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1.Introduction 
       Several disciplines, including epidemiology, 
biomedical research, health and life sciences, 
and others frequently use repeated 
measurements analysis. The univariate 
repeated measurements analysis of variance 
has received a lot of literature. [6][12]. The 
term "repeated measurements" refers to data 
when each experimental unit's response 
variable is measured repeatedly, sometimes 
under various experimental conditions. [10]. 
Repeated measures in a number of research 
contexts, designs with two or more 
independent groups are among the most 
popular. When parametric model assumptions 
are broken, a number of statistical techniques 
have been offered for interpreting data from 
split-plot designs. [7]. Data comes in two 
varieties: balanced data and unbalanced data. 
In a balance RM design, all of the experimental 
units' measurement occasions are the same, 
however in an unbalance data design, some of 
the experimental units' measurement times are 

different. [11]. Several studies and research 
projects are interested in examining repeated 
measures models, particularly in those models' 
analysis of variance and model parameter 
estimation. Following are some recent research 
on estimators and analysis of variance for 
repeated measurement models that we will 
quickly cover in this historical review: Al-
Mouel. in (2004)[2], compared estimators and 
analyzed the multivariate repeated measures 
models. Mohaisen  and Swadi in (2014) , 
studied the one-way repeated measurements 
model by using the Bayesian approach based 
on Markov Chain Monte Carlo. The one-way 
repeated measurements model is studied using 
the Bayesian approach as a mixed model, and 
they investigate the consistency property of the 
Bayes factor for testing the fixed effects linear 
one-way repeated measurements model 
against the mixed one-way repeated 
measurements alternative model. They 
discovered the analytical form of the Bayes 
factor and demonstrated its consistency under 
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some prior and design matrix constraints. 
[7],[8],[9],[10].AL-Mouel and Al-Isawi  in 
(2019)[1], They computed the quadratic 
unbiased estimator that has the least variance 
(best quadratic unbiased estimate (BQUE)) by 
using the analysis of variance (ANOVA) method 
of estimating the variance components. They 
studied best quadratic unbiased estimator of 
variance components for balanced data for 
repeated measurement model (RMM).. AL-
Mouel and AL-Hasan in(2021)[4], analyzed 
statistical inference in models with repeated 
measurements and variance components..AL-
Mouel and Ali in(2021)[5], research on the 
repeated measurements model's random 

effects.AL-Mouel and Abd-Ali in(2021)[3], 
study on the estimate of variance components 
for the repeated measurements model. 
In this paper, studied the maximum likelihood 
estimators and restricted maximum likelihood 
estimators of the parameters for our model. 
2. One-Way Repeated Measurements Model 
For unbalanced data, we take into account the 
one-way repeated measurements model 
(where the number of observations is unequal 
in each levels). The model is given a 
mathematical formulation. Then, we go over a 
few estimator properties and methods for 
estimating the model's parameters. 

 
2.1 The Mathematical model  
Consider the one-way  repeated measurements model for unbalanced data, 
𝜐ℓℒ𝜘 = 𝜗 + 𝜉ℒ + 𝜁𝜘 + (𝜉𝜁)ℒ𝜘 + 𝜍ℓ(ℒ) + 𝑒ℓℒ𝜘 ,                                               (2.1.1)  

where : 𝜐ℓℒ𝜘   is the response measurement at  time 𝜘 for unit ℓ within group ℒ, 
ℓ = 1,2, … , 𝑛ℒ   is an index for experimental unit within group ℒ, 
ℒ = 1,2, … , 𝑞  is an index for levels of the between-units factor (Group) , 
𝜘 = 1,2, … , 𝑝  is an index for levels of the within-units factor (Time) , 
𝜗  is the overall mean ,and  𝝃𝓛 is the added effect for treatment group ℒ, 
𝜁𝜘    is the added effect for time 𝜘 ,  
(𝜉𝜁)ℒ𝜘  is the added effect for the group ℒ × time 𝜘 (Interaction) , 
𝜍ℓ(ℒ)   is the random effect  due to experimental unit ℓ within treatment group ℒ , 

𝑒ℓℒ𝜘    is the random error time 𝜘 for unit ℓ within group ℒ , 
under the following considerations for the added parameter (added effect) 
∑ 𝜉ℒ

𝑞
ℒ=1 = 0   , ∑ 𝜁𝜘

𝑝
𝜘=1 = 0    , ∑ (𝜉𝜁)ℒ𝜘 = 0 ,𝑞

ℒ=1 ∀ 𝜘 = 1,2, … , 𝑝  ,                                   

  ∑ (𝜉𝜁)ℒ𝜘
𝑝
𝜘=1 = 0    ,     ∀ℒ = 1,2, … , 𝑞    ,       𝑤𝑖𝑡ℎ   𝑁 = ∑ 𝑛ℒℒ     , 𝑎𝑛𝑑 ∑ 𝑛ℒ𝜉ℒ

