
Volume 18| May 2023                                                                                                                                           ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 103 

 
Introduction 

An electrocardiogram (ECG) is a time-
varying signal that reflects the flow of an ionic 
current that causes contraction and subsequent 
relaxation of the heart fibers. Surface ECG is 
obtained by recording the potential difference 
between two electrodes placed on the surface of 

the skin. One normal ECG cycle is a series of 
atrial depolarization/repolarization and 
ventricular depolarization/repolarization that 
occur with each heart beat. They can be roughly 
related to the peaks and valleys of the ECG trace 
labeled P, Q, R, S, and T [11] as shown in Fig. 1 

 

 
Rice. Fig. 1. Morphology of the average PQRST-complex of an ECG recorded in a healthy person. 

 
Reliable signal processing methods are 

required to extract useful clinical information 
from a real (noisy) ECG [12]. These include R 
peak detection [13], [14], QT interval 

determination [15], and ECG heart rate and 
respiration rate detection [16], [17]. The RR 
interval is the time between successive R peaks, 
the reciprocal of this time interval gives the 
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instantaneous heart rate. The series of RR 
intervals is known as the RR tachogram, and the 
variability of these RR intervals reveals 
important information about the physiological 
state of the subject [18]. Currently, new 
biomedical signal processing algorithms are 
usually evaluated by applying them to ECG in a 
large database such as the Physionet database 
[18]. While this gives the operator an idea of the 
accuracy of this algorithm in relation to real 
data, it is difficult to conclude how performance 
will vary in different clinical settings with 
different noise levels and sample rates. Access 
to realistic artificial ECG signals may facilitate 
this assessment. This article presents a model 
for generating a synthetic ECG signal with 
realistic PQRST morphology and given heart 
rate dynamics. 

The purpose of this model is to provide a 
standard, realistic ECG signal with known 
characteristics that can be generated using 
specific statistics such as heart rate mean and 
standard deviation, and frequency domain heart 
rate variability (HRV) characteristics. ), such as 

the low/high frequency (LF/HF) ratio, defined 
as the power ratio between 0.015–0.15 Hz and 
0.15–0.4 Hz on the RR tachogram [18]. 
Generating a signal that is representative of a 
typical human ECG facilitates comparison of 
different signal processing techniques. A 
synthetic ECG can be generated with different 
sampling rates and different noise levels to 
establish the effectiveness of this method. This 
performance can be represented, for example, 
as the number of true positives, false positives, 
true negatives, and false negatives for each test. 
This performance rating could be used as a 
"standard" and would allow clinicians to 
determine which biomedical signal processing 
techniques are best suited for a given 
application. signal processing methods are best 
suited for a given application. 

In this article, we will give the main 
provisions of the mathematical apparatus of 
fractional calculus, which we will often refer to 
in this dissertation. The definition of fractional 
integration and differentiation is related to the 
Abel integral equation [14]. 

 
Definition 1. Let x(t) ∈ L(0,T). Integral 

,                 (3) 
Where α > 0 and Γ(z) – Euler's gamma function is called the fractional order integral α. 
Using formula (3), we naturally introduce the definition of fractional differentiation as the inverse 

operation of integration. 
Definition 2. For function x(t) ∈ L(0,T) the ratio 

,           (4) 
which is called the fractional derivative 0 < α < 1. 
Formulas (3) and (4) are called Riemann-Liouville integral and derivative [12]. 
Formula (4) can be generalized to the case when [α] < α < [α] + 1, где [α] – the integer part of the 

number α. In this case, the generalization looks like: 

,                   (5) 
If we consider [α] = n − 1, then we get another representation of the fractional derivative of order 

n < α < n + 1: 
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,                 (6) 
Let us introduce another definition of a fractional order derivative. 
Definition 3. Let x(t) ∈ Cm−1 [0,T], m ≥ 1, and x(n) (t) ∈ L[0,T]. Then the operator of the following 

form 

, (7) 

Where  , 
is called the regularized Riemann-Liouville fractional derivative or the Gerasimov-Caputo fractional 

derivative of order n < α < n + 1. 
Remark 1. It should be noted that in the foreign literature operator (7) is called the Caputo 

fractional derivative and is denoted as . This mathematical construction was introduced by the Italian 
mathematician M. Caputo in 1967 in [5] and was widely used in his monograph [15]. However, the 
Soviet mechanic A.N. Gerasimov in 1948, in his work [13], devoted to problems of plasticity, introduced 
a partial fractional derivative of the order 0 < α < 1: 

. 
Therefore, in the future, in the dissertation work, we will call the operator (7) the Gerasimov-

Caputo operator. 
Remark 2. The Gerasimov-Caputo operator of order n < α < n + 1 is related to the Riemann-

Liouville operator by the relation: 

.                       (8) 
According to relation (8), the Gerasimov-Caputo operator coincides with the Riemann-Liouville 

operator if the relation x(n) (0) = 0 is satisfied. We introduce several important definitions. 
Definition 4. For arbitrary α ∈ R and β ≤ 0, the composition law 

.                (9) 
Definition 5. For n − 1 < β ≤ n, n ∈ N, the generalized Newton-Leibniz formula is true 

.   (10) 
Definition 6. An integration-by-parts formula is valid for α ≤ 0 
 

(11) 
Definition 7. The fractional differentiation of the product of two functions can be found by the 

generalized Leibniz rule 
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,            (12) 
where coefficient 

. 
Consider fractional operators on some elementary functions. The fractional Riemann-Liouville 

derivative of unity is different from zero: 

(13) 
However, the fractional Gerasimov-Caputo derivative of unity is zero. 

