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1. Introduction الترجمة طويلة جدًا ولا يمكنحفظها. 
In all fields of knowledge the researcher 
concerns what is the nature of the data, and it 
is very rare for these data to be directly 
prepared for the use of statistical methods that 
give appropriate estimates. The issue of robust 
estimates in the context of inference is one of 
the important issues. In (1853) Box put 
forward the idea of robustness  and said that to 
build an effective model, it must be robust to 
ensure that there are no risks in it and thus 
lead to reliable and reliable inferences. Robust 
statistic is an extension of classic statistic that 
specifically takes into account the fact that 
traditional models only provide an 
approximation of the true basic random 
mechanism that generates the data. But in 
practice, the model assumptions are almost 
completely incompatible with what this 
random mechanism offers. It can be part of the 
observations that have patterns that do not 
share with the bulk of the rest of the data and 

therefore be outliers. The occurrence of 
deviations from the model assumptions with 
atypical values may have unexpected and bad 
effects on the results of the analysis. If we deal 
with the concept of robust from the point of 
view of Bayes theory, we will find that it 
depends on three main trends, the first 
depends on the inaccuracy of previous 
information (Priors), and the second depends 
on the contamination of the current sample 
observations or previous observations or the 
failure to achieve hypotheses of random errors, 
while the last trend is based on inaccuracy in 
determining the loss function. The issue of 
robust estimates in the context of inference is 
one of the important issues. In (1853) Box put 
forward the idea of robustness and said that to 
build an effective model, it must be robust to 
ensure that there are no risks in it and thus 
lead to reliable and reliable inferences 
(Passarin, 2004 ,1). The two Azerbaijani 
scholars (Lotfi Zadah ) and German (D. Klaua ) 
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were the first to lay the foundations of the 
fuzzy sets theory in (1965) when they used the 
term fuzzy variables on approximate, 
inaccurate or undefined linguistic expressions 
and expressions. The fuzzy set is a set of 
elements in which each element has a degree of 
affiliation between zero and one that 
distinguishes it from other elements in the set. 
It is determined by an affiliation function. 
(Zadeh, 1965) (Klaua, D., 1965). The 
researchers (Berger & Berliner) in (1985) were 
the first to use the idea of the robust Bayesian 
estimation from two sides, the first depended 
on the pollution class –contamination ε by 
defining different pollution rates in the data, 
and the second relied on the class of maximum 
likelihood, the second type ML-II for the 
normal distribution using simulation Monte 
Carlo. (Berger & Berliner, 1985). After that, it 
followed many studies and research that dealt 
with the issue of fuzzy and the issue of robust 
Bayesian, In 2010, (Karpisek and others) relied 
on the fuzzy probability distribution and its 
properties to define the fuzzy reliability, as 
they described two models of fuzzy reliability 
using the Fuzzy Kumaraswamy distribution to 
estimate the fuzzy reliability of concrete 
structures (Karpisek & et al, 2010), Also. 
(Kareema) and (Abdul Hameed) (2012) 
derived the fuzzy probability mass function of 
the geometric distribution, the fuzzy 
cumulative distribution function, and some 
properties of the fuzzy distribution such as the 
fuzzy mean, the fuzzy variance, and the 
generation of fuzzy moments. The parameter 
domain, as well as all formulas that use 
probability theory, can be fuzzy. (Kareema, 
2012 & Abdul Hameed). In 2014, (Safdar) 
presented a new method for obtaining a fuzzy 
probability distribution based on the well-
known probability density function of the 
distribution and based on the (Resolution-
Identity) property to obtain a fuzzy number 
and proved the effectiveness and adequacy of 
this method. (Safdar,2014). In 2018, (Wang & 
Beli) proposed a robust Bayesian model as an 
alternative to the standard model that gives 
protection for data that include outlier values 
or move away from basic assumptions (Wang 
&Beli,2018) .In 2019, (Panwar) and others 

used the robust Bayesian approach to analyze 
life-times of the Maxwell distribution based on 
the prior distribution, the class of maximum 
likelihood, the second type, under a square loss 
function and a Linux loss function in the case of 
complete data and data Type I progressive 
hybrid control (Panwar et al,2019). In (2020) ( 
Entsar & Ahmed) used the standard Bayes 
method and the robust Bayes method to 
estimate the parameter (P) and the survival 
function of the binomial distribution in the case 
of conflicting previous data for two simulation 
experiments. 
 