𝑞
ℒ=1 = 0 

} (2.1.2), 

Considering that the 𝜍ℓ(ℒ)′𝑠  and  𝑒ℓℒ𝜘′𝑠 are independent and identically with   

𝑒ℓℒ𝜘  ∼ 𝑖. 𝑖. 𝑑 𝑁(0, 𝜎𝑒
2)     ,             𝜍ℓ(ℒ)  ~𝑖. 𝑖. 𝑑 𝑁(0, 𝜎𝜍

2)  ,                                                      (2.1.3), 

2.2. Setting the One-way Repeated Measurements Model in Matric Form   
We can rewrite the model (2.1.1) as 
𝜐ℓℒ𝜘 = 𝜗 + 𝜉ℒ + 𝜁𝜘 + (𝜉𝜁)ℒ𝜘 + Ψℓℒ𝜘                                                                            (2.2.1) 
where , Ψℓℒ𝜘 = 𝜍ℓ(ℒ) + 𝑒ℓℒ𝜘  , Ψℓℒ𝜘~ 𝑁(0, 𝜎Ψ

2 ),   𝜎Ψ
2 = 𝜎𝜍

2 + 𝜎𝑒
2 , thus by taking matrix notation as 

Υ = ℵΦ + Ψ                                                                                                       (2.2.2) 
 where  

Υ = (Υ111, … , Υ𝑛11𝑝, Υ121, … , Υ𝑛22𝑝, … , Υ𝑛𝑞𝑞1, … , Υ𝑛𝑞𝑞𝑝)
𝑇

is N𝑝×1 -dimensional response vector, where 

𝑁 = ∑ 𝑛ℒ
𝑞
ℒ=1 , 

ℵ = [ℵ1, ℵ2, … , ℵ𝑞]
𝑇 is a  𝑁𝑝 × (𝑞 + 1)(𝑝 + 1) design matrix 

 Φ: is (𝑞 + 1)(𝑝 + 1)× 1 -dimensional vector of fixed effects parameters, and 

Ψ = (Ψ111, … ,Ψ𝑛11𝑝, Ψ121, … ,Ψ𝑛22𝑝, … , Ψ𝑛𝑞𝑞1, … ,Ψ𝑛𝑞𝑞𝑝)
𝑇

 is N𝑝×1 -dimensional 

The matrices of model in (2.2.1) are defined as : 
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Φ(𝑞 + 1)(𝑝 + 1)× 1 = [

𝜗
𝜉
𝜁
𝜌

] , 𝜗𝑁 × 1 = [

𝜗1

𝜗2

⋮
𝜗𝑁

] , 𝜉 = [

𝜉1

𝜉2

⋮
𝜉𝑞

] , 𝜁 = [

𝜁1
𝜁2

⋮
𝜁𝑞

] , 𝜍ℒ𝑛ℒ×1
= [

𝜍1

𝜍2

⋮
𝜍𝑛ℒ

],      

 𝜌 =

[
 
 
 
(𝜉𝜁)11

(𝜉𝜁)12

⋮
(𝜉𝜁)𝑞𝑝]

 
 
 
 , 𝑎𝑛𝑑 𝑒𝑁𝑝×1 = (𝑒111, ⋯ , 𝑒𝑛11𝑝, 𝑒121, ⋯ , 𝑒𝑛22𝑝,⋯ , 𝑒𝑛𝑞𝑞𝑝)′,     (2.2.3) 

 And design matrices ℵ  is 

ℵ = [

ℵ1

ℵ2

⋮
ℵq

]

Np×(q+1)(p+1) 

  ,                                                                                    (2.2.4) 

where    ℵℒ = 𝑗𝑛ℒ
⨂[𝑗𝑝, 𝑒ℒ⨂𝑗𝑝, 𝐼𝑛, 𝑒ℒ⨂𝐼𝑛]

𝑝×(𝑞+1)(𝑝+1)
, 

                ℵℒ = 𝑗𝑛ℒ
⨂[ℵ]𝑝×(𝑞+1)(𝑝+1),                                                                    (2.2.5) 

𝑒 = 𝐼𝑞 = [𝑒1, 𝑒2, ⋯ , 𝑒𝑞]
′ and ⨂ denotes the Kronecker product .From the model (2.2.2)  we have  

