

Synthesis, characterization and antibacterial activities of new substituted (1,3)oxazepine 1,5diones

-	
Omar J. Mahdi Al-Asafi ^{1,a)} ,	1) General Directorate of Education in Anbar, Ministry of
	Education, Iraq
	a) Corresponding author Tel.: +964 -7812966986 Email:
	<u>omerKha22@gmail.com</u> , <u>omar.j.mahdi.chem2021@st.tu.edu.iq</u>
Mohammed G. Mukhlif ^{1,b)}	1) General Directorate of Education in Anbar, Ministry of
	Education, Iraq
	b) Corresponding author Tel.: +964 -7829090612 Email:
	mohammed.g.mukhelif@tu.edu.ig

Novel Imine were prepared via the reaction of (p-chloro and p-methyl)aniline with (pnitro and p-methoxy) benzaldehyde and later engaged in a condensation reaction with 2-O-Acetylmalic anhydride in a dioxane as a solvent. The resulting products were found to be 1,3-oxazepine-1,5-diones and their derivatives. FT-IR , 1HNMR and C.H.N. spectra were used to confirm the structures of products. The antibacterial properties of these compounds were also examined

Keywords:

Seven-Member, Antibacterial Activities, 1,3-Oxazepine, Imine

Introduction:

ABSTRACT

Oxazepine seven-member has а unsaturated non-homologous ring containing two heteroatoms, oxygen and nitrogen, and five carbon atoms. [1] One sort of pericyclic reaction used to make 1,3-oxazepine was the cycloaddition process. [2] Several studies have found that imported Oxazepine compounds exhibit a wide range of biological actions, including antibacterial [3], antifungal [4], anti-influenza antitumor [5], [6], antipsychotic[8]. antianxiety[7]. anticonvulsant[9], anticancer [10], They also have anticorrosion properties. [11]

The target of this research is to create novel (1,3) oxazepine 1,5-diones molecules, characterize them, The antibacterial properties of these compounds were also examined.

Material And Methods

The use of all chemicals was done without additional purification and they were all bought from Sigma-Aldrich. The infrared spectra were captured using a Tensor 27 Bruker, Germany spectrometer (spectral range: 4000-600 cm-1). The 1H NMR spectra were captured using DMSO-d6 as the solvent on a Bruker Ultershield 400 MHz NMR spectrometer in Germany. The C.H.N analyses were performed by Euro Ea Elemental Analyser.

Procedure for prepare of Schiff's Bases A₁-A₄

A solution of p-methylaniline or p-chloro aniline (0.01 mol) in Ethanol absolute (15 mL) was added to 50 mL round bottom flask containing appropriate aldehyde (0.01 mol) . Refluxing the mixture for three hours, After filtering, the precipitate was re-crystallized from ethanol. Table 1 provides a list of some of

the physical characteristics of compounds prepared

Table (1): Some of the Physical properties of compounds A1-A4							
Com _				Y	ields		
Symb.	Formula	X	Y	Mol.Wt.	%	Colour	
A ₁	C ₁₄ H ₁₂ ClNO	Cl	OCH ₃	245.71	74	white	
A_2	C13H9ClN2O2	Cl	NO ₂	260.68	83	Yellow	
A ₃	C ₁₅ H ₁₅ NO	CH ₃	OCH ₃	225.29	71	white	
A 4	$C_{14}H_{12}N_2O_2$	CH ₃	NO ₂	240.26	79	Yellow	

Procedure for prepare of 1,5-Disubstituted oxazepine

In a condenser-equipped, 100-ml roundbottom flask that has been thoroughly dried, a mixture of equivalent amount (0.001mole) of Schiff's bases A(1-4) and (0.001mole) of 2-O-Acetylmalic Anhydride in anhydrous Benzene (30 ml) was refluxed for (4 hr.). In an ice bath, the reaction mixture was allowed to cool. separated out some compounds as solid product during cooling, and some other as a Gummy. The product was washed in distilled water. and later dried and recrystallized from benzene. The chemical formula, Molar mass, yield %, melting points and colours, are given in table (2).

