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Introduction: 
The integrated Much focus has been placed on 
inventory policy recently as a means of 
preserving a competitive edge. The integrated 
inventory model has been the subject of 
numerous studies. Banerjee devised a model in 
1986 that considers the economics of a two-tier 
supply chain with a single supplier, a single 
customer, and a maximum output. After the 
complete lot has been produced, Goyal (1988) 
supposing the manufacturing run is sent out in 
a series of consignments of about the same size. 
Other studies did away with the requirement 
that shipments begin when the production lot 
was finished. Lu (1995) presented a lot-splitting 
model with single set-up and many delivery by 
relaxing the model of Goyal (1988). According 
to Goyal (1995), a different strategy comprising 
Tayal et al. established a unified approach for 
the production and inventory management of 
perishable goods, including a trade credit term 
and investments in preservation technologies 
(2015). Hill (1997) expanded on Goyal (1995)'s 
initial generalisation by treating the geometric 
growth factor as a decision variable as opposed 
to a fixed value. Hence, the decision factors are 
the sum of all shipments that came from a single 

manufacturing run, the volume of the initial 
shipment, and the geometric growth factor. In 
Goyal and Nebebe, a particular instance of the 
problem was considered (2000). They 
suggested a strategy that calls for a tiny 
shipment to be sent first, then several larger, 
equal-size shipments. In their 2009 work, Singh 
and Diksha presented a cooperative model 
between vendors and buyers that included a 
graduated credit system, where demand was 
seen as a multivariate function. A cost-
integrated model for optimum maintenance and 
production scheduling was developed by Hadidi 
et al. in 2011. In this analysis, task order 
scheduling and preventive maintenance choices 
for a single machine are taken into account 
simultaneously. Singh and Singh proposed a 
trade credit policy integrated supply chain 
model for volatile goods (2012). A two-tiered 
supply chain with a single seller and customer 
was the focus of Tayal et al(2014) .'s inventory 
model, as well as multiple lead-time and storage 
space limitations. In addition, Tayal et al. (2014) 
created a model for integrated inventories that 
could account for seasonal product lead times 
and the existence of a secondary market. Using 
a trade credit term and expenditures in 
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preservation technologies, Tayal et al. 
introduced a comprehensive model of 
production and stockpiling for perishable goods 
(2015). 
The conventional inventory model considers 
the ideal scenario where things have an endless 
lifespan, but in reality, all products experience 
some level of deterioration over time. Tayal et 
al. offer a complex inventory model that takes 
into consideration perishable goods, their 
expiration dates, and the amount of stock that 
may be lost before the goods spoil (2014). In 
this model, the degradation of the products is 
thought to occur in a linear fashion. Inventory 
models for two-tier supply chains were 
examined by Tayal et al. (2014) that are 
decaying with efficient preservation technology 
investment. To slow down the pace of 
deterioration, the model is described under two 
distinct lead-time and preservation technique 
conditions. 
Remanufacturing and reparability are key 
factors in inventory modelling when taking 
environmental issues related to waste disposal 
into account. People are increasingly highly 
aware about the consumption of natural 
resources. So, after using the returned and used 
goods from the market, the enterprises are 
compelled to take the initiative for 
remanufacturing/repair ability. This allows for 
the reuse of waste products that damage the 
environment while conserving natural 
resources. The idea of remanufacturing and 
repairability has received significant attention 
from scholars over the previous few decades. It 
was Schrady who first utilised 
"repairing/remanufacturing" in inventory 
modelling (1967). A known and predetermined 
percentage of the gathered objects can be used 
for remanufacturing, according to an inventory 
model Teunter (1998) presented. According to 
Dobos and Richter (2000, 2004), who relaxed 
the premise of a constant return rate, a pure 
strategy—in which every returned item is 
either being remanufactured or promptly 
discarded—will always be the best course of 
action. A higher return rate may be achieved via 
the use of promotional techniques that entice 
buyers to resale the old items. Repair was then 
described by King et al. (2006) as "the 

