đ	urasian Journal of Physics memisiry and Mathematics	On λ- group (special group)
Ahmed Mezher Marir		Al-Mustansiriya University , College of Education ,
		Department of Mathematics ,
		Specialty Algebra. Iraq
		E.mail: <u>ahmedmezher1402@gmail.com</u>
		Mobile: 07803184502
ABSTRACT	In this study, we define the concepts of inverse operation, identity element, inverse element, special identity element, λ -group (special group), λ -ring (special ring), λ -field (special field) and show that, i) Let (G ,*) is λ -group and $a * b = c$, then $e_a * b = a^{-1} * c$ for all $a, b, c \in G$ such that e_a is identity for a w.r.t *, a^{-1} is inverse for a w.r.t *. ii) Let (G ,*) be a λ -group, if $a * b = c$ and $e_a = e_b$, then $b = a^{-1} * c$ for all $a, b, c \in G$ such that e_a is identity for a w.r.t *, e_b is identity for b w.r.t * and a^{-1} is inverse for a w.r.t *. iii) Let (G ,*) be a λ -group, if $a * b = c * b$ or $b * a = b * c$ and $e_a = e_b = e_c$, then $a = c$ for all $a, b, c \in G$ such that e_a is identity for a w.r.t *, e_b is identity for b w.r.t * and e_c is identity for c w.r.t *. iv) Let (G ,*) be a λ -group, e_a is identity for a w.r.t * and e_b is identity for b w.r.t *, then e_a is left identity for $a * b$ w.r.t * and e_b is right identity for $a * b$ w.r.t *.	
		mathematical system , semi group , group , identity element , inverse element , special identity element , λ -group (special group

Keywords:

 λ -ging (special ring) and λ -field (special field)

1.Introduction.

 $a \in G$ there exist

Let *G* be a non empty set, then (G,*) is called mathematical system if * is binary operation defined on *G*. Let (G,*) is mathematical system, then (G,*) is called semi group if * is associative i.e (a * b) * c = a * (b * c) for all $a, b, c \in G$. Let (G,*) is semi group, then (G,*) is called group if there exist $e \in G$ such that a * e = e * a = a for all $a \in G$ and for all

),

 $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$. The notion of group was introduced by Galuis in 1830 [1], [2]. Let (G,*) be a commutative group and (G,#)be a semi group, then (G,*,#) is called a ring if a#(b*c) = (a#b) * (a#c) and (a*b)#c = (a#c) * (b#c) for all $a, b, c \in G$ [3]. Let (G,*), $(G - \{e\},\#)$ be two commutative group, such that a*e = e*a = afor all $a \in G$, then (G,*,#) is called a field if a#(b*c) = (a#b)*(a#c) and (a*b)#c = $(a\#c)*(b\#c) \text{ for all } a, b, c \in G [4].$ Example 1.1: Let $A = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \text{ is real number }, a \neq 0 \right\},$ × is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ab & 0 \\ 0 & 0 \end{bmatrix} \text{ for all}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} \in A, (A, \times) \text{ is semi group },$ there exist $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in A$ such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \text{ for all}$ $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \text{ for all}$

For all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in A$ there exist $\begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix} \in A$ such that

$$\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$ We get $(4, \mathbf{x})$ is group

We get (A, \times) is group.

Theorem 1.2 :[2]

Let (G, *) be a group, if a * b = c then $b = a^{-1} * c$ for all $a, b, c \in G$.

3. λ- group :

In this section we present the concepts of identity element , inverse element , special identity element and λ -group .

Definition 3.1:

Let (G,*) is mathematical system and a, $e_a \in G$, then e_a is called identity for a w.r.t * (special identity for a) if

 $a * e_a = e_a * a = a \,.$

 e_a is called right identity for a w.r.t * if $a * e_a = a$.

 e_a is called left identity for a w.r.t * if $e_a * a = a$.