				Y	ields		
Symb.	Formula	Х	Y	Molar	0/-	М.Р. ^о С	Colour
	Formula			mass	70		
B 1	C20H18CINO6	Cl	OCH ₃	403.82	76	Gummy	Brown
B ₂	C19H15ClN2O7	Cl	NO_2	418.79	59	Gummy	Brown
B 3	C21H21NO6	CH ₃	OCH ₃	383.40	78	Gummy	Brown
B 4	C20H18N2O7	CH ₃	NO ₂	398.37	68	Gummy	Brown

Results and Discussion

The reaction of anhydride derivatives as an electrophilic reagent with imines (Schiff's

bases) as mild nucleophilic reagents is described in this paper.

Schiff's bases were prepared using an acid catalyzed thermal condensation reaction

The mechanism of imine synthesis has been fully explained in the literature.[12-13]

The structures of imine were confirmed by their FT-IR spectra which showed the disappearance and appearance of the characteristic absorption frequencies (bands) of the principal functional groups. According to the FT-IR spectra, the distinctive absorption frequencies of both (C=O) at (1720-1740) cm-1 and (-NH2) at (3300-3500) cm⁻¹ vanished, of the primary amine and the aldehyde, respectively. and the occurrence of the stretching absorption bands of the azomethine group (C=N) at (1619-1625) cm⁻¹, in addition to the appearance of stretching absorption of the other groups in the structure of each individual compounds table (3).

with p-methylaniline or p-chloroaniline and an

appropriate aldehyde, according to a well-

known procedure.

			·1-IN uutu	i oj innine c	ompounus [r	11-A4	
Comp.	υ C-H ar. st.	υ C=N st.		υ C=C st.	υ C-N st.	δ(C-H) Bending	Other cm ⁻¹
A ₁	3018	1619	1567	1477	1090	726, 838	2962 C-H al. st.
A 2	3099	1624	1597	1487	1008	713, 823	1371 C-NO ₂ sy. 1340 C- NO ₂ as.
A 3	3077	1621	1595	1504	1022	724, 835	2971 C-H al. st
A4	3078	1625	1596	1514	1005	711, 836	1376 C-NO ₂ sy. 1339 C- NO ₂ as.

Table (3): FT-IR data of imine compounds [A1-A4]

By mixing equivalent amounts of anhydride derivatives in anhydrous Benzene and refluxing under dry conditions, the reaction of anhydride derivatives with a variety of Schiff's bases was studied. The reaction's plausible reaction mechanism was described as follows:

In this work. the (2+5)polar cycloaddition reaction of Schiff's Bases as mild nucleophile to 2-O-Acetylmalic Anhydride as electrophile in anhydrous Benzene is reported. The structures of the synthesized oxazepine were confirmed by the FT-IR spectra which showed the disappearance and appearance of characteristic absorption frequencies the (bands) of the principal functional groups. The FT-IR spectra showed the disappearance of the characteristic absorption frequencies of azomethine group (C=N) at (1619-1625) cm⁻¹, appearance and the of the stretching absorption bands of (C=O lactone) at (1750-1765) cm⁻¹, (C=O lactame) at (1673-1711) cm⁻ ¹in addition to the appearance of stretching absorption of the other groups in the structure of each individual compounds Figure 1 and Figure 2 : IR spectrum of compound B_1 , . ¹HNMR spectra confirm the structures of synthesized compounds. Figure 3 and Figure 4: ¹H NMR spectrum of B₁₋₄.[14-16]

Tahle	(4)	· FT-IR	data o	f 1	3-08070	nines	derivatives	
IUDIC	(- / -		uutu u	J 1,	J UNULL	pines	ucrivutives	

Comp.	υ C-Har. st.	υ C=O lactone	υ C=O lactame	υ C=C	Car. st.	υC- s	N δ(C-H) st. Bending	Other cm ⁻¹
B ₁	2998	1750	1673	1572	1522	1090	739, 858	2962 C-H al.st.
B ₂	3104	1761	1680	1596	1517	1010	739, 851	1400 C-NO2 sy. 1341 C-NO2 as.
B 3	3075	1765	1709	1591	1515	1018	718, 837	2992 C-H al. st.
B 4	3021	1759	1711	1600	1518	1008	739, 842	1400 C-NO2 sy. 1344 C-NO2 as.