improvement of particular product faults," with 
the caveats that the quality of fixed goods is 
lower than that of remanufactured products and 
that these things can only be sold in secondary 
markets. To complement the work of Chung et 
al. Reverse logistics for a multi-tiered supply 
chain was created in 2008. To date, Singh et al. 
have developed the most sophisticated model to 
account for reverse logistics (2013), who 
includes flexible production and stock out 
situations. Yang and coworkers construct a 
multi-retailer closed-loop inventory model for 
the supply chain (2013). There's consideration 
of price-sensitive demand in this article. 
This study presents a a supply chain that 
continuously recycles materials for 
consumables that can be repaired. 
Products that have already been used are 
gathered from the marketplace and, in certain, 
fixed and remanufactured. A lead time is 
considered while delivering these goods to the 
retailer. The integrated system's overall average 
cost has been computed. A numerical example is 
used to demonstrate the theoretical results. 
 
Assumptions: 

1. The integrated model for the 
development of new products and the 
remanufacturing of collected objects is 
presented. 

2. The relationship between a product's 
selling price and its popularity among 
buyers. 

3. It is assumed that the remanufactured 
products are identical to new products. 

4. Assuming a correlation between the two, 
we may say that the demand rate and the 
output rate are connected to each other. 

5. The used things are gathered regularly of 

2

b

p 



. 
6. Just a specific proportion of the gathered 

items—those with a quality level 
suitable for remanufacturing—are 
employed in production; the remainder 
is recycled. 

7. It is expected that the things are 
decomposing naturally. 
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8. The shop takes the lead time into 
account. 

 
Notations: 

 

 
 

 
Mathematical Modeling: 
Figures 1 and 2 show how the system's 
inventory time behavior changes throughout 

the remanufacturing cycle, production cycle, 
and collection cycle. The system's differential 
equations are provided as follows: 
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With boundary conditions: 

(0) 0,rI =   2( ) 0,rI t =   2( ) 0,mI t =   ( ) 0,mI T =   1( ) 0RI t =  (7) 
 
The following is a list of the solutions to the differential equations listed above: 

  

Inventory 

Remanufacturing cycle Production cycle 

Time t1 t2 t3 T 

Fig. 1: Stock Variability in a Continuous Manufacturing Environment 

Inventory 

t1 
T Time 

Fig. 2: Behaviour of  the returned and collected items  
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Figure 3 below illustrates the retailer's inventory-time behaviour. In this scenario, the retailer obtains 
the stock at time t=y. where the lead time (y) is. Inventory levels decrease during [y,v] as a result to the 
degree of demand and the rate of decline. When time elapses, all available stock is gone t=T/n. 
 
 
  
 
 
 
 
 
 
 
 
Now, differential equations for the retailer are stated as follows if the manufacturer needs y days to get 
the goods to the retailer: 

2

( )
( )s

s

dI t
I t

dt p 


= − −

 /y t T n   (14) 

With boundary condition ( / ) 0sI T n =   (15) 
 
This set of equations can be solved by: 

( )

2

( ) ( 1)v t

sI t e
p









−= −

 /y t T n   (16) 
 
T.A.Cm =1/t [Obtaining cost + Gaining cost + Manufacturing cost + Remanufacturing cost + Property cost 
+ Set up cost + Recover cost]  
gives the manufacturer's total cost. (17) 
 
Retailer's total cost is calculated as: 

T.Cs = 

n

T [Purchasing cost + Holding cost + Ordering cost  + Deterioration cost]  (18) 
 
These are components of manufacturing costs within the designated inventory cycle: 

Inventory 

Time 
y T/n 

Fig. 3: Timely actions of retailers regarding 

inventories 
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Cost of acquisition and procurement = 

3

2
1 0

t T

m R

t

a
c dt c Rdt

p 


+ 

 (19) 

Production and remanufacturing cost =

3 1

2
1 10

t t

m R

t

a a
S dt S dt

p p 

 
+ 

 (20) 

Holding cost  

Set up cost = 1 2 3K K K+ +      
 (22) 

Salvage cost = 2

{(1 ) }RS b T
p 


−

      (23) 
 
These are the cost elements that the store will incur during the specified inventory cycle: 