Example 3.2 :

 $(p(x), \cap)$ is mathematical system, let $A, B \in$ p(x) such that A is subset of B, then B is identity for A w.r.t \cap since $A \cap B = B \cap A = A$. **Example 3.3 :**

(N ,×) is mathematical system such that N is

the set natural nambers and \times is ordinary multiplication operation, let $n \in N$, then n is identity for 0 w.r.t \times since $n \times 0 = 0 \times n =$ 0.

Remark 3.4 :

Let (G,*) be a group, then there exist $e \in G$ such that e is identity for all element in G, i.e e is general identity element.

Definition 3.5 :

Let (*G*,*) is mathematical system and *a*, $a^{-1} \in G$, then a^{-1} is called inverse for *a* w.r.t * if $a * a^{-1} = a^{-1} * a = e_a$ such that e_a is identity for *a* w.r.t *.

 a^{-1} is called right inverse for a w.r.t * if $a * a^{-1} = e_a$ such that e_a is right identity or left identity for a w.r.t *.

 a^{-1} is called left inverse for a w.r.t * if $a^{-1} * a = e_a$ such that e_a is right identity or left identity for a w.r.t *.

Example 3.6 :

 $(p(x), \cap)$ is mathematical system, let $A, C \in$ p(x) such that A is subset of C, then C is inverse for A w.r.t \cap since

 $A \cap C = C \cap A = B = A$, then *B* is identity for *A* w.r.t \cap since

$$A \cap B = B \cap A = A \, .$$

Example 3.7 :

 (N, \times) is mathematical system such that *N* is the set of natural nambers and \times is ordinary multiplication operation, let $n \in N$, then *n* is inverse for 0 w.r.t \times since $n \times 0 = 0 \times n = 0$, then 0 is identity for 0 since $0 \times 0 =$ $0 \times 0 = 0$.

Lemma 2.8 :

Let (G,*) is mathematical system, $*^{-1}$ be an inverse operation for *, then $a *^{-1} a$ is left identity for a w.r.t *

Proof.

Let $b = a *^{-1} a$ by Definition 2.1, we get b * a = a by Definition 2.1, b is left identity for a w.r.t *.

Lemma 2.9 :

Let (G,*) be a semi group, if e_a is left

identity for *a* w.r.t *, then $e_a * e_a = e_a$ Proof. Let e_a is left identity for a w.r.t *, by Definition 2.1, we get $e_a * a = a$ $e_a * (e_a * a) = e_a * a$, (*G*,*) be a semi group i.e * is associative $(e_a * e_a) * a = e_a * a$ by Lemma 2.6 (i), we get $e_a * e_a = e_a$ **Definition 3.10** : Let (G,*) be a semi group, then (G,*) is called a λ -group if i) For all $a \in G$ there exist $e_a \in G$ such that $a * e_a = e_a * a = a$ i.e e_a is identity for a w.r.t * ii) For all $a \in G$ there exist $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e_a$ such that e_a is identity for a w.r.t * ($a * e_a = e_a * a = a$) i.e a^{-1} is inverse for a w.r.t *. **Definition 3.11 :** Let (G_{*}) be a semi group, then (G_{*}) is called a λ -group (Special Group) if for all $a \in G$, there exist $b, c \in G$ such that a * b = b * a = a and a * c = c * a = b. **Example 3.12** : $(p(Z), \cap)$ is λ -group such that *Z* is the set of integer numbers, since $(p(Z), \cap)$ is semi group and for all $A \in P(Z)$, there exist A, $A \in P(Z)$ such that $A \cap A = A \cap A = A$ and $A \cap A = A \cap A = A$ i.e A is identity for A w.r.t \cap and A is inverse for A w.r.t \cap . Example 3.13 : (Z, +) is λ -group such that Z is the set of integer numbers, + is ordinary addition operation, since (Z, +) is semi-group and for all $n \in Z$ there exist 0, $-n \in Z$ such that n + 0 = 0 + n = n and n + (-n) =(-n) + n = 0i.e 0 is identity for n w.r.t + and -n is inverse for *n* w.r.t + **Example 3.14**: Let $A = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \text{ is real number }, a \neq 0 \right\},$ × is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ab & 0 \\ 0 & 0 \end{bmatrix}$ for all

