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1.  Introduction 
There is 4 families of infinite simple lie algebra 
over C as the following : 
An, where n ˃1 and Bn , where n ≥
2, Cn, Dn where n ≥ 3,4   respectively, 
Corresponding the groups: L(n + 1, C),
SO(2n + 1, C), Sp(2n, C), SO(2n, C)., G2,
F4,  E6, E7,  E8. denote five unique ones  having 
dimensions of 14, 52, 78, 133, and 248 apiece. 
A Cartesian subalgebra (CSA), a certain 
maximum nilpotent sub algebra, unique up to 
congruency, is the essential structure block of 
the organization, as Chevalley proven much 
later. The constant (generalized) eigenvectors 
X are root vectors, the (generalized) 
Eigenspaces g is  root spaces, and the 
(generalized) eigenvalues in the spectral 
decomposition of are specific linear forms on 
called Lie algebra encompasses more than Lie 
groups and differential geometry. Despite 
being a very complex algebraic structure with 
many different physics applications, we can 

study them as the tangent space to the identity 
of a Lie group. This area of physics uses Lie 
theory perhaps the least [10]. 
 
2 . Prefaces 
Lie algebra includes considerably more than 
just Lie groups and differential geometry. They 
are a very complicated algebraic structure with 
many applications in physics, but we can think 
of them as the tangent space to the identity of a 
Lie group. This area of physics possibly 
employs the least amount of Lie theory [10]. 
Definition 2.1. A Field F is  bilinear map and F- 
vector space by the Lie bracket 𝐿 × 𝐿 ⟶ 𝐿, 
(𝑎, 𝑏) ⟼ [𝑎, 𝑏] are both components of Lie 
algebra on  F. satisfying the following 
properties : 
[𝑎, 𝑎] = 0  , for all 𝑎 ∈  𝐿                                                                               
( L1) 

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] =

0 for each  a, b , c ∈ L.                            (L2) 
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The bracket [𝑎, 𝑏] referred to the commutator 
of 𝑏 and 𝑏 and the  Condition (L2) is the Jacobi 
identity. The Lie expression  [ − , − ] is bilinear, 
we require : 
0 = [𝑎 + 𝑏, 𝑎 + 𝑏]

= [𝑎, 𝑎] + [𝑏, 𝑏] + [𝑎, 𝑏] + [𝑏, 𝑎]
= [𝑎 , 𝑏] + [𝑏, 𝑎]. 

Now (L1) denotes :  [𝑎, 𝑏] = - [𝑏, 𝑎] , for 
all 𝑎, 𝑏 ∈ 𝐿                       (L1') 
If the field does not have typical 2, then placing 
𝑎 = 𝑏 in (L1') displays that (L1') that is mean  
(L1). 
Definition 2.2. we said Leibniz algebra for the 
algebra (𝐿, [– , – ]) over the field 𝐹 if : for all 
𝑎, 𝑏, 𝑐 ∈ 𝐿 is Leibniz identity   [𝑎, [𝑏, 𝑐]] =

[[ 𝑎, 𝑏 ], 𝑐 ]– [[𝑎 , 𝑐], 𝑏] ,  then  (2.1) clamps. for 

each  𝑎 ∈ 𝐿 , If [𝑎, 𝑎] = 0  implies  Lie algebra is 
called   Leibniz algebra, with vice versa, all  Lie 
algebra is Leibniz algebra when  𝐿𝑎𝑛𝑛  ideal < 
[𝑎 , 𝑎]: 𝑎 ∈ 𝐿 >, the factor algebra 𝐿/𝐿𝑎𝑛𝑛   is 
also a Lie algebra. Consider a Leibniz algebra's 
resulting and minor central series as follows: 