Υ~𝑁𝑁𝑝(ℵ𝛷, Θ) , where 

Θ = 𝐸(ΨΨ𝑇), 
𝛩 = 𝐼𝑁 ⊗ (𝜎𝑒

2𝐼𝑝 + 𝜎𝜍
2𝑒𝑒𝑇) , 

𝛩 = 𝜎𝑒
2(𝐼𝑁 ⊗ 𝐼𝑝) + 𝜎𝜍

2(𝐼𝑁 ⊗ 𝑒𝑒𝑇), 

replace 𝐼𝑝 by  (𝐸𝑝 + 𝐽𝑝) and 𝑒𝑒𝑇 by  𝑝𝐽𝑝 where 𝐽𝑝 =
1

𝑝
𝑒𝑒𝑇  and 𝐸𝑝 = 𝐼𝑝 − 𝐽𝑝 , 

then 

𝛩 = 𝜎𝑒
2 (𝐼𝑁 ⊗ (𝐸𝑝 + 𝐽𝑝)) + 𝜎𝜍

2(𝐼𝑁 ⊗ 𝑝𝐽𝑝), 

𝛩 = 𝜎𝑒
2(𝐼𝑁 ⊗ 𝐸𝑝) + 𝜎𝑒

2(𝐼𝑁 ⊗ 𝐽𝑝) + 𝑝𝜎𝜍
2(𝐼𝑁 ⊗ 𝐽𝑝), 

By assembling concepts that have the same matrices, we obtain 
𝛩 = 𝜎𝑒

2(𝐼𝑁 ⊗ 𝐸𝑝) + (𝜎𝑒
2 + 𝑝𝜎𝛿

2)(𝐼𝑁 ⊗ 𝐽𝑝) = 𝜎𝑒
2𝐴 + 𝜎1

2𝐵, 

where, 𝜎1
2 = 𝜎𝑒

2 + 𝑝𝜎𝛿
2   , 𝐴 =𝐼𝑁 ⊗ 𝐸𝑝  ,  𝐵 = 𝐼𝑁 ⊗ 𝐽𝑝  ,and  𝛩−1 =

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2 , 

  |𝛩| = (𝜎𝑒
2)(𝑁−𝑞)(𝑝−1)(𝜎1

2)(𝑁−𝑞), where |𝛩| =product of its characteristic roots . 
2.3 Estimation  
There are various methods available for estimating the model parameters from unbalanced data, we 
discuss some these methods and their properties. 
2.3.1- Maximum Likelihood Method 
The density function of  𝛶~𝑁𝑁𝑝(ℵ𝛷, 𝛩) ,  is 

𝑓(Υ 𝛷,𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |𝛩|
−1
2 exp (−

1

2
(Υ − ℵ𝛷)𝑇𝛩−1(Υ − ℵ𝛷)) ,                           

Then, the likelihood function is the joint density of the Υ’s that is 

𝐿(𝛶 𝛷,𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |𝛩|
−1

2 𝑒𝑥𝑝 (−
1

2
(𝛶 − ℵ𝛷)𝑇𝛩−1(𝛶 − ℵ𝛷)) ,  then 

𝐿(𝛶 𝛷, 𝜎1
2 , 𝜎𝑒

2 )⁄ = (2𝜋)
−𝑁𝑝

2 (𝜎𝑒
2)

−(𝑁−𝑞)(𝑝−1)

2 (𝜎1
2)

−(𝑁−𝑞)

2 exp (−
1

2
(𝛶 − ℵ𝛷)𝑇(

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2)(𝛶 − ℵ𝛷),(2.3.1) 

ln(𝐿) =
−𝑁𝑝

2
ln(2𝜋) −

(𝑁−𝑞)(𝑝−1)

2
ln(𝜎𝑒

2) −
(𝑁−𝑞)

2
ln(𝜎1

2) −
1

2
(𝛶 − ℵ𝛷)𝑇 (

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2) (𝛶 − ℵ𝛷) . 

Since, (𝛶 − ℵ𝛷)𝑇𝛩−1(𝛶 − ℵ𝛷) = 𝛶𝑇𝛩−1𝛶 − 2𝛷𝑇ℵ𝑇𝛩−1𝛶 + 𝛷𝑇ℵ𝑇𝛩−1ℵ𝛷 
the result is obtained by differentiating ln(L) with respect to ϕ and equalizing to zero. 
𝜕 ln(𝐿)

𝜕𝛷
=

−1

2
(2ℵ𝑇𝛩−1ℵ𝛷 − 2ℵ𝑇𝛩−1𝛶) = 0 ,⇒ ℵ𝑇𝛩−1ℵ𝛷̂ = ℵ𝑇𝛩−1𝛶 , 

∴ 𝛷̂ = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶).                                                                     (2.3.2) 
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We can write ln(L) as 

ln(𝐿) =
−𝑁𝑝

2
ln(2𝜋) −

(𝑁−𝑞)(𝑝−1)

2
ln(𝜎𝑒

2) −
(𝑁−𝑞)

2
ln(𝜎𝑒

2 + 𝑝𝜎𝜍
2) −

1

2
(𝛶 − ℵ𝛷)𝑇 (

𝐴

𝜎𝑒
2 +

𝐵

𝜎𝑒
2+𝑝𝜎𝜍

2) (𝛶 − ℵ𝛷). 

Now, differentiate ln(L) with respect to 𝜎𝜍
2 𝑎𝑛𝑑 𝜎𝑒

2  and equate to zero, we get 

𝜕 𝑙𝑛(𝐿)

𝜕𝜎𝑒
2 = −

(𝑁−𝑞)(𝑝−1)

2𝜎𝑒
2 −

(𝑁−𝑞)

2(𝜎𝑒
2+𝑝𝜎𝜍

2)
+

1

2
(𝛶 − ℵ𝛷̂)

𝑇
(

𝐴

𝜎𝑒
4 +

𝐵

(𝜎𝑒
2+𝑝𝜎𝜍

2)
2) (𝛶 − ℵ𝛷̂) = 0 ,  (2.3.3) 

and  
𝜕 𝑙𝑛(𝐿)