 $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} \in A$, (A, \times) is semi group, for all $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in A$ there exist $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ a & 0 \\ 0 & 0 \end{bmatrix} \in A$ such that $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ And $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ i.e $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is identity for $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ w.r.t × and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is inverse for $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ w.r.t \times , we get (A, \times) is π -group, also (A, \times) is group by Example 1.1. It is clear that every group , is a λ - group , but the converse is not true in general, as shown by the following examples : Example 3.15 : Let *G* is the set of real numbers , we define operation * on *G* by a * b = a for all $a, b \in$ G, * is binary operation and * is associative since (a * b) * c = a * b = a and a * b = a(b * c) = a i.e (a * b) * c = a * (b * c) for all $a, b, c \in G$, we get (G, *) is semi group, for all $a \in G$ there exist $a, a \in G$ such that a *a = a * a = a and a * a = a * a = a i.e a is identity for a w.r.t * and a is inverse for aw.r.t * , we get $(G_{,*})$ is λ -group. Let $e \in G$ such that a * e = e * a = a for all $a \in G$, we get e = a for all $a \in G$, we obtain (G,*) is not group. Example 3.16 : Let $A = \begin{cases} \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} : a, b \text{ are real numbers }, b \neq d \end{cases}$ 0, × is ordinary multiplication operation on matrices such that $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix}$ $\begin{bmatrix} 0 & ad \\ 0 & bd \end{bmatrix} \text{ for all } \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}, \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \in A, \quad (A, \times) \text{ is}$ semi group, for all $\begin{bmatrix} 0 & a \\ 0 & h \end{bmatrix} \in A$ there exist

 $\begin{bmatrix} 0 & \frac{a}{b} \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & \frac{a}{b^2} \\ 0 & \frac{1}{c} \end{bmatrix} \in A$ such that $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & \frac{a}{b} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{a}{b} \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ And $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & \frac{a}{b^2} \\ 0 & \frac{1}{a} \end{bmatrix} = \begin{bmatrix} 0 & \frac{a}{b^2} \\ 0 & \frac{1}{a} \end{bmatrix} \times \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} =$ $\begin{bmatrix} 0 & \frac{a}{b} \\ 0 & 1 \end{bmatrix}$ i.e $\begin{bmatrix} 0 & \frac{a}{b} \\ 0 & 1 \end{bmatrix}$ is identity for $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ w.r.t × and $\begin{bmatrix} 0 & \frac{a}{b^2} \\ 0 & \frac{1}{b} \end{bmatrix}$ is inverse for $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ w.r.t ×, we get (A, \times) is λ group Let $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \in G$ such that $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \times \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} =$ $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} \times \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \text{ for all } \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \in G,$ we get $\begin{bmatrix} 0 & ad \\ 0 & bd \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ and $\begin{bmatrix} 0 & cb \\ 0 & db \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ for all $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \in G$, we get d = 1 and $c = \frac{a}{b}$, if $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ then c = 2 i.e $\begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$, if $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ then } c = 0 \text{ i.e } \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix} =$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$ $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, we obtain (G, *) is not group.