 (𝑖)  𝐿(1) = 𝐿, 𝐿(𝑛+1) = [𝐿(𝑛), 𝐿(𝑛)] 𝑤ℎ𝑒𝑟𝑒   𝑛 >

1;    
(𝑖𝑖) 𝐿1 = 𝐿, 𝐿𝑛+1 = [𝐿𝑛  , 𝐿]  𝑤ℎ𝑒𝑟𝑒   𝑛 > 1.  
Definition 2.3. A subspace 𝐼 ⊆ 𝐿 is said to have 
a left (or right) ideal if it has [𝑎, 𝑥] ∈ 𝐼 
(resp.[𝑎, 𝑥] ∈ 𝐼),  for every possible value of 𝑥 ∈
𝐼 and 𝑎 ∈ 𝐿; if I has both left and right ideals, it 
is said to have a 2-sided ideal,  sub algebra 𝐻 of  
Leibniz algebra is mentioned to as  2-sided 
ideal when  [𝐿, 𝐻] ⊆ 𝐿 ,  [𝐻, 𝐿] ⊆ 𝐿.. suppose 𝐻 ,  
𝐾 attend as L's dual ideals. The commutator- 
ideal for  H & K, represented by [H,K] is 2-sided 
ideal of 𝐿 enclosed in the comment 
 [𝑘, ℎ], [ℎ, 𝑘 ], ℎ ∈ 𝐻, 𝑘 ∈ 𝐾.   . For  exact 
Leibniz algebra L, now we can  describe the 
minor principal and assume series to  
sequences with  2-sided ideals clear 
recursively. can be seen in [18], [19], [20].  

𝐿1 = 𝐿, 𝐿𝑘−1 = [𝐿𝑘, 𝐿], 𝑘 ≥ 1;   𝐿[1] = 𝐿, 

𝐿[𝑠−1] = [𝐿[𝑠] , 𝐿[𝑠]], 𝑠 ≥ 1. 

 
3.  Properties Of Auto-morphism Of Leibniz 
Algebras 
This section demonstrates the lack of impact of 
a complex Leibniz algebra with limited 
dimensions and a non-degenerate derivation. 
Like in Lie example, the reverse of this avowal 

is untrue. The knowledge of a usually nilpotent 
Leibniz algebra, which is comparable to the Lie 
situation, is defined in [5], [6], [7], [8,] and [9]. 
Definition 3.1.  we called right annihilator for 
the set 𝐴𝑛𝑛𝑅 (𝐿) = {𝑎 ∈ 𝐿|[𝐿 , 𝑎] = 0} ∈ 𝐿(𝐿)   
from Leibniz algebra 𝐿 when 𝐴𝑛𝑛R(𝐿) is an 
ideal of 𝐿. 
Theorem 3.2. suppose the  𝐴 be a (L.T)  linear 
transformation to vector space 𝑉. Then 𝑉 rots 
into the direct sumation of normal subspaces. 
𝑉 = 𝑉𝜆1 ⊕ 𝑉𝜆2 ⊕ … ⊕ 𝑉𝜆𝑘 with reverence to 𝐴, 
where: 
𝑉𝜆𝑖 = {𝑥 ∈ 𝑉: (𝐴 − 𝜆𝑖 𝐼)𝑘  , where 𝑘 ∈ 𝑁} 
and 𝜆𝑖 , 1 ≤ 𝑖 ≤ 𝑘, are eigenvalues of 𝐴. 
Theorem 3.3. let 𝐿 be a  Leibniz algebra then: 
𝐿  is nilpotent ⟺  𝑅𝑥 is nilpotent for any 𝑥 ∈ 𝐿. 
In the sense that 𝐻 contains all of the solvable 
ideals of 𝐿  where 𝐿  is Leibniz algebra , let 𝐻 be 
a maximal ideal. According to Ayupov and 
Omirov[4], the reality of a single maximal ideal, 
referred to as the fundamental of L, is implied 
by the fact that the sum of ideals is once more  
ideal. In a similar way.  Suppose  K be a 
maximum nilpotent ideal to  Leibniz algebra L. 
According to Ayupov and Omirov[4], the fact 
that the summation  of nil ideals also  nilpotent 
ideal denotes the reality of  solitary maximal 
nilpotent ideal, also known as the nilradical of 
L. 
Definition 3.4. Let 𝐿 be a Leibniz, 𝜎 ∈ End( 𝐿).  
If 𝜎[𝑎 , 𝑏] = [𝜎(𝑎), 𝜎(𝑏)] for all 𝑎, 𝑏 ∈ 𝐿, and 𝜎 is 
bijective, then 𝜎 is called   auto-morphism of 
Leibniz algebra 𝐿. We symbolize the auto-
morphism group of Leibniz algebra as  aut(𝐿). 
4 Application Of  Low-Dimensional  Leibniz  
Algebras 

Let 𝑔 be a function of morphism of a Leibniz 
algebra 𝐿 to itself, and let  

𝐴= 
|

|

𝐴11 𝐴12 … … … … … 𝐴1𝑛

𝐴21...........