𝜕𝜎𝛿
2 = −

(𝑁−𝑞)𝑝

2(𝜎𝑒
2+𝑝𝜎𝜍

2)
 +

1

2
(𝛶 − ℵ𝛷̂)

𝑇
(

𝑝𝐵

(𝜎𝑒
2+𝑝𝜎𝜍

2)
2) (𝛶 − ℵ𝛷̂) = 0 ,         (2.3.4)  

From (2.3.3), we get  →
𝜕 𝑙𝑛(𝐿)

𝜕𝜎𝑒
2 =

−(𝑁−𝑞)(𝑝−1)𝜎̂𝑒
2+(𝛶−ℵ𝛷̂)𝑇𝐴(𝛶−ℵ𝛷̂)

2𝜎̂𝑒
4 = 0  ,           

→ (𝛶 − ℵ𝛷̂)
𝑇
𝐴(𝛶 − ℵ𝛷̂) = (𝑁 − 𝑞)(𝑝 − 1)𝜎̂𝑒

2  , 

∴ 𝜎̂𝑒
2  =

1

(𝑁−𝑞)(𝑝−1)
 (𝛶 − ℵ𝛷̂)

𝑇
𝐴(𝛶 − ℵ𝛷̂) .                                                    (2.3.5) 

Now, from (2.3.4) 

𝜕 𝑙𝑛(𝐿)

𝜕𝜎𝜍
2

=
−(𝑁 − 𝑞)𝑝(𝜎̂𝑒

2 + 𝑝𝜎̂𝜍
2) + 𝑝(𝛶 − ℵ𝛷̂)

𝑇
𝐵(𝛶 − ℵ𝛷̂)

2(𝜎̂𝑒
2 + 𝑝𝜎̂𝜍

2)
2 = 0 , 

→ 𝑝(𝛶 − ℵ𝛷̂)
𝑇
𝐵(𝛶 − ℵ𝛷̂) = (𝑁 − 𝑞)𝑝(𝜎̂𝑒

2 + 𝑝𝜎̂𝜍
2), 

∴ 𝜎̂𝜍
2 =

1

𝑝(𝑁−𝑞)
(𝛶 − ℵ𝛷̂)

𝑇
𝐵(𝛶 − ℵ𝛷̂) −

1

𝑝
𝜎̂𝑒

2 .                                                     (2.3.6) 

Thus, it is evident that 

𝜎̂1
2 = 𝜎̂𝑒

2 + 𝑝𝜎̂𝜍
2 = 𝜎̂𝑒

2 +
𝑝

𝑝(𝑁 − 𝑞)
(𝛶 − ℵ𝛷̂)

𝑇
𝐵(𝛶 − ℵ𝛷̂) −

𝑝

𝑝
𝜎̂𝑒

2  , 

∴ 𝜎̂1
2 =

1

(𝑁−𝑞)
(𝛶 − ℵ𝛷̂)

𝑇
𝐵(𝛶 − ℵ𝛷̂)    .                                                                (2.3.7) 

2.3.1.1 Important Estimators' Characteristics  
We present certain estimator qualities as theorems in this section. 
Theorem 2.3.1 
The maximum likelihood estimator of ϕ is the best linear unbiased estimator . 
Proof: 
Since 𝜙̂ = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶) , 
    𝐸(𝜙̂) = 𝐸[(ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶)], 
                   = (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1𝐸(𝛶), 
                   = [(ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1ℵ)]𝜙 = 𝜙 . 

𝑣𝑎𝑟(𝜙̂) = 𝑣𝑎𝑟[(ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶)], 

              = (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1(𝑣𝑎𝑟(𝛶))𝛩−1ℵ(ℵ𝑇𝛩−1ℵ)−1, 

              = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1ℵ)(ℵ𝑇𝛩−1ℵ)−1 = (ℵ𝑇𝛩−1ℵ)−1 . 

Now, let 𝜙̂∗ = 𝐷Υ  is another unbiased estimator for ϕ , where 
               𝐷 = (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1ℵ + 𝐺 , where G  is (q+1)×Np matrix, 
Since, 𝐸(𝜙̂∗) = 𝜙  

          𝐸(𝐷𝛶) = 𝐸([(ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1 + 𝐺 ]𝛶), 
                       = [(ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1 + 𝐺 ]𝐸(𝛶) 
                       = [(ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1 + 𝐺 ]ℵ𝜙  , 
           E(D 𝛶)= (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1ℵ𝜙 + 𝐺ℵ𝜙 = 𝐼. 𝜙 + 0 = 𝜙  , 
that is ℵ𝜙 = 0 . 
𝑣𝑎𝑟(𝜙̂∗) = 𝑣𝑎𝑟(𝐷𝛶) = 𝐷 𝑣𝑎𝑟(𝛶) 𝐷𝑇 , 

                = [(ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1 + 𝐺 ] Θ [(ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1 + 𝐺 ]𝑇 , 
                = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1ℵ)(ℵ𝑇𝛩−1ℵ)−1 + 𝐺 Θ 𝐺𝑇 , 
                =(ℵ𝑇𝛩−1ℵ)−1 + 𝐺 Θ 𝐺𝑇 , 
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                = 𝑣𝑎𝑟(𝜙̂) + 𝐺 Θ 𝐺𝑇 , 𝑡ℎ𝑢𝑠 𝑣𝑎𝑟(𝜙̂) < 𝑣𝑎𝑟(𝜙̂∗).     

