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Abstract 

 
1. Introduction 

Survival data are incomplete in many studies 
and are generally presented as truncated data. 
This data is of great interest in various fields, 
including astronomy and economics. suppose 
{(Xi,Yi)} be independent and identically 

distribution (i.i.d). In the random truncation, 
{(Xi,Yi),i = 1,..,n} is observed only when Xi ≥ Yi. 
{(Ui,Vi)} are a sub sequence of {(Xi,Yi)} that is 
also an i.i.d. sequence. Suppose X and Y have F 
and G distributions, respectively. The truncated 
parameter, denoted by α, is defined as follows: 

(1.1) α = P(X ≥ Y ) = ∫ G(s)dF(s) 
If Fn and Gn are the limit estimates of F and G, respectively, we show the α estimate with αn and define it 
as follows. 

(1.2) αn = ∫ Gn(s)dFn(s). 
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For any cumulative distribution function F, suppose (aF,bF) be the confine of F defined by 

 aF = inf{x : F(x) > 0} bF = sup{x : F(x) < 1}. 
Assuming aG < bF, then we can be sure that α > 0. Under random truncation, assume F∗ and G∗ have the 
marginal distributions of Ui and Vi. From Woodroof (1985) we know 

(2.3)  
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(2.4) , 
and 

(2.5) . 
The empirical distributions F∗(x),G∗(x) and R(x) are defined by 

 
and 

(2.6)  
The product-limit estimators for F(x) and G(x) are introduced as follows: 

. 
Under truncate sampling, the distribution function estimate was obtained by Woodroofe (1985) 

and the properties of this estimate were also studied. Kaplan-Meyer estimate uses the MLE for 
nonparametric and semi-parametric models. For randomly truncated data, the MLE estimation is used 
to the truncation product-limit in nonparametric models. Wang (1989) introduced the MLE for 
estimating truncated data in semi-parametric models and the large-sample properties of the estimate 
are presented. the proportional hazards model for censorship and truncated data have studied by 
Alioum and Commenges (1996) and in this study have attained a suitable method for this model. 
under left truncated data, He and Yang (2003) proposed the estimation of regression parameters . 
Ould-Said and Mohamed Lemdani (2006) introduced a new kernel estimator of the regression 
function for truncated data and they constructed the pointwise and uniform strong consistency and 
offered a rate of convergence of the estimate. Winfried and Wang (2008) proved the central limit 
theorem for the truncated data. This paper is organized as follows. In a linear model with left-
truncated data, the weighted composite quantile regression considered by Yao et al (2018). The 
adaptive penalized procedure for variable choice is offered. The asymptotic normality and oracle 
property of the resulting estimators are also determined. 

This article is organized as follows. In Section 3, an empirical log-likelihood ratio is concluded and 
its asymptotic distribution is demonstrated that be a weighted chi-square. In Section 4, a simulation 
study is given to compare the performance of the proposed EE method to the introduced EL method 
for truncated data in terms of coverage probability and length of the interval. Proof of the main results 
have been deferred in the last Section 
. 
3. Main results 

In this section, we introduce EE and EL methods. Both methods prove to have a weighted 
asymptotic chi-square distribution. 
3.1. Empirical entropy. Empirical E method the unknown probabilities it estimates are ever 
nonnegative and unknown parameters, which are influence functions with abound is estimated. 
According to the evidence from Monte Carlo, tests based on the EE method with a limited number of 
samples have better characteristics than the EL method. 

For a discrete probability distribution p on the countable set x1,x2,..., with pi = p(xi), the entropy of p 
is shown as 

. 
Then, in a continuous probability density function p(·) on an interval I, its entropy is defined as 
h(p) = ∫ p(x)logp(x)dx. 
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I 
Monti and Ronchetti (1993) expressed the relationship between the EE method and the EL method. 

they presented that EE method provides very accurate inference in independent samples. Efron 
(1981) showed that the EE method is related to biased bootstrap. Test the general parametric 
hypothesis in time-series regressions using the EE method has performed by Bravo (2005) and used 
blocking techniques to receive a weak dependence of the observations. Zhao et al (2015) used the EE 
method in the right-censored data and showed that if the data is contaminated and right-censored, 
they have a better coverage probability than the EL method. From (2.3), we have 

(3.1)  
For i.i.d. random variable 

(3.2)  
Now consider the empirical entropy at the true value α0, 

. 
By Lagrange multiplier, we get 

 