⋱

𝐴22 … … … … … . 𝐴2𝑛

𝐴𝑛1 𝐴𝑛2 … … … … … . 𝐴𝑛𝑛

|

|
 

be the 𝑎 𝑠𝑞𝑢𝑟𝑒  matrix and [𝑏𝑖, 𝑏𝑗] be the basis 

of 𝐿 we defined 
𝑔: 𝐿 × 𝐿 ⟶ 𝐿 as: 
(𝑏1, 𝑏2, … , 𝑏𝑛) ×   (𝐴11 𝐴12  … … . . … 𝐴2𝑛  ⋮ ⋮ ⋱ ⋮
 𝐴𝑛1 … … 𝐴𝑛𝑛 )  = (𝑏1

′ , 𝑏2
′ , … , 𝑏𝑛

′ ), such that: 
𝑏1

′ = 𝐴11𝑏1 + 𝐴21𝑏2 + ⋯ + 𝐴𝑛1𝑏𝑛  
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𝑏2
′ = 𝐴12𝑏1 + 𝐴22𝑏2 + ⋯ + 𝐴𝑛2𝑏𝑛 

                                              ⋮ 
𝑏𝑛

′ = 𝐴1𝑛𝑏1 + 𝐴2𝑛𝑏2  + ⋯ + 𝐴𝑛𝑛𝑏𝑛. 
4.1. Two-Dimensional  Leibniz Algebras 
Loday [14] has provided a taxonomy of all two-
dimensional Leibniz algebras. The following 
theorem provides a list of isomorphism classes. 
Theorem 4.2. Any  2-d Leibniz algebra 𝐿 is 
isomorphic to one from  the following non-
isomorphic Leibniz algebras  
𝐿: Abelian  
Note: we will use some notations for the 
purpose of clarification and ease of delivery of 
the idea. For example:  [𝑏1, 𝑏2] = 𝛽1,2 and  
[𝑏3, 𝑏2] =  𝛽3,2 , and so on for the rest 

                                                            𝐿1: 𝛽1,1 = 𝑏2 
𝐿2: 𝛽1,2 = 𝑏2 = −𝛽2,1 

𝐿3: 𝛽1,2  = 𝑏1 = 𝑏1, 𝛽1,2 
where {𝑏1, 𝑏2}  is a basis of 𝐿. Based on the list 
above, there are two pure Leibniz algebras in 
dimension two. One of them has been disclosed 
by 𝐿2 from above. The second is the two-
dimensional Leibniz algebra 𝐿, which has the 
multiplication tables [𝑏1, 𝑏2] = 𝑏1 , [𝑏2, 𝑏2] = 𝑏1. 
The derivations in this case have been given, 
and they are as follows. 
Theorem 4.3 The auto-morphism group of 2-
dimensional Leibniz algebra has the following 
form: 
Table (1) Auto-morphism Group of 2-
dimensional Leibniz algebra 
 
Isomorphis
m class 

 
Aut (𝑮) 

 
Dimensio
n (𝐷) 

 
 
𝐿1: 𝛽1,2  = 𝑏2 

 

1

2

2 1

0

 

 
 
   

 
 
3 

 
𝐿2: 𝛽1,2  
= −𝛽2,1  
= 𝑏1 

 

1

1 0

0 

 
 
   

 
 
1 

 
 

𝐿3: 𝛽1,2  
= 𝑏1, 𝛽2,2  
= 𝑏1 

 

 

 
 

1 11

0 1

 + 
 
 

 
 

 
 
2 
 

 
4.4. Tree-Dimensional Leibniz Algebras 
We cite Casas [8], [16], [17], and [18] for the 
classification of all three-dimensional 
complicated Leibniz algebras. The following is 
a list of Lie algebra isomorphism classes. 
Theorem 4.5  To get  isomorphism, there is 3  
parametric relations and 6 plain 
representatives of non-Lie complex Leibniz 
algebras of dimension ( 3):  
 
 
    𝑅𝑅1: 𝛽1,3 = −2. 𝑏1,                             𝛽2,2 = 𝑏1, 
           𝛽3,2 = 𝑏2,                                        𝛽2,3 = −𝑏2.   
   𝑅𝑅2: 𝛽1,3 = 𝛼𝑏1,                                   𝛽3,3  = 𝑏1,  
           𝛽3,2  = 𝑏2,                                      𝛽2,3  =
−𝑏2𝛼 ∈ 𝐶. 
   𝑅𝑅3: 𝛽2,2  = 𝑏1,                                        𝛽3,3 =
𝛼𝑏1,      
            𝛽2,2 = 𝛼𝑏1, 𝛼 ∈ 𝐶 /{0}.                