.                                 (14) 
According to relations (13) and (14), the following relations are valid: 

 
The fractional Riemann-Liouville derivative of a power function has the form 
 

(15) 

 
Here we have used the definition of the beta function. Similarly, it can be shown that the fractional 

Gerasimov-Caputo derivative of a power function coincides with (15). 

.                     (16) 
The solution of linear differential equations of fractional orders can be found using the Fourier 

and Laplace integral transforms. For the Riemann-Liouville operator, the Laplace transform has the 
form: 

     (17) 
 

For the Gerasimov-Caputo operator, the following Laplace transform formula is valid: 
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              (18) 
The Fourier transform of the Riemann-Liouville fractional derivative has the form: 

.  (19) 
Remark 3. Formula (19) does not apply when α ≥ 1, because its right-hand side may not exist in 

the usual sense [15]. Therefore, sometimes another definition of the fractional derivative is introduced. 
Definition 8. The fractional Riesz derivative is the following operator 

(20) 
Fourier transform of the Riesz derivative: 

.   (21) 
Consider the difference analogue of the Riemann-Liouville operator. 
 
Definition 9. The fractional derivative of Grunwald-Letnikov is the following operator 

(22) 

where  – sampling step, N – amount of points. 
Using formula (22), one can approximate the Riemann-Liouville operator as follows: 

(23) 
where tn−k = tn − kτ. 
The Gerasimov-Caputo operator is approximated differently [4]: 

(24) 
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. 
Here (k + 1)τ = t. In the case 1 < α < 2, the approximation has the form: 

,       (25) 
where aj = (j + 1)2−α − j2−α. 
In the general case, when n − 1 < α < n, formulas (24) and (25) are generalized: 

, (26) 
where aj = (j + 1)n−α − jn−α. 
Remark 4. Note that all the above 

formulas are valid for functions of several 
variables. In this case, we will work with 
fractional partial derivatives. 

Remark 5. There are other definitions of 
fractional derivatives and integrals. Some are 
modifications of the Riemann-Liouville or 
Gerasimov-Caputo operators. Others are 
defined differently. The question of choosing 
one or another fractional operator for solving an 
applied problem is open. Usually, fractional 
operators are chosen for reasons of simplicity in 
mathematical transformations and 
interpretation of simulation results. For 
example, for an equation with the Gerasimov-
Caputo operator, traditional initial and 
boundary conditions are set, which is important 

for physical applications. The Riesz operator is 
convenient for the integral Fourier transform. 

The fractional calculus is considered in 
more detail in the books [4]-[7], [3], [2]. It 
should be noted that there are different 
directions in the theory of fractional calculus, 
for example, fractional analysis based on the d-
operator [2] or fractional stable distributions 
(stochastic approach) [4]. 

Definition 10. Dynamic systems or 
models in which derivatives of fractional orders 
are present will be called fractional dynamic 
systems or fractional dynamic models. 

Based on the definitions discussed above, 
we can write a fractional mathematical model 
for constructing an artificial ECG of a healthy 
person in the form of the following Cauchy 
problem: 
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Here derivatives of fractional orders are 
understood in the sense  

Definitions 7, where 0 < α,β,γ < 1.   
Remark 6. Note that in the particular case 

α = β = γ = 1, the fractional McSherry 
mathematical model goes over into the ordinary 
McSherry mathematical model (1). 

To solve problem (27), we use the theory 
of finite difference schemes. To do this, we 
assume that the functions x(t), y(t), z(t) have the 

necessary smoothness conditions. Consider a 
uniform grid along the time coordinate. Let's 
divide the segment [0,T] into N equal parts with 
the discretization step τ = T/N. Then the 
solution functions x(t),y(t),z(t) transform into 
grid functions x(tk),y(tk),z(tk), where tk = kτ, k 
= 1,..,N. Approximations of derivative fractional 
orders according to Definition 26 for n=1 are 
given by the following formulas: 
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Taking into account the approximations given above, we can write down the discrete analogue of 
problem (28). 
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  (29) 

 
Conclusions 
The article gives the concept of heredity 
(hereditary) and explains the transition to 

fractional calculus. Some aspects of fractional 
calculus are given, definitions, properties, 
remarks are given. The statement of the 



Volume 18| May 2023                                                                                                                                           ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 110 

problem is given, as well as the method of its 
solution. The solution technique is based on the 
approximation of the Gerasimov-Caputo 
fractional order derivatives and the solution of 
the discrete problem (29). Discrete problem 
(29) is a nonlocal explicit finite difference 
scheme. Such schemes have the first order of 
accuracy. It should also be noted that the issues 
of stability and convergence were not 
considered in the dissertation work. The 
correctness of the calculations was confirmed 
by the well-known artificial ECG graphs 
obtained earlier in [1] and [3]. 
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