(3.3)  
Define 

(3.4)  

it is seen that ). we define the empirical entropy difference at the true 
value α0 by 

(3.5) . 
According to theorem (3.2) of Newey and Smith (2004) and entropy concentration theorem of 

Jaynes (1982), the following two adjusted empirical entropy differences are defined, 
(3.6) Z1(α0) = −2n{exp[∆R(α0)] − 1} 
(3.7) Z2(α0) = −2n∆R(α0), 

Correspondingly, Z1(θ) is called the adjusted Newey-Smith empirical entropy difference at θ and 
Z2(θ) the adjusted Jaynes empirical entropy difference at θ. We have the following theorem about 
Z1(α0) and Z2(α0). 
Theorem 1. Let F and G be continuous and satisfy the following moment conditions 

(3.8) . 
Then 

(3.9)  

where  is the standard χ2 variable with one degree of freedom, and 

(3.10) , 

 and  are obtained from the following equations: 

, 
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(3.12) . 
Proof. See the Proofs. 

In order to obtain the confidence interval, it is necessary to use estimate (3.10). As a result, 
according to equation (3.13) and (3.14), we have: 

(3.13) , 
(3. 14). 
3.2. Empirical likelihood. The empirical likelihood method is a non-parametric inference 
method that has very interesting properties and this method was first introduced by Owen (1990).It is 
not easy to computation of the empirical likelihood ratios with censored/truncated data and 
parameter of mean Therefore, Zhou (?) used the EM algorithm to obtain the tests and the confidence 
interval. The most well-known method for interval estimation of probabilities for randomly truncated 
data is the asymptotic normal method, but this method has a fundamental problem and that is that the 
given distance may be out of range [0,1] and is not satisfactory in small samples. Li (1995) proposed 
another way to obtain this distance, which is to use a conditional nonparametric likelihood ratio. It 
also demonstrated a better small-sample performance in our simulation studies. This approach is 
generalized to obtain confidence intervals for the ratio of two probabilities. Shen and Hi (2006) used 
the empirical likelihood method to create a confidence interval for the truncation parameter in the 
random truncation model and showed that it has an asymptotic distribution of weighted chi-square. 

Suppose p = (p1,...,pn) be a probability vector for which = 1 and pi ≥ 0 for each i. for 1 ≤ i ≤ n at 
a stable time t. So, the evaluated EL at µ0(t), is given by 

. 
By using the Lagrange multiplier method, we get 
 pi = {n(1 + β(t)ψni(t))}−1, i = 1,...,n, 
where β(t) is from solving of 

(3.15) . 
It is explicit that β(t) and ψni(t) are functions of t. So that, they are considered and calculated at a 
constant and optional time t0, where 0 ≤ t0 < τ. Therefore, we utilized of β(t0) and ψni(t0). 

We know that , subjecting to the condition = 1, its maximum at pi = n−1 is n−n . So, the 
EL ratio for ψni, is defined by 

(3.16) , 
Hence the empirical log-likelihood ratio is given by 

(3.17) , 
where β(t) is the solution of (3.15). 

Let X1,...,Xn be independent random variables with common distribution F. Let µ = E(Xi), and suppose 
that 0 < V ar(Xi) < ∞. Then R′(α0) converges in distribution to as n → ∞, that as 

(3.18) , 
where  denotes convergence in distribution. See the proof (3.18) in theorem (2.1) of Shen and He 
(2006). 
4. Simulation studies 

In the simulation, the contaminated lifetime X is a (1 − m/n)Γ(2,1) + (m/n)Γ(2,5) random variable, 
where Γ(α,β) is the Gamma distribution with shape parameter α and scale parameter β and Γ(2,5) is 
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the contaminating distribution, m is the number of contaminated data and n is the sample size. That 
means there are m lifetimes contaminated by Γ(2,5) distributed random variables within n i.i.d. 
lifetimes. In the simulation, we use m = 0,1,2,...,7 for sample size n = 20,50,100. The process is repeated 
for N = 5000 times and the coverage ratios are calculated by using the N data sets. In Table 1, NS-EE is 
used for the adjusted Newey-Smith empirical entropy difference, AJ-EE is used for the adjusted Jaynes 
empirical entropy difference, EL is used for empirical likelihood , c.p is used for the coverage 
probability and ∆ is used for the average length. The simulation results reveal that, in terms of 
coverage probability, for m= 0,1,2, the empirical likelihood method performs better than that of the 
empirical entropy method. For m = 3,4,5,6,7 the empirical entropy method performs better than that 
of the empirical likelihood method. 

