

 $λ$ -ging (special ring) and $λ$ -field (special field)

1.Introduction .

Let G be a non empty set, then $(G,*)$ is called mathematical system if $*$ is binary operation defined on G . Let $(G,*)$ is mathematical system, then $(G,*)$ is called semi group if $*$ is associative i.e $(a * b) * c = a * (b * c)$ for all $a, b, c \in G$. Let $(G,*)$ is semi group, then $(G,*)$ is called group if there exist $e \in G$ such that $a * e = e * a = a$ for all $a \in G$ and for all

 $a \in G$ there exist

 $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$. The notion of group was introduced by Galuis in 1830 [1], [2]. Let $(G,*)$ be a commutative group and $(G, \#)$ be a semi group, then $(G, *, #)$ is called a ring if $a#(b * c) = (a#b) * (a#c)$ and $(a * b)$ # $c = (a \# c) * (b \# c)$ for all $a, b, c \in G$ $[3]$. Let $(G, *)$, $(G - \{e\}, \#)$ be two commutative group, such that $a * e = e * a = a$ for all $\alpha \in G$, then $(G,*,\#)$ is called a field if

 $a#(b * c) = (a#b) * (a#c)$ and $(a * b) \#c =$ $(a \# c) * (b \# c)$ for all $a, b, c \in G$ [4]. **Example 1.1:** Let $A = \begin{cases} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \end{cases}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$: a is real number, $a \neq 0$, \times is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ab & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ for all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in A$, (A, \times) is semi group, there exist $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in A$ such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ \times $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ 0 0 for all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in A$. 1

For all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in A$ there exist $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\frac{1}{a}$ 0 0 0 $\in A$ such that

 $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times$ 1 $\frac{1}{a}$ 0 0 0 $=$ \vert 1 $\frac{1}{a}$ 0 0 0 $\mathbf{x} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

We get (A, \times) is group.

Theorem 1.2 :[2]

Let (G ,*) be a group, if $a * b = c$ then $b =$ $a^{-1} * c$ for all $a, b, c \in G$.

3. λ- group :

In this section we present the concepts of identity element , inverse element , special identity element and λ-group .

Definition 3.1:

Let (G , $*$) is mathematical system and α , $e_{\alpha} \in$ G, then e_a is called identity for a w.r.t $*$ (special identity for a) if

 $a * e_a = e_a * a = a$.

 e_a is called right identity for a w.r.t * if a * $e_a = a$.

 e_a is called left identity for a w.r.t * if e_a * $a = a$.

Example 3.2 :

 $(p(x), \cap)$ is mathematical system, let A, B \in $p(x)$ such that A is subset of B, then B is identity for A w.r.t \cap since $A \cap B = B \cap A = A$. **Example 3.3 :**

 (N, x) is mathematical system such that N is

the set natural nambers and \times is ordinary multiplication operation, let $n \in N$, then *n* is identity for 0 w.r.t \times since $n \times 0 = 0 \times n =$ 0 .

Remark 3.4 :

Let ($G,*$) be a group, then there exist $e \in G$ such that e is identity for all element in G , i.e e is general identity element.

Definition 3.5 :

Let ($G,*$) is mathematical system and α , α^{-1} $\in G$, then a^{-1} is called inverse for a w.r.t $*$ if $a * a^{-1} = a^{-1} * a = e_a$ such that e_a is identity for a w.r.t $*$.

 a^{-1} is called right inverse for a w.r.t * if a * $a^{-1} = e_a$ such that e_a is right identity or left identity for a w.r.t $*$.

 a^{-1} is called left inverse for a w.r.t $*$ if $a^{-1} * a = e_a$ such that e_a is right identity or left identity for a w.r.t $*$.

Example 3.6 :

 $(p(x), \cap)$ is mathematical system, let A, $C \in$ $p(x)$ such that A is subset of C, then C is inverse for A w.r.t ∩ since

 $A \cap C = C \cap A = B = A$, then B is identity for w.r.t ∩ since

 $A \cap B = B \cap A = A$.

Example 3.7 :

 (N, x) is mathematical system such that N is the set of natural nambers and \times is ordinary multiplication operation, let $n \in N$, then *n* is inverse for 0 w.r.t \times since $n \times 0 = 0 \times n = 0$, then 0 is identity for 0 since $0 \times 0 =$ $0 \times 0 = 0$.

Lemma 2.8 :

Let $(G,*)$ is mathematical system, $*^{-1}$ be an inverse operation for $*$, then $a *^{-1} a$ is left identity for a w.r.t $*$

Proof.