Purchase price = 2 1( ( ) )sI y Q c+    (24) 
Where 

2

2

T n

v

Q dt
p 


= 

   (25) 

Holding cost=

( )

v

s s

y

h I t dt
   (26) 

Ordering cost= O   (27) 

Deterioration cost=
4

2

{ ( ) }

T
n

s

y

c I y dt
p 


− 

   (28) 
As a result, the above inventory model's total cost per unit time is given by the product of a, t1, t2, t3, y, 
and T. For all given values of t1, t2, t3, and y, and any constant T, we have 

 
 
The cost function of the system is shown in Equation (29) as a function of t1, t2, y, and T. For this system 
to give us its optimum response, we need to find the optimal values of t1, t2, t3, y, and T. These variables 
and our interactions between them. 
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Equations (30) demonstrates the necessary condition for this model's existence. The inventory levels 
Ir(t) and Im(t) at t=t1 and t=t3 are shown in equations (31) and (32). Equation (33) shows that at both 
t=0 and t=T, the inventory level of things that have been gathered and returned will be the same. 
 
The values of t1, t2, and t3 may be found in the form of T using the equations (31) and (33); hence, it 
can be argued that t1 = f1(T),        t2 = f2(T),        t3 = f3(T) 
Thus, the relationship between T, y, and v will be the total average cost function. 
 
Numerical analysis: 
Here we use the following input data to quantitatively illustrate the aforementioned inventory model: 

 
The ideal solution has been discovered for the parametric values listed above. The best values are 
t1=12.2003, t2=18.30045, t3=21.35, T=22.8756, 
 
 
Sensitivity analysis: 
Limit variation and its effect on the optimal 
solution are studied by providing the model's 

output for a variety of limit settings.-20%, -15%, 
-10%, -5%, 5%, 10%, 15% and 20%. 

 
Table 1: Analysis of the sensitivity to the production limit (α1): 

% variation in α α T y T.A.C. 

-20% 2000 22.617 3.39401 520.069 

-15% 2125 22.6843 3.39401 526.145 

-10% 2250 22.7499 3.39401 532.223 

-5% 2375 22.8136 3.39401 538.304 

0% 2500 22.8756 3.39401 544.389 

5% 2625 22.936 3.39401 550.476 

10% 2750 22.9948 3.39401 556.567 

15% 2875 23.0521 3.39401 562.66 

20% 3000 23.1079 3.39401 568.756 

 



Volume 1| November 2021              ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                     www.geniusjournals.org 

P a g e  | 74 

 
Fig 5: T.A.C. v/s α 

 
Table 2: Analysis of the sensitivity to the production limit (p1): 

% variation in p1 p1 T y T.A.C. 

-20% 24 23.6357 3.39401 635.606 

-15% 25.5 23.4159 3.39401 605.541 

-10% 27 23.2168 3.39401 581.121 

-5% 28.5 23.0372 3.39401 561.053 

0% 30 22.8756 3.39401 544.389 

5% 31.5 22.7306 3.39401 530.42 

10% 33 22.6005 3.39401 518.61 

15% 34.5 22.4838 3.39401 508.548 

20% 36 22.3791 3.39401 499.915 

 

 
Fig. 6: T.A.C. v/s p1 

Table 3: Analysis of the sensitivity to the production limit (a): 
% variation in a a T y T.A.C. 

-20% 1.2 19.3571 3.39401 620.797 

-15% 1.275 20.2956 3.39401 597.773 

-10% 1.35 21.1953 3.39401 577.646 

-5% 1.425 22.0556 3.39401 559.97 

0% 1.5 22.8756 3.39401 544.389 

5% 1.575 23.6548 3.39401 530.613 

10% 1.65 24.3928 3.39401 518.404 

15% 1.725 25.0892 3.39401 507.567 

20% 1.8 25.7441 3.39401 497.936 
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Fig. 7: T.A.C. v/s a 

 
Table 4: examination of the sensitivity to a limit (γ): 

% variation in γ γ T y T.A.C. 