m n c.p.NS-EE ∆.NS − EE c.p.AJ-EE ∆.AJ − EE c.p.EL ∆.EL 

 20 0.762 0.481 0.785 0.452 0.812 0.391 

0 50 0.775 0.489 0.791 0.459 0.817 0.397 

 100 0.782 0.498 0.805 0.473 0.831 0.403 

 20 0.773 0.488 0.789 0.455 0.805 0.407 

1 50 0.787 0.495 0.793 0.462 0.807 0.415 

 100 0.794 0.507 0.809 0.476 0.819 0.427 

 20 0.786 0.492 0.792 0.461 0.796 0.409 

2 50 0.798 0.502 0.796 0.465 0.801 0.411 

 100 0.803 0.511 0.810 0.481 0.809 0.419 

 20 0.791 0.501 0.799 0.469 0.783 0.421 

3 50 0.802 0.511 0.809 0.471 0.791 0.435 

 100 0.811 0.513 0.815 0.485 0.801 0.443 

 20 0.804 0.509 0.803 0.474 0.769 0.435 

4 50 0.811 0.519 0.811 0.482 0.778 0.451 

 100 0.827 0.521 0.819 0.491 0.781 0.467 

 20 0.813 0.510 0.807 0.484 0.758 0.449 

5 50 0.819 0.521 0.815 0.491 0.762 0.461 

 100 0.832 0.527 0.821 0.502 0.771 0.472 

 20 0.824 0.515 0.811 0.499 0.751 0.460 

6 50 0.831 0.526 0.819 0.509 0.752 0.471 

 100 0.839 0.529 0.822 0.517 0.763 0.483 

 20 0.839 0.521 0.814 0.519 0.742 0.475 

7 50 0.857 0.529 0.822 0.531 0.744 0.486 

 100 0.861 0.531 0.829 0.542 0.751 0.501 

 

m n c.p.NS-EE ∆.NS − EE c.p.AJ-EE ∆.AJ − EE c.p.EL ∆.EL 

 20 0.801 0.511 0.813 0.491 0.829 0.479 

0 50 0.809 0.519 0.821 0.501 0.838 0.488 
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 100 0.821 0.534 0.837 0.536 0.851 0.499 

 20 0.805 0.518 0.817 0.497 0.829 0.487 

1 50 0.815 0.523 0.828 0.509 0.841 0.493 

 100 0.831 0.538 0.841 0.537 0.859 0.521 

 20 0.812 0.522 0.821 0.503 0.845 0.491 

2 50 0.823 0.529 0.832 0.511 0.851 0.497 

 100 0.842 0.544 0.851 0.541 0.861 0.529 

 20 0.826 0.529 0.831 0.532 0.851 0.501 

3 50 0.857 0.537 0.862 0.539 0.861 0.531 

 100 0.871 0.553 0.880 0.562 0.864 0.538 

 20 0.839 0.531 0.833 0.532 0.852 0.511 

4 50 0.868 0.542 0.864 0.539 0.863 0.532 

 100 0.881 0.555 0.881 0.559 0.866 0.543 

 20 0.851 0.535 0.848 0.534 0.852 0.521 

5 50 0.872 0.548 0.868 0.547 0.866 0.549 

 100 0.883 0.559 0.879 0.559 0.871 0.561 

 20 0.882 0.541 0.871 0.538 0.841 0.531 

6 50 0.895 0.552 0.883 0.549 0.858 0.558 

 100 0.903 0.563 0.897 0.561 0.862 0.568 

 20 0.897 0.552 0.879 0.545 0.832 0.552 

7 50 0.911 0.569 0.891 0.556 0.849 0.571 

 100 0.931 0.578 0.902 0.563 0.851 0.587 

AJ−EE 

 
 

Figure 1. compare of plots for n=20, n=50 and n=100 in AJ-EE method 
 

As n increases, the coverage probability is increased. In Figure 1, the AJ-EE method is shown in the 
case of n=20, n=50, and n=100, which, as we see, increases the coverage probability as n increases. 

