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Interoduction 
In this paper we denote to submodule: subm., 
submodules: subms., module: md., modules: 
mds, cancellation module: cance. md., 
cancellation ideal: cance. Ideal, fully cancelation 
module : FC md., maximal fully cancellation 
module: MFC-md, primary –fully cancellation 
module: primary – FC md., such that: s.t.  
Throughout this paper all rings are 
commutative with identity and all mds. are 
unitary. Let X be a T-md. . Then X is said to be  FC 
md. , if for each ideal I of T and for each subms. 
D1,D2 of X s.t. ID1=ID2 implies D1=D2 [1] .In this 
case ,if for every maximal ideal I of T, I ≠ 0 and 
for every subms. D1and D2 of X s.t. ID1=ID2 ,then 
D1=D2  and we call it MFC -md. [2] . Now in this 
paper ,we define the concept of primary –FC 
md., we give some equivalent conditions for a 
primary- FC md.. 
Also ,we will find some relations between MFC- 
md. and Primary- FC md.. 
  
2.Main Results 
Definition (2.1):-  Let X be a T-md. . X is called 
Primary-FC md. if for every  primary ideal I of T, 
I≠ 0 and for every subms. D1,D2 of X s.t. ID1=ID2 
,then D1=D2. 

Remarks and Examples(2.2) 
(1) Z as Z-md. is primary-FC md.. 
(2) Z6 as a Z6-md. is not primary-FC md. .Since 
(3̅)  is primary ideal of Z6 and         (3̅) ,Z6 are 
subms. of Z6 such that (3̅)(3̅) = (3̅)Z6 but ((3̅)≠ 
Z6. 
(3) Every FC md. is primary-FC md. ,but the 
convers is not true in general for example:- 
Let T =Z36 and X=(6̅) as a T-md.. We have  (12̅̅̅̅ ) 
and (24̅̅̅̅ )  are subms. of (6̅) such that (3̅)(12̅̅̅̅ ) =
(3̅)(24̅̅̅̅ ) =  (0̅) where (3̅) is primary ideal of Z36  
and hence  (12̅̅̅̅ ) = (24̅̅̅̅ ). Therefore  X=(6̅) is 
primary-FC md. but it is not FC md.. To show 
this, take (4̅) is a nonzero ideal of Z36 and (6̅), (0̅) 
are subms. of X such that (4̅)(6̅) = (4̅)(0̅) = (0̅) 
which implies (6̅) ≠ (0̅). Which gives what we 
wanted. 
(4) Every subm. of a primary-FC md. is primary-
FC md.. 
(5) Let X1and X2 be a T-mds. such that X1⊂X2 
.Then X1 is Primary-FC md. if and only if X2 is 
Primary-FC md.. 
 
The following theorem is illustration of 
primary-FC md.  :- 
Theorem(2.3):- 
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Let X be a T-md.  ,  D1 ,D2 be two subms. of X , and 
let  I be a primary ideal of T, I≠ 0. Then the 
coming are equivalent:- 
(1) X is Primary-FC md. . 
(2) if ID1⊆ID2 ,then D1⊆D2 . 
(3) if I≺ 𝑎 ≻⊆ID2, then a∈D2  where  a∈ X. 
(4) (ID1∶T ID2 )=(D1∶T D2) . 
 
Proof :- 
(1) ⇒ (2) If ID1⊆ID2 then ID2=ID1+ ID2 Which  
Implies ID2=I(D1 +D2), 
But X is primary-FC md., then D2 =(D1+D2) and 
hence D1⊆D2 

(2) ⇒ (3) If I≺a≻⊆ID2  then ≺a≻⊆D2 by (2) 
Which implies ,a∈D2. 
(3) ⇒ (4) If ID1= ID2 , to prove that  D1= D2. Let 
a∈D1 then I≺a≻⊆ID1⊆ID2 And hence a∈D2  by 
(3) similarly  , we can show  D2⊆D1. Thus D1 =D2. 
(1) ⇒ (4) Let r∈( ID1:T ID2) .Then  r ID2⊆ID1 so ,  
IrD2 ⊆ID1 and since (1) implies (2) , we have 
D2⊆D1 . 
Thus r∈(D1∶T D2)and hence (ID1:T ID2)⊆(D1:T D2) 
Let r∈(D1:T D2). Then rD2 ⊆D1 which implies IrD2 
⊆ID1  and hence rID2 ⊆ID1. 
Therefore r∈( ID1:T ID2) and hence (D1:T D2)  ⊆( 
ID1:T ID2) . Then we get  (D1:T D2)= 
(ID1:T ID2 ) 
(4)⇒ (1) 
Let  ID1= ID2 Then by (4)  ( ID1:T ID2) = (D1:T D2). 
But  ( ID1:T ID2)=T 
(since ID1= ID2 ). Then  (D1:T D2) =T  so D2⊆D1.. 
Similarly  ( ID2:T ID1) =(D2:T D1) 
Thus (D2:T D1) =T Which implies  D1⊆D2. 
Therefore  D1=D2. . 
 