Table (5): Chemical Shift δ (ppm) and (C.H.N.)analysis of 1,3-oxazepines derivatives

		M.Wt		C.H	.N % Cal	lculated
Comp	Formula	(g/m	Chemical Shift δ ppm			(Found)
		ole)		С%	H%	N%
			(1Hs) δ=8.07 (N-C-H),			
			(8Hm)δ=7.09-7.64 (-C-H _{arom} .),			
D.	C20H18CINO6	403.8	(1Hm)δ= 5.59-5.60 (O-C-H)	59.49	4.49	3.47
D 1		2	(3H s) δ= 4.07 (OCH ₃)	(58.87	(4.27	(2.84)
			(2H d) δ= 2.94-2.97 (CH _{2 ring7})))	
			(3H s) δ= 1.72 (0=C-CH ₃)			
			(1Hs) δ=8.15 (N-C-H),			
			(8Hm)δ=6.88-7.58 (-C-H _{arom} .),	54.49	3.61	6.69
B ₂	C19H15ClN2O7	418.7	(1Hm)δ= 5.19-5.21 (O-C-H)	(53.76	(2.93	(5.59)
		9	(2H d) δ= 3.66-3.68 (CH _{2 ring7})))	
			(3H s) δ= 2.11 (0=C-CH ₃)			
B ₃			(1Hs) δ=8.18 (N-C-H),			

B4	C21H21NO6 C20H18N2O7	383.4 0 398.3 7	$(1 \text{Hm})\delta = 6.11 - 6.14 \text{ (O-C-H)}$ $(3 \text{H s}) \delta = 4.03 \text{ (OCH}_3)$ $(2 \text{H d}) \delta = 3.27 - 3.29 \text{ (CH}_2 \text{ ring7})$ $(6 \text{Hs})\delta = 2.68(\text{O}=\text{C}-\text{CH}_3),(\text{Ar-CH}_3)$ $(1 \text{Hs}) \delta = 7.98 \text{ (N-C-H)},$ $(8 \text{Hm})\delta = 7.09 - 7.77 \text{ (-C-H}_{\text{arom.}}),$ $(1 \text{Hm})\delta = 5.56 - 5.60 \text{ (O-C-H)}$ $(2 \text{H d}) \delta = 2.92 - 2.95 \text{ (CH}_2 \text{ ring7})$	65.79 (63.79) 60.30 (60.79)	5.52 (4.93) 4.55 (3.93)	3.65 (3.09) 7.03 (6.89)
	BRUKER	<u> </u>	(6Hs)δ=2.68(O=C-CH ₃),(Ar- CH ₃)			

Figure 1: IR spectrum of compound B₁.

Biological Activity against Bacteria

The heterocyclic derivatives of 1,3-oxazepines have been shown to have antibacterial action against a variety of bacteria, including E. coli, S. aureus, and P. aregenosa. utilizing nutritional agar medium and the well diffusion method. Each substance was suspended in aqueous solutions at various concentrations (10–100 mg/mL), Solvent blanks were used in all assays against each test organism, and the results are represented as MICs (minimal inhibitory concentrations). The experimental biological data is shown in Table 6.

	Fable 6: Antibacterial activity	y data of the heteroc	yclic derivatives of 1,3-oxazepines
--	--	-----------------------	-------------------------------------

Comp.	E. coli	S. aureus	P. aregenosa
B 1	22	21	22
B ₂	23	21	19
B ₃	17	19	20
B 4	20	20	18
Antibiotics			
Ampicillin	23	20	21
Vibromycin	24	22	20

Conclusions

In this work, the new substituted 1,3oxazepine-4,7-dione derivatives were prepared successfully by using various substituted Schiff's bases . The 1,3-oxazepines has been evidenced by spectral analysis. The substances' antibacterial efficacy against several types of bacteria was assessed, and they shown similar activity to that of conventional medications.

References:

 A- Al-awwadi, N. A. J.; Alsaffee, B. A. H.; Abdulridha, M. M. (2016) "Synthesis and Characterization of Cu(II) and Fe(II) metal complexes of Oxazepine derivative via Schiff base [Fe(HPOHBOT)Cl₂] and [Cu(HPOHBOT)Cl₂]", African Journal of Pharmacy and Pharmacology 10(35): 728-736.