Let $b = a *^{-1} a$ by Definition 2.1, we get $b *$ $a = a$ by Definition 2.1, b is left identity for w.r.t ∗ .

Lemma 2.9 :

Let ($G,*$) be a semi group, if e_a is left

identity for a w.r.t *, then $e_a * e_a = e_a$ **Proof .** Let e_a is left identity for a w.r.t $*$, by Definition 2.1, we get $e_a * a = a$ $e_a * (e_a * a) = e_a * a , (G *)$ be a semi group i.e ∗ is associative $(e_a * e_a) * a = e_a * a$ by Lemma 2.6 (i), we get $e_a * e_a = e_a$ **Definition 3.10 :** Let $(G,*)$ be a semi group, then $(G,*)$ is called a λ-group if i) For all $a \in G$ there exist $e_a \in G$ such that $a * e_a = e_a * a = a$ i.e e_a is identity for a w.r.t * ii) For all $a \in G$ there exist $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e_a$ such that e_a is identity for a w.r.t $*(a*e_a = e_a*a = a)$ i.e a^{-1} is inverse for a w.r.t $*$. **Definition 3.11 :** Let $(G,*)$ be a semi group, then $(G,*)$ is called a λ -group (Special Group) if for all $\alpha \in G$, there exist $b, c \in G$ such that $a * b = b * a = a$ and $a * c = c * a = b$. **Example 3.12 :** $(p(Z), \cap)$ is λ - group such that Z is the set of integer numbers, since ($p(Z)$,∩) is semi group and for all $A \in P(Z)$, there exist A, $A \in P(Z)$ such that $A \cap A = A \cap A = A$ and $A \cap A = A \cap A = A$ i.e A is identity for A w.r.t \cap and A is inverse for A w.r.t ∩ . **Example 3.13** : $(Z, +)$ is λ - group such that Z is the set of integer numbers, $+$ is ordinary addition operation, since $(Z, +)$ is semi group and for all $n \in \mathbb{Z}$ there exist 0, $-n \in \mathbb{Z}$ such that $n + 0 = 0 + n = n$ and $n + (-n) =$ $(-n) + n = 0$ i.e 0 is identity for n w.r.t + and $-n$ is inverse for n w.r.t + **Example 3.14** : Let $A = \begin{cases} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \end{cases}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$: a is real number, $a \neq 0$, \times is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ab & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ for all

 $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in A$, (A, \times) is semi group, for all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in A$ there exist $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\overline{}$ 1 $\frac{1}{a}$ 0 0 0 ϵ A such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ And $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times$ 1 $\frac{1}{a}$ 0 0 0 $=$ \vert 1 $\frac{1}{a}$ 0 $0 \quad 0$ $\vert \times \vert_{0}^{a} \vert_{0}^{0}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ i.e $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$ is identity for $\begin{bmatrix} a & 0 \ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ w.r.t \times and $\overline{}$ 1 $\frac{1}{a}$ 0 $0 \quad 0$ is inverse for $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ w.r.t \times , we get (A, x) is π - group, also (A, x) is group by Example 1.1 . It is clear that every group, is a λ - group, but the converse is not true in general , as shown by the following examples : **Example 3.15 :** Let G is the set of real numbers, we define operation $*$ on G by $a * b = a$ for all $a, b \in$ $G \rightarrow \mathbb{R}$ is binary operation and \ast is associative since $(a * b) * c = a * b = a$ and $a * b = a * b = a$ $(b * c) = a$ i.e $(a * b) * c = a * (b * c)$ for all $a, b, c \in G$, we get $(G, *)$ is semi group, for all $a \in G$ there exist $a \in G$ such that $a *$ $a = a * a = a$ and $a * a = a * a = a$ i.e a is identity for a w.r.t $*$ and a is inverse for a w.r.t *, we get $(G,*)$ is λ -group. Let $e \in G$ such that $a * e = e * a = a$ for all $a \in G$, we get $e = a$ for all $a \in G$, we obtain $(G,*)$ is not group. **Example 3.16 :** Let $A = \begin{cases} 0 & a \\ 0 & b \end{cases}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$: a, b are real numbers , b \neq $0\}$, \times is ordinary multiplication operation on matrices such that $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}$

 $\begin{bmatrix} 0 & ad \\ 0 & bd \end{bmatrix}$ for all $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \in A$, (A, \times) is semi group, for all $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix} \in A$ there exist