Example 3.17 :

By Example 3.12, then $(P(X), \cap)$ is λ -group, but $(P(X), \cap)$ is not group since, Let $B \in$ P(X) such that $A \cap B = B \cap A = A$ for all $A \in P(X)$, we get A is subset of B for all $A \in$ P(X) i.e. B = X, Let for all $A \in P(X)$ there exist $C \in P(X)$ such that $A \cap C = C \cap A = X$, we get A = C = X, i.e. $(P(X), \cap)$ is not group

Theroem 3.18 :

Let (G,*) be a λ -group, if a * b = c then

 $e_a * b = a^{-1} * c$ for all $a, b, c \in G$ such that e_a is identity for a w.r.t * and a^{-1} is inverse for a w.r.t * . Proof. Let a * b = c, $a^{-1} * (a * b) = a^{-1} * c$ such that a^{-1} is inverse for a w.r.t *, $(a^{-1} * a) * b = a^{-1} * c$ since * is associative, we get $e_a * b = a^{-1} * c$. Example 3.19 : In Examle 3.16, (A, \times) is λ -group, find value of *y* if, 0x + 4y = 8 and 0x + 2y = 4, use matrixes mothed? Solution : $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 8 \\ 0 & 4 \end{bmatrix}$ by theorem 3.18, we get $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & \frac{1}{2} \end{bmatrix} \times \begin{bmatrix} 0 & 8 \\ 0 & 4 \end{bmatrix}$ such that $\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ is identity for $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$ w.r.t × and $\begin{bmatrix} 0 & 1 \\ 0 & \frac{1}{2} \end{bmatrix}$ is inverse for $\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$ w.r.t × , $\begin{bmatrix} 0 & 2y \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$, we get y = 2. Example 3.20 : Let = $\begin{cases} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$: *a*, *b* are real numbers, $a \neq a \neq b$ $0, b \neq 0$, × is ordinary multiplication operation on matrices such that $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \times \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix} \text{ for all}$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in A$, (A, \times) is semi group, there exist $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in A$ such that $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \times$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ for all $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in A$ For all $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in A$ there exist $\begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{a} \end{bmatrix} \in A$ such that

$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \times \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$			
We get (A, x) is group , also (A, x) is λ -			
group.			
Now, Find value of pair (x, y) if, $3x + 0y =$			
12 and $0x + 5y = 10$, use matrixes mothed?			
Solution :			
$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \times \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 12 & 0 \\ 0 & 10 \end{bmatrix}$ by Theorem 1.2			
, we get			
$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}^{-1} \times \begin{bmatrix} 12 & 0 \\ 0 & 10 \end{bmatrix}$			
$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \times \begin{bmatrix} 12 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$, we get			
$\begin{bmatrix} 0 & y \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 & 10 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^{2}$			
(x, y) = (4, 2). Also			
$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \times \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 12 & 0 \\ 0 & 10 \end{bmatrix}$ by theorem 3.18			
, we get			
[1 1]			
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 1 \\ 0 & \frac{1}{3} \end{bmatrix} \times \begin{bmatrix} 12 & 0 \\ 0 & 10 \end{bmatrix}$ such			
[5]			
that $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is identity			
$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$			
for $\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$ w.r.t \times and $\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$ is inverse			
for $\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$ w.r.t \times , $\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$, we get			
(x, y) = (4, 2).			
Theroem 3.21 :			
Let (<i>G</i> ,*) be a λ -group, if $a * b = c$ and			
$e_a = e_b$, then			
$b = a^{-1} * c$ for all $a, b, c \in G$ such that e_a is			
identity for a w.r.t $*$, e_b is identity for b			
w.r.t $*$ and a^{-1} is inverse for a w.r.t $*$.			
Proof.			
Let $a * b = c$, $a^{-1} * (a * b) = a^{-1} * c$			
such that a^{-1} is inverse for a w.r.t $*$,			
$(a^{-1} * a) * b = a^{-1} * c$, since * is			
associative, we get: $e_a * b = a^{-1} * c$, since $e_a = e_a$, we get:			
since $e_a = e_b$, we get : $e_b * b = a^{-1} * c$ and $b = a^{-1} * c$.			
$e_b * v = a - *c$ and $v = a - *c$.			