- Al-Hiti, W. F.; Saeed, M. A. (2017) "Synthesis and Characterization of some 3-(2-(6-oxo-1,3-thiazinan-3-yl)-R-)-1,3oxazepine-4,7-dione and N-Bromoamines 1,3-oxazepine-1,4-dione derivatives", BEST: International Journal of Humanities, Arts, Medicine and Science 5(1): 65-74.
- 3. Jassim, I.K.; Ali, A. M. (2018) "Synthesis and Studying The Liquid Crystalline Properties for New Heterocyclic Compounds", Journal of Education and Scientific Studies-Chem Sci. 12(3):172-183.
- Muslim, R. F.; Tawfeeq, H. M.; Owaid, M. N.; Abid, O. H. "Synthesis, Characterization and Evaluation of antifungal activity of seven-membered heterocycles", Acta. Pharm. Sci. 56(2):39-57. (2018)
- uni, D.; Ranjitha, C.; Rama, M.; Pai, K. S. R. "Oxazepine derivative as an antitumor agent and snail1 inhibiter against human", International Journal of Innovative Research in Science, Engineering and Technology 3(8): 15357-15363. (2014)
- El-Nezhawy, A. O. H.; Eweas, A. F.; Maghrabi, I. A.; Edalo, A. S.; Abdelwahab, S. F. "Design, Synthesis and Molecular docking of novel Pyrrolooxazepinediol derivatives with anti-influenza neuraminidase activity" Arch. Pharm. Chem. Life Sci. 348(11):786-795. (2015)
- Mahapatra, D. K.; Shirhare, R. S.; Gupta, S. D. "An oxiolytic activity of some 2,3dihydrobenzo[b][1,4]-oxazepine derivatives synthesized from Murrayanine-Chalcone", Asia J. Res. Pharm. Sci. 8(1): 25-29. (2018)
- 8. Naporra, F.; Gobleder, S.; Wittmann, H.; Spindler, J.; Bodensteiner, M.; Berhardt, G.; Hubner, H.; Gmeiner, P.; Elz, S.; Strasser, A. "Dibenzo[b,f][1,4]oxazepiens and dibenzo[b,e]oxepines: influence of the

chlorine substitution pattern on pharmacology at the H_1R , H_4R , 5- $HT_{2A}R$ and other selected GPCRs", Pharma Cological Research 113(A):610-625. (2016)

- Sahu, M.; Nerka, A. G.; Chikhale, H. U.; Sawant, S. D. "In silico screening, synthesis and pharmacological screening of quinazolinones containing oazepinone ring as NMDA receptor antagonists for anticonvulsant activity: part-I", Journal of Young Pharmacists 7(1):21-27. (2015)
- 10. Al-Rawi, M.S.; Hussei, D.F.; Al-Taie, A. F.; Al-Halbosiy, M.M.; Hameed, B. A. "Cytotoxic effect of new synthesis heterocyclic derivatives of amoxicillin on some cancer cell lines", IOP Conf. Series: Journal of Physics: Conf. Series 1003(012012):1-7. (2018)
- 11. Hamak, K.F.; Eissa, H.H.(2013) "Synthesis characterization, biological evaluation and anti-corrosion activity of some heterocyclic compounds Oxazepine derivative from Schiff bases", International Journal of ChemTech Research 5(6):2924-2940.
- William, H.; Brown, B.L.; Iverson, E.V.; Anslyn, C.S.F. "Organic Chemistry", 7th Ed., WADSWORTH CENGAGE Learning. (2014)
- 13. Mcmurry, J. (2016) "Organic Chemistry", 9th Ed., CENGAGE Learning.
- 14. L.D.S.Yadav, Organic Spectroscopy, Springer Science,Business Media Dordrech, Springer-Science.Business Media, B.V. (2005).
- 15. Donald L. Pavia, Gary M. Lampman, George S.& James R. Vyryan, Introduction to spectroscopy, 4th Ed., Brooks\ cole cengage Learning, pp 16-104, (2009).
- Robert M. Silverstein, Francis X. Webster, David J. Kiemle, spectrometric Identification of Organic compounds, 7th Ed, John- Wiley & Sons, INC., pp. 72-126, (2005).