 $\left[\begin{matrix} 0 & \frac{a}{b} \end{matrix} \right]$ b 0 1 $|$ and $|$ $\frac{a}{b}$ b^2 $\begin{bmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{k} \end{bmatrix}$ \in A such that b $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ α \boldsymbol{b} 0 1 $\Big| = \Big| 0$ α \boldsymbol{b} 0 1 $\mathbf{x} \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$ And $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix} \times$ $0 \frac{a}{b}$ b^2 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ = \boldsymbol{b} $0 \frac{a}{b}$ b^2 $\begin{bmatrix} 0 & \frac{b^2}{b^2} \\ 0 & \frac{1}{b} \end{bmatrix} \times \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ \boldsymbol{b} $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$ = $\left[\begin{matrix} 0 & \frac{a}{b} \end{matrix} \right]$ b 0 1 I i.e $\begin{bmatrix} 0 & \frac{a}{b} \end{bmatrix}$ \boldsymbol{b} 0 1 is identity for $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$ w.r.t \times and [$0 \frac{a}{b^2}$ b^2 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is inverse b for $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$ w.r.t \times , we get (A, \times) is λ group Let $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \in G$ such that $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}$ = $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \times \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ for all $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix} \in G$, we get $\begin{bmatrix} 0 & ad \\ 0 & bd \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & u \\ 0 & b \end{bmatrix}$ and $\begin{bmatrix} 0 & cb \\ 0 & db \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ for all $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\in G$, we get $d = 1$ and $c = \frac{a}{b}$ $\frac{a}{b}$, if $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ then $c = 2$ i.e $\begin{bmatrix} 0 & c \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$, if $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ then $c = 0$ i.e $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, we obtain $(G, *)$ is not group .

Example 3.17 :

By Example 3.12, then ($P(X)$, ∩) is λ - group, but ($P(X)$,∩) is not group since, Let $B \in$ $P(X)$ such that $A \cap B = B \cap A = A$ for all $A \in P(X)$, we get A is subset of B for all $A \in$ $P(X)$ i.e $B = X$, Let for all $A \in P(X)$ there exist $C \in P(X)$ such that $A \cap C = C \cap A = X$, we get $A = C = X$, i.e $(P(X), \cap)$ is not group

Theroem 3.18 :

.

Let $(G,*)$ be a λ - group, if $a * b = c$ then

 $e_a * b = a^{-1} * c$ for all $a, b, c \in G$ such that e_a is identity for a w.r.t * and a^{-1} is inverse for a w.r.t $*$. **Proof .** Let $a * b = c$, $a^{-1} * (a * b) = a^{-1} * c$ such that a^{-1} is inverse for a w.r.t $*$, $(a^{-1} * a) * b = a^{-1} * c$ since $*$ is associative, we get $e_a * b = a^{-1} * c$. **Example 3.19 :** In Examle 3.16, (*A*, \times) is λ-group, find value of y if, $0x + 4y = 8$ and $0x + 2y = 4$, use matrixes mothed ? Solution : $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix}$ $\begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 8 \\ 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$ by theorem 3.18, we get $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix}$ $\begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix}$ = 0 1 $0 \frac{1}{2}$ 2 $\mathbf{x} \begin{bmatrix} 0 & 8 \\ 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$ such that $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ is identity for $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 7 \\ 0 & 2 \end{bmatrix}$ w.r.t \times and \vert 0 1 $0 \frac{1}{2}$ 2 $\left| \right|$ is inverse for $\left| \begin{matrix} 0 & 4 \\ 0 & 2 \end{matrix} \right|$ $\begin{bmatrix} 0 & 7 \\ 0 & 2 \end{bmatrix}$ w.r.t \times , $\begin{bmatrix} 0 & 2y \\ 0 & y \end{bmatrix}$ $\begin{bmatrix} 0 & 2y \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$, we get $y = 2$. **Example 3.20 :** Let = $\begin{cases} a & 0 \\ 0 & b \end{cases}$ $\begin{bmatrix} a & b \ 0 & b \end{bmatrix}$: a , b are real numbers , $a \neq$ 0, $b \neq 0$, \times is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \times \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix}$ for all $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix} \in A$, (A, \times) is semi group, there exist $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in A$ such that $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & b \\ 0 & b \end{bmatrix}$ \times $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ 0 b for all $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in A$. For all $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\begin{bmatrix} a & b \\ 0 & b \end{bmatrix} \in A$ there exist $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 1 $\frac{1}{a}$ 0 $\begin{bmatrix} a & b \\ 0 & \frac{1}{b} \end{bmatrix} \in A$ \boldsymbol{b} such that

