

Calculating the Surface Area of a Rolling Surface Using an Exact Integral

**Tillabayev Boburjon
Shavkatjon oglı**

Fergana polytechnical institute, Fergana, Uzbekistan
E-mail: boburjontillabayev@gmail.com

ABSTRACT

Calculate The Area Of Rotary Surfaces Using A Definite Integral The Emphasis Is On How The Functionality Is Displayed. Because, Function May Give Obviously, Parametric And In Another System From Decart Coordinate System.

Keywords:

Calculate The Area Of Rotary Surfaces Using A Definite Integral The Emphasis Is On How The Functionality Is Displayed. Because, Function May Give Obviously, Parametric And In Another System From Decart Coordinate System.

For The Convenience Of Computing, We Use Different Formulas For Each One. $f(x)$ Function Is Detected And Continuous In $[a, b]$ Cut, It Has Limited $f'(x)$ Derivative In $x \in (a, b)$ Interval [1-4].

1. The Side Surface Of The Rotary Surface Formed By The Rotation Of The $f(x)$ Function On The Axis Ox In $[a, b]$ Cut Is Obtained By The Following Formula

$$S = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx \quad (1)$$

2. If The Curve Is Given Like $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \alpha \leq t \leq \beta$, In This Case, According

To The (1) Formula, It Looks Like The Following Below

$$S = 2\pi \int_{\alpha}^{\beta} \psi(t) \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt \quad (2)$$

3. If The Curve Is Given In Polar Coordinate System With $\rho = \rho(\varphi)$, $\alpha \leq t \leq \beta$ Formula, According To The (1) Formula, The Area Of The Rotary Surface Formed By The Rotation Of The $\rho = \rho(\varphi)$ Curve On The Axis Polar Is Obtained By The Following Formula

$$S = 2\pi \int_{\alpha}^{\beta} \rho(\varphi) \sin \varphi \sqrt{\rho^2 + [\rho']^2} d\varphi \quad (3)$$

Look At The Examples Below For Calculating The Area Of Rotary Surfaces Using The Definite Integral [5-8].

1-Problem. Find The Surface Of Sphere That The Radius Is Equal R And Center Is In Head Of Coordinate.

Answer. For Calculating That Problem We Use (1) Formula Above. We Know That, The Circle Equation Is $x^2 + y^2 = R^2$. For Using The Equality (1), We Need The Equation Of Function And We Find It From Circle Equation.

$$f(x) = \sqrt{R^2 - x^2}, \quad f'(x) = \frac{-x}{\sqrt{R^2 - x^2}}.$$

We Find These Findings In The Above (1) Formula And Have The Following Result

$$S = 2\pi \int_{-R}^R \sqrt{R^2 - x^2} \cdot \sqrt{1 + \frac{x^2}{R^2 - x^2}} dx = 2\pi \int_{-R}^R R dx = 4\pi R^2$$

2-Problem. Calculate The Are Of Rotary Surfaces Formed By The Rotation On The Axis Ox And Given As A Parametric Form

$$\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases} \text{ In } \left[0; \frac{\pi}{2} \right] \text{ Cut.}$$

Answer. For Calculating That Problem We Use (2) Formula Above. We Will Find Their Specific Derivatives And Put Them In (2) Formula [7-10].

$$S = 2\pi \int_0^{\frac{\pi}{2}} e^t \cos t \sqrt{(e^t \sin t + e^t \cos t)^2 + (e^t \cos t - e^t \sin t)^2} dt$$

$$S = 2\sqrt{2}\pi \int_0^{\frac{\pi}{2}} e^{2t} \cos t dt.$$

We Integrate This Integral Expression Into A Gradual Integration And Have The Following Result

$$S = 2\sqrt{2}\pi \int_0^{\frac{\pi}{2}} e^{2t} \cos t dt = 2\sqrt{2}\pi \frac{e^\pi - 2}{5}.$$

So That, The Area Of The Rotary Surface Is Equal $2\sqrt{2}\pi \frac{e^\pi - 2}{5}$.

References

- Фихтенгольц Г. М. (1970). Математик Анализ Асослари. Тошкент.
- Азларов Т., Мансуров Х. (1995). Математик Анализ. Тошкент.
- Tillabayev, B., & Bahodirov, N. (2021). Solving The Boundary Problem By The Method Of Green's Function For The Simple Differential Equation Of The Second Order Linear. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(6), 301-304.
- Shavkatjon O'g'li, T. B. (2022). Some Integral Equations For A Multivariable Function. *Web Of Scientist: International Scientific Research Journal*, 3(4), 160-163.
- Shavkatjon O'G'Li, T. B. (2022). Proving The Inequalities Using A Definite Integral And Series. *Texas Journal Of Engineering And Technology*, 13, 64-68.
- Shavkatjon O'g'li, T. B., & Odilovich, A. Z. (2020). Section: Information And Communication Technologies. *Modern Scientific Challenges And Trends*, 128.
- Qo'ziyev, S. S., & Tillaboyev, B. S. O. (2021). Talabalarda Ijodkorlikni Rivojlantirishda Axborot Kommunikatsion Texnologiyalarning O'Rni. *Oriental Renaissance: Innovative, Educational, Natural And Social Sciences*, 1(10), 344-352.
- Qizi Tillabayeva, G. I. (2019). Problems For A Simple Differential Equation Of The First Order Linear That The Right Side Is Unknown And The Coefficient Is Interrupted. *Scientific Bulletin Of Namangan State University*, 1(12), 10-14.
- Qizi Tillabayeva, G. I. (2021). Problem Of Bisadze-Samariskiy For A Simple Differential Equation Of The First Order Linear That The Right Side Is Unknown And The Coefficient Is Interrupted. *Scientific Bulletin Of Namangan State University*, 2(2), 20-26.
- Qizi Tillabayeva, G. I. (2020). No Local Conditional Problems For The Simple Differential Equation Of The First Order Linear. *Scientific Bulletin Of Namangan State University*, 2(1), 3-6.