Theorem 2.3.2 

The maximum likelihood estimators  𝜙̂ , 𝜎̂1
2 , 𝑎𝑛𝑑 𝜎̂𝑒

2    in our model are jointly sufficient for  
𝜙 , 𝜎1

2 , 𝑎𝑛𝑑  𝜎𝑒
2  .   

Proof: 
The density function of  Υ is 

𝑓(Υ 𝜙, Θ)⁄ = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
(Υ − ℵ𝜙)𝑇Θ−1(𝛶 − ℵ𝜙)) ,  by adding and subtracting ℵ𝜃 in the 

exponent  

𝑓(𝛶 𝜙, 𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |Θ|
−1
2 exp (−

1

2
(𝛶 − ℵ𝜙̂ + ℵ𝜙̂  − ℵ𝜙)

𝑇
𝛩−1(𝛶 − ℵ𝜙̂ + ℵ𝜙̂  − ℵ𝜙)) ,  

                  = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
[(𝛶 − ℵ𝜙̂) + ℵ(𝜙̂ − 𝜙)]

𝑇
𝛩−1[(𝛶 − ℵ𝜙̂) + ℵ(𝜙̂ − 𝜙)]) , 

                  = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
[(𝛶 − ℵ𝜙̂)

𝑇
𝛩−1(𝛶 − ℵ𝜙̂) + (𝜙̂ − 𝜙)

𝑇
ℵ𝑇𝛩−1ℵ(𝜙̂ − 𝜙)]) , 

                  = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp(−
1

2
[
(𝛶 − ℵ𝜙̂)

𝑇
(

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2) (𝛶 − ℵ𝜙̂) + (𝜙̂ − 𝜙)

𝑇
ℵ𝑇𝛩−1ℵ

(𝜙̂ − 𝜙)
]) , 

                  = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
[(𝛶 − ℵ𝜙̂)

𝑇 𝐴

𝜎𝑒
2 (𝛶 − ℵ𝜙̂) + (𝛶 − ℵ𝜙̂)

𝑇 𝐵

𝜎1
2 (𝛶 − ℵ𝜙̂) + (𝜙̂ −

𝜙)
𝑇
ℵ𝑇𝛩−1ℵ(𝜙̂ − 𝜙)]) , 

From theorem (2.3.1) we get 

𝑓(𝛶 𝜙, 𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
(
(𝑁−𝑞)(𝑝−1)𝜎̂𝑒

2

𝜎𝑒
2 +

(𝑁−𝑞)𝜎̂1
2

𝜎1
2 ) + (𝜙̂ − 𝜙)

𝑇
ℵ𝑇𝛩−1ℵ(𝜙̂ − 𝜙)), 

Now, we can write the density as: 
𝑓(𝛶 𝜙, 𝛩)⁄ = 𝑔(𝜙̂ , 𝜎̂𝑒

2 , 𝜎̂1
2, 𝜙, 𝜎𝑒

2, 𝜎1
2)ℎ(Υ) , where ℎ(Υ) = 1 , therefore by the Neyman factorization 

theorem  𝜙̂ , 𝜎̂𝑒
2 , 𝑎𝑛𝑑  𝜎̂1

2 are jointly sufficient for  𝜙 , 𝜎𝑒
2 , 𝑎𝑛𝑑  𝜎1

2 . 
Theorem 2.3.3 
The maximum likelihood estimator of  𝜙 is an efficient statistic for 𝜙 , when Υ~𝑁𝑁𝑝(ℵ𝜙, Θ) , where ℵ is  

p×(q+1)(p+1) of rank (q+1)(p+1) < Np and 𝜙 = [𝜗, 𝜉, 𝜁, 𝜌]𝑇 . 
Proof: 
The density function of  Υ is 

𝑓(𝛶 𝜙, 𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
(𝛶 − ℵ𝜙)𝑇𝛩−1(𝛶 − ℵ𝜙)) , 

and the likelihood function is  

𝐿(𝛶 𝜙, 𝛩)⁄ = (2𝜋)
−𝑁𝑝

2 |Θ|
−1

2 exp (−
1

2
(𝛶 − ℵ𝜙)𝑇𝛩−1(𝛶 − ℵ𝜙)), 

then 

ln(𝐿) =
−𝑁𝑝

2
ln(2𝜋) −

(𝑁−𝑞)(𝑝−1)

2
ln(𝜎𝑒

2) −
(𝑁−𝑞)

2
ln(𝜎1

2) −
1

2
(𝛶 − ℵ𝜙)𝑇 (

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2) (𝛶 − ℵ𝜙), 

→
𝜕 ln(𝐿)

𝜕𝜙
=

−1

2
(2ℵ𝑇𝛩−1ℵ𝜙 − 2ℵ𝑇𝛩−1Υ) →

𝜕2 ln(𝐿)

𝜕𝜙2
= −(ℵ𝑇𝛩−1ℵ). 