Theroem 3.22 :

Let $(G,*)$ be a λ -group, if $a * b = c * b$ or $b * a = b * c$ and $e_a = e_b = e_c$, then $a =$ c for all $a, b, c \in G$ such that e_a is identity for *a* w.r.t $*$, e_b is identity for *b* w.r.t $*$ and e_c is identity for c w.r.t $*$. **Proof .** Let $a * b = c * b$, $(a * b) * b^{-1} = (c * b) * b$ b^{-1} , such that b^{-1} is inverse for b w.r.t * , $a * (b * b^{-1}) = c * (b * b^{-1})$, since * is associative, we get $a * e_b = c * e_b$, since $e_a = e_b = e_c$, we get: $a * e_a = c * e_c$ and $a = c$. Let $b * a = b * c$, $b^{-1} * (b * a) = b^{-1} *$ $(b * c)$, such that b^{-1} is inverse for b w.r.t *, $(b^{-1} * b) * a = (b^{-1} * b) * c$, since * is associative, we get $e_h * a = e_h * c$, since $e_a = e_b = e_c$, we get: $e_a * a = e_c * c$ and $a = c$. **Theroem 3.23 :** Let (G ,*) be a λ - group, e_a is identity for a w.r.t * and e_h is identity for b w.r.t *, then e_a is left identity for $a * b$ w.r.t $*$ and e_b is right identity for $a * b$ w.r.t $*$. **Proof .** since $*$ is associative, then $e_a * (a * b) =$ $(e_a * a) * b = (a * b)$ and $(a * b) * e_b = a * (b * e_b) = (a * b)$ i.e e_a is left identity for $a * b$ w.r.t $*$ and e_b is right identity for $a * b$ w.r.t $*$. **4. λ- ring (special ring) and λ- field (special field) : Definition 4.1 :** Let $(G,*)$ be a λ - group, then $(G,*)$ is called a commutative λ - group, if $a * b = b * a$ for all $a \in G$. **Example 4.2 :** $(p(Z), \cap)$ is a commutative λ - ring, such that is the set of integer . **Definition 4.3 :** Anon empty set G with two binary operation ∗ and # is said to be λ-ring (special ring) if : (i) $(G,*)$ is a commutative λ - group. (ii) $(G, \#)$ is a semi group.

Volume 16| March 2023 ISSN: 2795-7667

(iii) $a \# (b * c) = (a \# b) * (a \# c)$ (left distribution law) and $(a * b)$ # $c = (a \# c) * (b \# c)$ (right distribution law) , for all

 $a, b, c \in G$.

And it will be denoted by $(G, *, #)$.

Remark 4.4 :

Every ring is $λ$ -ring since every group is $λ$ group , but the converse is not true in general , as shown by the following examples :

Example 4.5 :

 $(p(Z), \cap, \cup)$ is λ - ring, such that Z is the set of integer ,

 $(p(Z), \cap, \cup)$ is not ring.

Definition 4.6 :

Anon empty set G with two binary operation ∗ and # is said to be λ-field (special field) if : (i) $(G,*)$ is a commutative λ -group. (ii) $(G - A, \#)$ is a commutative λ - group, such that $A = \{ e \in G : e * a = a * e = a , for some a \}$ $\in G$ } (iii) $a \# (b * c) = (a \# b) * (a \# c)$ (left

distribution law) and $(a * b)$ # $c = (a \# c) * (b \# c)$ (right distribution law) for all $a, b, c \in G$. And it will be denoted by $(G, *, #)$.

Remark 4.7 :

Every field is $λ$ -field since every group is $λ$ group , but the converse is not true in general , as shown by the following example :

Example 4.8 :

 $(p(Z), \cap, \cup)$ is λ - field, such that Z is the set of integer , but $(p(Z), \cap, \cup)$ is not field.

Reference:

1. [1] Rotman , J.J. " An introduction to the theory of groups " , **Volume 148 of Graduate Texts in Mathematics . Springer – Verlag , New York , Fourth**

edition , 1995 . [2] Alperin , J.L.And Bell , R.B. " Groups and representations " , **Volume 162 of Graduate Texts in Mathematics , Springer – Verlag , New York , 1995 .** [3] Hideyuki Matsumura Commutative Ring Theory **Cambridge University Press , 2002** . [4] Iain T.Adamson, " Introduction to Field Theory " , **New York , 1964 .**