    𝑅𝑅4: 𝛽1,2 = 𝑏1,            𝛽3,3 = 𝑏1. 
    𝑅𝑅5 : 𝛽1,3 = 𝑏2,                                   𝛽2,3 = 𝑏1. 
    𝑅𝑅6: 𝛽1,3 = 𝑏2,                                  𝛽2,3 = 𝛼𝑏1 +
𝑏2, 𝛼 ∈ 𝐶. 
    𝑅𝑅7: 𝛽1,3 = 𝑏1 ,                                 𝛽2,3 = 𝑏2. 
    𝑅 𝑅8: 𝛽3,3 = 𝑏1,                                    𝛽1,3 = 𝑏2. 
    𝑅𝑅9: 𝛽3,3 = 𝑏1,                                    𝛽1,3 = 𝑏1 +
𝑏2. 
Theorem 4.6 The auto-morphism group of 3-
dimensional non-Lie complex Leibniz algebras 
has the following form: 
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Table (2) Auto-morphism Group of 3- 
dimensional Leibniz algebra 

Isomorphism 
class 

Aut(𝐺) Dimension 
(𝐷) 

 
 

𝑅𝑅1 
 

2 2

1 1 3

1 3

1

2

0

0 0 1

  

 

 
 
 
 
 
 
   

 
 
4 

 
 

𝑅𝑅2 
 
 
 

1 1

2 3

1 0

0

0 0 1

 

 

− + 
 
 
 
   

 
 
4 

 
 

𝑅𝑅3 
 

1 2 3

1

1

0 0

0 0

  





 
 
 
 
   

 
 
3 

 
 

𝑅𝑅4 
 

2

3 1 2

3

3

0 0

0 0

  





 
 
 
 
   

 
 
4 

 
 

𝑅𝑅5 
 

1 2

3 4

5

  0 

  0 

0   0 

 

 



 
 
 
 
   

 
 
5 

 
 

𝑅𝑅6 
 1

2

0  0 0

0   0

0  0





 
 
 
 
   

 
 
2 

 
 

𝑅𝑅7 
 

1

2 3

0  0

 0

0 0  1



 

 
 
 
 
   

 
 
3 

 
 

𝑅𝑅8 
 

2

2

3

2 1

2

0 0

0

0 0



 



 
 
 
 
   

 
 
4 

 
 

𝑅𝑅9 
 

1 1

1 2 3

0

0 0 1

 

  

 
 
 
 
   

 
 
3 

 
Corollary 4.7 The class 𝑅𝑅6 does not have 
automorphism since 𝐴11 = 0. 
Theorem 4.8 Any complicated in three 
dimensions One of the Lie algebra 
isomorphism classes listed below includes Lie 
algebra 𝐿. 

𝑅𝑅10: 𝛽1,2 = 𝑏1. 
𝑅𝑅11: 𝛽1,3 = 𝑏1 + 𝑏2,                             𝛽2,3 = 𝑏2.  
𝑅𝑅12: 𝛽1,3 = 2𝑏1,                                   𝛽2,3 = −𝑏2,           
           𝛽1,2  = 𝑏3.                                       
𝑅𝑅13: 𝛽1,3 = 𝑏1,                                     𝛽2,3 = 𝛼 ∈
𝐶 /{0}. 
 
Theorem 4.9 The auto-morphism group of 3-
dimensional complex Lie algebras has the 
following form: 

Table (3) Auto-morphism Group of 3- 
dimensional Lie algebra 

Isomorphism 
class 

Aut (𝐺) Dimension 
(𝐷) 

 
𝑅𝑅10 

 

1

2 3

4 5

0 0

0

0



 

 

 
 
 
 
   

 
5 

 
𝑅𝑅11  

 

1 1

2 1 1

0

0 0 1

 

  

 
 

− 
 
   

 
2 

 
𝑅𝑅12 

 

1 2 3

40 0

0 0 1

  



 
 
 
 
   

 
4 
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𝑅𝑅13 

 

1

2

0  0

0  1 0

0  1





 
 
 
 
   

 
2 

Corollary 4.10 The class 𝑅𝑅13 does not has 
automorphism since 𝐴11 = 0. 
 
5. Conclusion  
The second and third dimensions have been 
proven and found through the use of the auto-
morphism principles. A number of theories and 
axioms were used to find the dimensions 
referred to above, and the results were positive 
through research and were explained in 
tabular form. 
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