Then, the Rao – Cramer lower bounded is  

𝐶. 𝑅. 𝐿 = −𝐸 [
𝜕2 𝑙𝑛(𝐿)

𝜕𝜙2 ]
−1

= (ℵ𝑇𝛩−1ℵ)−1 = 𝑣𝑎𝑟(𝜙̂) . 

2.3.b- Restricted Maximum Likelihood Method 
In this part, we take into account a set of m linear constraints on the model's coefficients (2.2.2). It 
additionally examines the inferences. The one-way repeated measurements model for unbalanced 
data is inferred using the constrained maximum likelihood method. Consider the model (2.2.2) , we 
presume that 
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𝑅Φ = 𝑟 ,                                                                                                                 (2.3.8) 
where R is m×ℊ , r is m×1 , Φ is ℊ×1 and ℊ=(q+1)(p+1)+1 .Then, the restricted likelihood is 

𝐿(𝛶 𝛷, 𝜎1
2 , 𝜎𝑒

2 )⁄ = (2𝜋)
−𝑁𝑝

2 (𝜎𝑒
2)

−(𝑁−𝑞)(𝑝−1)

2 (𝜎1
2)

−(𝑁−𝑞)

2 𝑒𝑥𝑝 (−
1

2
(𝛶 − ℵ𝛷𝑐)𝑇(

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2)(𝛶 − ℵ𝛷𝑐))  (2.3.9) 

where 𝛷𝑐 is (1×ℊ) the restricted vector of parameters, then 

ln(𝐿) =
−𝑁𝑝

2
ln(2𝜋) −

(𝑁−𝑞)(𝑝−1)

2
ln(𝜎𝑒

2) −
(𝑁−𝑞)

2
ln(𝜎1

2) −
1

2
(𝛶 − ℵ𝛷𝑐)𝑇 (

𝐴

𝜎𝑒
2 +

𝐵

𝜎1
2) (𝛶 − ℵ𝛷𝑐)  (2.3.10) 

From theorem( 2.3.1) we get 

𝜎̂𝑒
2 =

1

(𝑁−𝑞)(𝑝−1)
(𝛶 − ℵ𝛷𝑐)𝑇𝐴(𝛶 − ℵ𝛷𝑐),                                                                         (2.3.11) 

and 

𝜎̂1
2 =

1

(𝑁−𝑞)
(𝛶 − ℵ𝛷𝑐)𝑇𝐵(𝛶 − ℵ𝛷𝑐).                                                                                 (2.3.12) 

Now, by substitute (2.3.11),(2.3.12) in (2.3.10) get 

ln(𝐿) =
−𝑁𝑝

2
ln(2𝜋) −

(𝑁−𝑞)(𝑝−1)

2
ln (

1

(𝑁−𝑞)(𝑝−1)
(𝛶 − ℵ𝛷𝑐)𝑇𝐴(𝛶 − ℵ𝛷𝑐))−

(𝑁−𝑞)

2
𝑙𝑛 (

1

(𝑁−𝑞)
(𝛶 −

ℵ𝛷𝑐)𝑇𝐵(𝛶 − ℵ𝛷𝑐)) −
1

2
[

(𝛶−ℵ𝛷𝑐)𝑇𝐴(𝛶−ℵ𝛷𝑐)
1

(𝑁−𝑞)(𝑝−1)
(𝛶−ℵ𝛷𝑐)𝑇𝐴(𝛶−ℵ𝛷𝑐)

] −
1

2
[

(𝛶−ℵ𝛷𝑐)𝑇𝐵(𝛶−ℵ𝛷𝑐)
1

(𝑁−𝑞)
(𝛶−ℵ𝛷𝑐)𝑇𝐵(𝛶−ℵ𝛷𝑐)

] ,     (2.3.13) 

Thus, the restricted likelihood function is given by 

𝐿∗ = (2𝜋)
−𝑛𝑝

2 [
1

(𝑁−𝑞)
(𝛶 − ℵ𝛷𝑐)𝑇𝐵(𝛶 − ℵ𝛷𝑐)]

−(𝑁−𝑞)

2
𝑒

−(𝑁−𝑞)

2
[

1

(𝑁−𝑞)(𝑝−1)
(𝛶−ℵ𝛷𝑐)𝑇𝐴(𝛶−ℵ𝛷𝑐)]

−(𝑁−𝑞)(𝑝−1)
2 𝑒

−(𝑁−𝑞)(𝑝−1)
2

,                     

(2.3.14) 
Then, we can rewrite the description of the problem as the following  

𝑀𝑎𝑥𝜙𝑐𝑙𝑛𝐿∗ =
−𝑁𝑝

2
𝑙𝑛(2𝜋) −

(𝑁−𝑞)

2
ln [

1

(𝑁−𝑞)
(𝛶 − ℵ𝛷𝑐)𝑇𝐵(𝛶 − ℵ𝛷𝑐)] −

(𝑁−𝑞)

2
−

(𝑁−𝑞)(𝑝−1)

