -FEM. 
 

 ‖ 𝑑𝑒𝑢‖ 
 

1 6.8145e- 

 2  03 

1 3.8805e- 

 4  03 

1 2.5055e- 

 8  03 

1 2.1346e- 

 16  03 

1 1.3473e- 

 32  03 

 

Order 
‖ 𝑑𝑒𝑢‖ 
 
 
 
 

0.8123 
 

0.6311 
 

0.2311 
 

0.6638 

 

‖𝑒𝑢‖{𝐿2,𝑘} 

 
4.6610e-
03 

1.9127e-
03 

9.6519e-
04 

5.7447e-
04 

3.6806e-
04 

Order 
‖𝑒𝑢‖{𝐿2,𝑘} 

 
 
 
 

1.2850 
 

0.9867 
 

0.7485 
 

0.6422 

 

‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
1.3630e-
02 

7.8880e-
03 

5.3110e-
03 

3.6243e-
03 

3.0486e-
03 

Order 
‖𝑒𝑢‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.7890 
 

0.5706 
 

0.5512 
 

0.2495 

 

Table 8: 𝐿2 and   1error for 𝑣 in case 𝑇 = 1,   = 0.1 and 𝑐𝑙 𝑓 = 0.05 in PWG -FEM. 
 

 ‖ 𝑑𝑒𝑣‖ 
 

1 2.1850e- 

 2  03 

1 9.4663e- 

 4  04 

1 5.4273e- 

 8  04 

1 2.8341e- 

 16  04 

1 2.2413e- 

 32  04 

 

Order 
‖ 𝑑𝑒𝑣‖ 
 
 
 
 

1.2067 
 

0.8025 
 

0.9373 
 

0.3385 

 

‖𝑒𝑣‖{𝐿2,𝑘} 

 
1.3462e-
03 

5.3363e-
04 

3.0086e-
04 

1.5943e-
04 

1.1439e-
04 

Order 
‖𝑒𝑣‖{𝐿2,𝑘} 

 
 
 
 

1.3349 
 

0.8267 
 

0.9161 
 

0.4789 

 

‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
3.8162e-
03 
 

23620e-03 
 

1.3116e-
03 

9.6473 e-
04 

7.5153e-
04 

Order 
‖𝑒𝑣‖{𝐿2,𝜕𝑘} 

 
 
 
 

0.6921 
 

0.8486 
 

0.4431 
 

0.3602 
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Figure 1: Numerical and exact solutions for u and v in case (𝑇 = 1, 𝑐𝑙 𝑓 = 0.05,   = 
0.01) for the WG − FEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Numerical and exact solutions for u and v in case(𝑇 = 1, 𝑐𝑙 𝑓 = 0.05,   = 0.01) for the 
PWG - FEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Numerical and exact solutions for u and v in case (𝑇 = 1, 𝑐𝑙 𝑓 = 0.05,   = 0.1) 
for the WG -FEM. 
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Figure 4: Numerical and exact solutions for u and v in case(𝑇 = 1, 𝑐𝑙 𝑓 = 0.05,   = 0.1) 
For the PWG-FEM. 

 

7. Discussion and Conclusion 
In this paper, we consider the full- discrete 
PWG-FEM for solving coupled Burgers' 
equations in two dimensions. When 
comparing Tables (1)-(8) for the PWG-FEM 
a significant improvement and regularity 
were observed in the numerical results of 
the PWG-FEM compared to the numerical 

results       for  WG-FEM. Ourfindings 
demonstrate      that      the PWG-FEM is 
significantly more accurate than the WG-
FEM, see Tables (1)-(8) and see Figures (1) 
-(4), we demonstrated consistency between 
the exact       solutions       and numerical 
outcomes for unsteady-state in PWG-FEM. 
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