-20% 0.48 22.8756 3.39401 546.458 

-15% 0.51 22.8756 3.39401 545.947 

-10% 0.54 22.8756 3.39401 545.424 

-5% 0.57 22.8756 3.39401 544.906 

0% 0.6 22.8756 3.39401 544.389 

5% 0.63 22.8756 3.39401 543.872 

10% 0.66 22.8756 3.39401 543.354 

15% 0.69 22.8756 3.39401 542.837 

20% 0.72 22.8756 3.39401 542.32 
 

 
Fig. 8: T.A.C. v/s γ 

Table 5: examination of the sensitivity to a limit (b): 
% variation in b b T y T.A.C. 

-20% 0.64 23.4885 3.39401 533.163 

-15% 0.68 23.3302 3.39401 536.007 

-10% 0.72 23.1753 3.39401 538.825 

-5% 0.76 23.0239 3.39401 541.619 

0% 0.8 22.8756 3.39401 544.389 

5% 0.84 22.7305 3.39401 547.135 

10% 0.88 22.5885 3.39401 549.857 

15% 0.92 22.4493 3.39401 552.557 

20% 0.96 22.313 3.39401 555.234 
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Fig. 9: T.A.C. v/s b 

 
Table 6: Analysis of the sensitivity to the demand limit (β): 

% variation in β β T y T.A.C. 

-20% 2 7.73101 3.39401 977.848 

-15% 2.125 9.62876 3.39401 945.924 

-10% 2.25 12.4651 3.39401 874.028 

-5% 2.375 16.6838 3.39401 713.568 

0% 2.5 22.8567 3.39401 544.389 

5% 2.625 31.7754 3.39401 400.461 

10% 2.75 44.2321 3.39401 290.034 

15% 2.875 61.1727 3.39401 209.75 

20% 3 83.5909 3.39401 152.799 

 

 
Fig. 10: T.A.C. v/s β 

 
Table 7: Analysis of the degradation limit's sensitivity (θ): 

% variation in θ θ T y T.A.C. 

-20% 0.008 22.473 3.61478 581.185 

-15% 0.0085 22.5325 3.55569 570.084 

-10% 0.009 22.6257 3.49931 560.433 

-5% 0.0095 22.7425 3.44547 551.94 

0% 0.01 22.8756 3.39401 544.389 

5% 0.0105 23.0197 3.34478 537.613 

10% 0.011 23.1707 3.29765 531.486 

15% 0.0115 23.3257 3.25248 525.909 
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20% 0.012 23.4824 3.20916 520.802 
 

 
Fig. 11: T.A.C. v/s θ 

 
Table 8: A sensitivity study of the holding cost (hs): 

 
 

 
Fig. 12: T.A.C. v/s hs 

 
Concluding remarks: 
1. Tables 1 and 2 show that the changes in the 
demand limit 1 and the cycle length T are 
favourably and negatively responsive to 
changes in total average cost and p1, 
respectively. 

2. The tables 3 and 4 make it abundantly evident 
that, with an When the production limit (a) 
rises, the system's T.A.C. and cycle time (T) rise 
along with it. exhibits the opposite behaviour, 
while an increase in limit causes the cycle time 
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to remain constant and the system's T.A.C. to 
slightly decline. 
3. Table 5 displays the impact of changes in 
returning limit b. As limit b is increased, the 
cycle time T somewhat reduces and the system's 
T.A.C. rises. 
4. We can see from tables 6 and 7 that when the 
demand limit and degradation rate rise, the 
cycle time T lengthens and the total available 
capacity (TAC) decreases. 
5. Table 8 demonstrates that T and T.A.C. cycle 
times have increased somewhat constantly 
reduces with the increase in holding cost hs. 
 
Conclusion: 
In this study, we developed a comprehensive 
inventory model for repairability and 
remanufacturing. The production pace and the 
rate at which money is collected are both 
thought to be a function of the true demand. The 
shop thinks about shipping times, too. A 
numerical example is provided to illustrate the 
theoretical findings. To further confirm the 
model's accuracy, we conduct a sensitivity 
analysis about a variety of system factors. The 
model can expand to account for inflation and 
the effects of education. 
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