2
𝑙𝑛 [

1

(𝑁−𝑞)(𝑝−1)
(𝛶 − ℵ𝛷𝑐)𝑇𝐴(𝛶 − ℵ𝛷𝑐)] −

(𝑁−𝑞)(𝑝−1)

2
,           (2.3.15) 

such that 
𝑅𝜙𝑐 = 𝑟 .                                                                                                                    (2.3.16) 
Then, we can maximize this likelihood function (2.3.15) by minimizing the terms 
(𝛶 − ℵ𝛷𝑐)𝑇𝐵(𝛶 − ℵ𝛷𝑐) and (𝛶 − ℵ𝛷𝑐)𝑇𝐴(𝛶 − ℵ𝛷𝑐) .To satisfy (2.3.15) subject to constraint (2.3.16), 
we use the form of Lagrangian function where  𝜆 is (m×1) vector of Lagrangian multipliers, thus, we 
can get 

α1 = Υ𝑇𝐵Υ − 2𝜙𝑐𝑇ℵ𝑇𝐵Υ + 𝜙𝑐𝑇ℵ𝑇𝐵ℵ𝜙𝑐 − 𝜆𝑇(𝑟 − 𝑅𝜙𝑐), 

α2 = 𝛶𝑇𝐴𝛶 − 2𝜙𝑐𝑇ℵ𝑇𝐴𝛶 + 𝜙𝑐𝑇ℵ𝑇𝐵ℵ𝜙𝑐 − 𝜆𝑇(𝑟 − 𝑅𝜙𝑐), 

→ 𝛼1 + 𝛼2 = 𝛶𝑇𝛶 − 2𝜃𝑐𝑇ℵ𝑇𝛶 + 𝜙𝑐𝑇ℵ𝑇ℵ𝜙𝑐 − 2𝜆𝑇(𝑟 − 𝑅𝜙𝑐) ,                                   (2.3.17) 
where 𝐴 + 𝐵 = 𝐼𝑁𝑝 , then, differentiate (2.3.17) above with respect to 𝜙𝑐  and  𝜆 and equate zero to 

obtain 
−2ℵ𝑇𝛶 + 2ℵ𝑇ℵ𝜙𝑐 + 2𝑅𝑇𝜆 = 0 ,                                                                                                    (2.3.18) 
                          2(𝑅𝜙𝑐 − 𝑟) = 0 ,                                                                                        (2.3.19) 
Then, by multiply the equation (2.3.18)  by 𝑅(ℵ𝑇ℵ)−1 , get 
     (𝑅(ℵ𝑇ℵ)−1)(−2ℵ𝑇𝛶 + 2ℵ𝑇ℵ𝜙𝑐 + 2𝑅𝑇𝜆) = 0, 
→ −2𝑅(ℵ𝑇ℵ)−1ℵ𝑇𝛶 + 2𝑅(ℵ𝑇ℵ)−1ℵ𝑇ℵ𝜙𝑐 + 2𝑅(ℵ𝑇ℵ)−1𝑅𝑇𝜆 = 0, 
→ −2𝑅(ℵ𝑇Θ−1ℵ)−1(ℵ𝑇Θ−1Υ) + 2𝑅𝜙𝑐 + 2𝑅(ℵ𝑇ℵ)−1𝑅𝑇𝜆 = 0,                                        (2.3.20) 
since   𝜙̂ = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶) .Then (2.3.20) will be 
→ −2𝑅𝜙̂ + 2𝑅𝜙𝑐 + 2𝑅(ℵ𝑇ℵ)−1𝑅𝑇𝜆 = 0,       
 → [𝑅(ℵ𝑇ℵ)−1𝑅𝑇]𝜆 = 𝑅𝜙̂ + 𝑅𝜙𝑐 ,       
∴  𝜆 = [𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂)  , 𝑠𝑖𝑛𝑐𝑒   𝑅𝜙𝑐 = 𝑟.                                                          (2.3.21)  

Now, substitute (2.3.21) in the equation(2.3.18) ,we get 
−2ℵ𝑇𝛶 + 2ℵ𝑇ℵ𝜙𝑐 − 2𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) = 0 , 
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→ −ℵ𝑇𝛶 + ℵ𝑇ℵ𝜙𝑐 − 𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) = 0 , 

→ ℵ𝑇ℵ𝜙𝑐 = ℵ𝑇Υ + 𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

→ 𝜃𝑐 = (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇Θ−1Υ + (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

∴ 𝜙𝑐 = 𝜙̂ + (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) ,                                                         (2.3.22) 

Then 
𝜙𝑐 − 𝜙̂ = (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

→ (ℵ𝑇ℵ)(𝜙𝑐 − 𝜙̂) = 𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂)[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1 

                                 𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

→ (𝜙𝑐 − 𝜙̂)
𝑇
(ℵ𝑇ℵ)(𝜙𝑐 − 𝜙̂) = (𝑟 − 𝑅𝜙̂)

𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1 

                                                           𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

We can rewrite (2.3.22) by multiply by ℵ , we get  

ℵ𝜙𝑐 = ℵ𝜙̂ + ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

→ Υ − ℵ𝜙𝑐 = Υ − ℵ𝜙̂ − ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

→ Ψ𝑐 = Ψ̂ − ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) . 