Theroem 3.22 : Let (G,*) be a λ -group, if a * b = c * b or b * a = b * c and $e_a = e_b = e_c$, then a =*c* for all $a, b, c \in G$ such that e_a is identity for a w.r.t * , e_b is identity for b w.r.t *and e_c is identity for c w.r.t * . **Proof**. Let a * b = c * b, $(a * b) * b^{-1} = (c * b) *$ b^{-1} , such that b^{-1} is inverse for b w.r.t *, $a * (b * b^{-1}) = c * (b * b^{-1})$, since * is associative, we get $a * e_b = c * e_b$, since $e_a = e_b = e_c$, we get : $a * e_a = c * e_c$ and a = c. Let b * a = b * c, $b^{-1} * (b * a) = b^{-1} *$ (b * c), such that b^{-1} is inverse for b w.r.t *, $(b^{-1} * b) * a = (b^{-1} * b) * c$, since * is associative, we get $e_b * a = e_b * c$, since $e_a = e_b = e_c$, we get: $e_a * a = e_c * c$ and a = c. **Theroem 3.23 :** Let (G,*) be a λ - group , e_a is identity for aw.r.t * and e_b is identity for b w.r.t * , then e_a is left identity for a * b w.r.t * and e_b is right identity for a * b w.r.t * . Proof. since * is associative, then $e_a * (a * b) =$ $(e_a * a) * b = (a * b)$ and $(a * b) * e_b = a * (b * e_b) = (a * b)$ i.e e_a is left identity for a * b w.r.t * and e_b is right identity for a * b w.r.t * . 4. λ - ring (special ring) and λ - field (special field) : **Definition 4.1 :** Let (G,*) be a λ -group, then (G,*) is called a commutative λ -group, if a * b = b * a for all $a \in G$. Example 4.2 : $(p(Z), \cap)$ is a commutative λ -ring, such that Z is the set of integer . **Definition 4.3** : Anon empty set *G* with two binary operation * and # is said to be λ -ring (special ring) if (i) (G,*) is a commutative λ -group. (ii) (*G*, #) is a semi group.

Volume 16 | March 2023

(iii) a#(b*c) = (a#b)*(a#c) (left distribution law) and (a*b)#c = (a#c)*(b#c) (right distribution law), for all $a, b, c \in G$.

And it will be denoted by (G, *, #).

Remark 4.4 :

Every ring is λ -ring since every group is λ group, but the converse is not true in general, as shown by the following examples :

Example 4.5 :

(p(Z), \cap , \cup) is λ -ring, such that Z is the set of integer,

 $(p(Z), \cap, \cup)$ is not ring.

Definition 4.6 :

Anon empty set *G* with two binary operation * and # is said to be λ -field (special field) if : (i) (*G*,*) is a commutative λ -group. (ii) (*G* - *A*,#) is a commutative λ -group, such that $A = \{e \in G : e * a = a * e = a, for some \ a \in G \}$ (iii) a#(b * c) = (a#b) * (a#c) (left distribution law) and (a * b)#c = (a#c) * (b#c) (right

distribution law) for all $a, b, c \in G$.

And it will be denoted by (G,*,#).

Remark 4.7 :

Every field is λ -field since every group is λ -group, but the converse is not true in general, as shown by the following example:

Example 4.8 :

 $(p(Z), \cap, \cup)$ is λ -field, such that Z is the set of integer, but $(p(Z), \cap, \cup)$ is not field.

Reference:

 [1] Rotman , J.J. " An introduction to the theory of groups " , Volume 148 of Graduate Texts in Mathematics . Springer – Verlag , New York , Fourth edition , 1995 . [2] Alperin , J.L.And Bell , R.B. " Groups and representations " , Volume 162 of Graduate Texts in Mathematics , Springer – Verlag , New York , 1995 . [3] Hideyuki Matsumura , " Commutative Ring Theory " , Cambridge University Press , 2002 . [4] Iain T.Adamson, " Introduction to Field Theory " , New York , 1964 .