0 1 2 3 4 5 6 7 
m 
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5. proof 
In what follows we define 

(5.1)  
Lemma 1. Under the conditions of Theorem (1), as n → ∞, 

(5.2) , 

where  is defined by (3.13). 
Proof. The proof of this Lemma is presented in Lemma (4.1) of Shen and He (2006).  
□ Lemma 2. Under the conditions of Theorem (1), we get 

, 
Proof. You can see the proof of this Lemma in Lemma (4.3) of Shen and He (2006). □ Proof of  
 
 
 
 
 
 

 
 
Theorem (1) From (3.3), we get 
 
 
 
 
 
where  
(5.3), 
where 
By the result of Lemma(2) and max1≤i≤n |ψni| = op(n1/2) of Wang and Jing 
(2001), we have 

. 
 

By (3.3) and max (1), we have 

. 
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That is 

n 
(5. 4). 
 
Hence from (3.6) 

 

(5.5)  
where 

. 
Using (5.3), we get 

(5.6) . 
□ 

Proof of (3.9) in Theorem (1). By Taylor expansion, we have 

, 
where 

 
= Op(n−3/2)op(n1/2)Op(n1) 
= op(n−1). 

From (38), we get 

. 

Since (1). By Taylor expansion, we have 
where 

Note that, from (38), we have 

. 
So ℓn = Op(n−2) + op(n−2) = op(n−1) and nℓn = op(1). Hence 

 
References: 

1. Ahmadou Alioum and Daniel 
Commenges. A proportional hazards 
model for arbitrarily censored and 
truncated data. Biometrics, pages 512–
524, 1996. 

2. Francesco Bravo. Blockwise empirical 
entropy tests for time series 
regressions. Journal of Time Series 
Analysis, 26(2):185–210, 2005. 

3. Bradley Efron. Nonparametric standard 
errors and confidence intervals. 



Volume 15| February 2023                                                                                                                           ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                              www.geniusjournals.org 
P a g e  | 34 

 

canadian Journal of Statistics, 9(2):139–
158, 1981. 

4. Shuyuan He and Grace L Yang. 
Estimation of regression parameters 
with left truncated data. Journal of 
statistical planning and inference, 
117(1):99–122, 2003. 

5. Edwin T Jaynes. On the rationale of 
maximum-entropy methods. 
Proceedings of the IEEE, 70(9):939–952, 
1982. 

6. Gang Li. Nonparametric likelihood ratio 
estimation of probabilities for truncated 
data. Journal of the American Statistical 
Association, 90(431):997–1003, 1995. 

7. Anna Clara Monti and Elvezio Ronchetti. 
On the relationship between empirical 
likelihood and empirical saddlepoint 
approximation for multivariate m-
estimators. Biometrika, 80 (2):329–338, 
1993. 

8. Whitney K Newey and Richard J Smith. 
Higher order properties of gmm and 
generalized empirical likelihood 
estimators. Econometrica, 72(1):219–
255, 2004. 

9. Elias Ould-Sa¨ıd and Mohamed Lemdani. 
Asymptotic properties of a 
nonparametric regression function 
estimator with randomly truncated 
data. Annals of the Institute of Statistical 
Mathematics, 58(2):357–378, 2006. 

10. Art Owen et al. Empirical likelihood 
ratio confidence regions. The Annals of 
Statistics, 18 (1):90–120, 1990. 

11. Junshan Shen and Shuyuan He. 
Empirical likelihood for truncation 
parameter in random truncation model. 
Journal of statistical planning and 
inference, 136(1):90–107, 2006. 

12. Winfried Stute and Jane-Ling Wang. The 
central limit theorem under random 
truncation. Bernoulli: official journal of 
the Bernoulli Society for Mathematical 
Statistics and Probability, 14(3):604, 
2008. 

13. Mei-Cheng Wang. A semiparametric 
model for randomly truncated data. 

Journal of the American Statistical 
Association, 84(407):742–748, 1989. 

14. Michael Woodroofe et al. Estimating a 
distribution function with truncated 
data. The Annals of Statistics, 13(1):163–
177, 1985. 

15. Mei Yao, Jiang-Feng Wang, Lu Lin, and 
Yu-Xin Wang. Variable selection and 
weighted composite quantile estimation 
of regression parameters with left-
truncated data. Communications in 
Statistics-Theory and Methods, 
47(18):4469–4482, 2018. 

16. Guo-qing Zhao, Wei Liang, and Shu-yuan 
He. Empirical entropy for right censored 
data. Acta Mathematicae Applicatae 
Sinica, English Series, 31(2):395–404, 
2015. 