Where Ψ𝑐  is the estimator residual from the constrained model. 

→ Ψ𝑐𝑇Ψ𝑐 = [Ψ̂𝑇 − (𝑟 − 𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1ℵ𝑇] 

                     [𝛹̂ − ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂)] , 

Where 𝛹𝑐𝑇𝛹𝑐 sum of squared errors from the constrained model. 

= 𝛹̂𝑇𝛹̂ − 𝛹̂ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) −(𝑟 − 𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1ℵ𝑇𝛹̂ 

+(𝑟 − 𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1ℵ𝑇ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂),     (2.3.23) 

where, 𝛹̂ is the estimated residual from unconstrained model 

𝛹̂𝑇𝛹̂ = (Υ − ℵ𝜙̂)
𝑇
(𝛶 − ℵ𝜙̂) = Υ𝑇Υ − 2𝜙̂𝑇ℵ𝑇Υ + 𝜙̂𝑇ℵ𝑇ℵ𝜙̂,                                            (2.3.24) 

where 

ℵ𝑇𝛹̂ = ℵ𝑇(𝛶 − ℵ𝜙̂) = ℵ𝑇(Υ − ℵ[(ℵ𝑇Θ−1ℵ)−1(ℵ𝑇Θ−1Υ)]), 

         = ℵ𝑇Υ − (ℵ𝑇ℵ)(ℵ𝑇ℵ)−1(ℵ𝑇Υ) = ℵ𝑇𝛶 − (ℵ𝑇𝛶) = 0,                                                (2.3.25) 
By taking information in equation(2.3.23)and (2.3.25),we get 

Ψ𝑐𝑇Ψ𝑐 = 𝛹̂𝑇𝛹̂ − 𝛹̂𝑇ℵ(ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) − (𝑟 −

𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇ℵ)−1ℵ𝑇𝛹̂ + (𝑟 − 𝑅𝜙̂)

𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂)  

              = 𝛹̂𝑇𝛹̂ + (𝑟 − 𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

𝛹𝑐𝑇𝛹𝑐 − 𝛹̂𝑇𝛹̂ = (𝑟 − 𝑅𝜙̂)
𝑇
[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) .                                                (2.3.26) 

We can write (2.3.22) as following 
𝜙̂ = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1Υ) = (ℵ𝑇𝛩−1ℵ)−1ℵ𝑇𝛩−1(ℵ𝜙 + Ψ) , 
∴ 𝜙̂ = 𝜙 + (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹),                                                                                     (2.3.27) 
then, substitute (2.3.27) in (2.3.22) to obtain 

𝜙𝑐 = 𝜙̂ + (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1(𝑟 − 𝑅𝜙̂) , 

      = 𝜙 + (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹) + (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1 
         (𝑟 − 𝑅[𝜙 + (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹)]) , 𝑟 = 𝑅𝜙 , 
→ 𝜙𝑐 − 𝜙 = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹) − (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅(ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹), 
                  = [𝐼 − (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅](ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹), 
                  = 𝑀𝑐(ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛹) , 
where, 𝑀𝑐 = [𝐼 − (ℵ𝑇ℵ)−1𝑅𝑇[𝑅(ℵ𝑇ℵ)−1𝑅𝑇]−1𝑅] and 𝛹 = Υ − ℵ𝜙  , 
∴ 𝜙𝑐 − 𝜙 = 𝑀𝑐(𝜙̂ − 𝜙).                                                                                                     (2.3.28)                                                                                                                  
 
3.Conclusions 
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In this paper, we reached the following 
conclusions.: 

1. The maximum likelihood estimators of 
parameters of repeated measurements 
model are 
𝛷̂ = (ℵ𝑇𝛩−1ℵ)−1(ℵ𝑇𝛩−1𝛶) , 𝜎̂𝑒

2  =
1

(𝑁−𝑞)(𝑝−1)
 (𝛶 − ℵ𝛷̂)

𝑇
𝐴(𝛶 − ℵ𝛷̂),and 

𝜎̂𝜍
2 =

1

𝑝(𝑁−𝑞)
(𝛶 − ℵ𝛷̂)

𝑇
𝐵(𝛶 − ℵ𝛷̂) −

1

𝑝
𝜎̂𝑒

2, 

2. The maximum likelihood estimator of ϕ 
is the best linear unbiased estimator. 

3. The maximum likelihood estimators  𝜙̂ ,
𝜎̂1

2 , 𝑎𝑛𝑑 𝜎̂𝑒
2    in our model are jointly 

sufficient for  𝜙 , 𝜎1
2 , 𝑎𝑛𝑑  𝜎𝑒

2  .   
4. The maximum likelihood estimator of  𝜙 

is an efficient statistic for 𝜙. 
5. The restricted maximum likelihood 

estimators of parameter𝜙𝑐  of repeated 
measurements model is  𝜙𝑐 = 𝜙 +

𝑀𝑐(𝜙̂ − 𝜙) , 
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