Before we give our proposition ,the following 
concepts are needed. 
A ring T is called a Boolean ring in case each of 
its elements is an idempotent. And a 
commutative ring T with unity is called an 
Artinian ring if and only if for any descending 
chain of ideals I1 ⊇ I2 ⊇ I3 ⊇ ⋯ … . . of T , ∃n ∈
𝑍+ such that I𝑛 = I𝑛+1 = ⋯  [3] 
 
Now ,the following proposition gives the 
relationship between  MFC-md.  and Primary-FC 
md.. 
Proposition(2.4):- 
Every Primary-FC md. is MFC-md.. 
Proof:- It is easy 

The reverse of proposition (2.4) is true under 
the condition that the  ring T is PID or regular or 
Artinian or Boolean ring . 
Proposition(2.5):- 
Let T be a PID (regular or Artinian or Boolean) 
and X be a T-md. .Then X 
is Primary-FC md. if and only if M is MFC-md.. 
Proof :-     It is obvious 

Proposition(2.6):- 
Let X be a Primary-FC md. over a ring T . If X is a 
cance. md. ,then every  primary ideal I of T, I≠ 0 
is cance. ideal . 
Proof:- 
Let I be a primary ideal of T , I≠ 0 s.t.  CI=DI 
,where C ,D are two ideal of T . CIX=DIX ,then 
ICX=IDX . But X is Primary-FC md. 
, therefore CX=DX. As X is cance. md. , then C=D 
by [4] . 
 
Proposition(2.7):- 
Let X1 ,X2 be two R-mds. .If X1≅ X2 ,then X1 is 
Primary-FC md. if 
and only if X2 is Primary-FC md.. 
Proof:- 
Let θ: X1⟶ X2 be an isomorphism . Suppose X1 is 
a  Primary-FC md.. 
To prove X2 is a Primary-FC md.. 
For every primary ideal  I of T, I≠ 0 and every 
subms. D1,D2 of X2 .Let 𝐼𝐷1

̅̅ ̅̅̅ =  𝐼𝐷2
̅̅ ̅̅ ̅ 

Now , there exists two subms. D1 ,D2 of X1 such 
that θ(D1)=  𝐷̅1  , θ(D2)= 𝐷̅2 
Then I θ(D1) = I θ(D2) , Which implies θ(I D1)= 
θ(I D2). Therefore ID1 = ID2 
since θ is (1-1))But X1 is Primary-FC md. .Then 
D1=D2 and hence 
θ(D1)=  θ(D2) Therefore   𝐷̅1 = 𝐷̅2 That is X2 is 
Primary-FC md.. 
Conversely:- 
Suppose that X2 is Primary-FC md.  over the ring. 
Let  ID1 = ID2  for every  
prime ideal I of T, I≠ 0 and every subms. D1 , D2 
of X1 . Now , θ(I D1)= θ(I D2) . Which implies I 
θ(D1)= I θ(D2) ,where θ(D1) , θ(D2) are two 
subms. of  X2 
Also X2 is Primary-FC md.. Then θ(D1)=  θ(D2) 
Which implies D1=D2 
since θ is (1-1)) Which completes the proof. 
 

Conclusions 



Volume 2| January 2022             ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                     www.geniusjournals.org 

P a g e  | 7 

In this paper we study the concept of Primary-
FC md.. The results: Z as Z-md. is primary-FC 
md.,  every FC md. is primary-FC md. but the 
convers is not true and we gave an example 
explain that. Also Every subm. of a primary-FC 
md. is primary-FC md.. If X1and X2 are a T-mds. 
such that X1⊂X2 ,then X1 is Primary-FC md. if and 
only if X2 is Primary-FC md.. Every Primary-FC 
md. is MFC-md.. . We proved that if X is a 
Primary-FC md. over a ring T  and  X is a cance. 
md. ,then every non zero primary ideal of T is 
cance. ideal . finally if X1 ,X2 are two R-mds. and 
X1≅ X2 ,then X1 is Primary-FC md. if and only if 
X2 is Primary-FC md.. 
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