2. Fuzzy principle  
Let   is  Universe of discourse , A  subset from 
it , then each element in A may be belonging or 
not belonging to A. (H. Garg et al, 2013, 397) (A. 
Ibrahim, A. Mohammed, 2017, 143) 
Let  µ𝐴(𝑥) is a characteristic function for A give 
the membership in   to A, it is a binary 
function, {0, 1}, where, 

µ𝐴(𝑥) = ൜
1, 𝑖𝑓 𝑥   ∈    𝐴
0, 𝑖𝑓 𝑥   ∉    𝐴

 

If µ𝐴(𝑥) = 1, then the element x has full 
belonging to the set A. If µ𝐴(𝑥)= 0, then the 
element x does not belong to the set A. Figure 
(1) shows the crisp set, as we note in it that 
belonging to the elements 𝑥𝑟 and 𝑥𝑟+1equals 
zero and to the elements   𝑥0 ,   𝑥1 𝑥2 equal to 
one, and that the elements in it either belong to 
the set or do not belong to it. 
As for the fuzzy set, it is a set of ambiguous 
boundaries, each element in the fuzzy set has a 
certain degree of membership, and the fuzzy 
set is characterized by a membership function 
that assigns each element in the set a degree of 
membership in the interval [0, 1]. In which the 
element or object is allowed to belong partly. 
(Pak, 2017, 504) 
Let   is  Universe of discourse , a fuzzy subset  
A෩  from it that distinguished with the 
membership function µA෩(x)  which produce 
values in the interval [0, 1] for each values in 
the fuzzy sample space, then the fuzzy set is , 
(Danyaro & et al., 2010, 240) 

A෩ = {(xi, µA෩(xi)), x ∈  , i = 1,2,3, … … n, 0 <
µA෩(x) < 1}       … (1) 
Figure (3) shows the fuzzy set, as we note in it 
that the membership to the elements a, c can 
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fall between zero and one, and the element b 
has a degree of membership equal to one, and 
that the elements can belong to set A with 
different degrees of membership. 
3. α-cut 
The principle of cutting in the fuzzy set was 
first introduced by (Zadeha, 1971), and α is 
defined as the lowest degree of belonging to 
any element in the fuzzy group A ̃ and its value 
falls within the period [0 1]. (H. Garg et al, 
2013, 398) , which represents the degree of 
affiliation of the important elements, since the 
important affiliation is limited to two values 
(a1,am) on the fulcrum of the fuzzy group 

(Support A෩), and except for those values, it is of 
little importance and outside the scope of work 
(cut-out) (Auji, 2015). 
4. Suggested Fuzzy Probability Distribution 
Let we have a failure time t1, t2, … , tn     where 
tT   inaccurate, uncertain, and expressed in 
fuzzy numbers 𝑡̃T෩, where 𝑡̃ = {[0, ∞), µ𝑡̃(𝑡)} . 
The crisp sample observations vector that we 
can get from the fuzzy set, which represents all 
the elements that have a degree of membership 
greater or equal to the alpha-cut (α-cut), which 
represents the degree of membership of the 
elements we are interested in and expresses 
those elements as the set  𝐴(α)  
𝐴(α) = {𝑡̃ = [0, ∞)T෩, µ𝑡̃(𝑡) = 𝛼 ;  µ𝑡̃(𝑡) ≥ 𝛼}     
, 0 < 𝛼 < 1      …  (2 )  
µ𝑡̃(𝑡)   is a membership function through which 
a degree of membership is generated for each 
failure time in the sample space and can take 
any form of membership functions, then 𝑡̃𝐴(α)  is 
Borel Measurable which will represent the 
fuzzy sample space and the events represent 
the smallest sigma-borel field (σ-Borel).Then 
the fuzzy cumulative distribution function CDF̃ 
ism=,  

 𝐹̃(𝑡̃𝐴(α)) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡̃

𝐴(α)

0
                                               

… (3) 
By deriving the equation (32-2) for (𝑡̃𝐴(α)  ) we 
get the fuzzy probability distribution as 
follows: 

𝑓(𝑡̃) =
𝜕𝐹̃(𝑡̃

𝐴(α))

𝜕𝑡̃
𝐴(α)

=
𝜕

𝜕𝑡̃
𝐴(α)

[∫ 𝑓(𝑢)𝑑𝑢
𝑡̃

𝐴(α)

0
]   ;  0 <

𝑡̃𝐴(α) < ∞      … (4)  
5. Fuzzy Exponential distribution: 

The probability density function for a crisp 
Exponential distribution is : 

𝑓(𝑡, 𝜆) = 𝜆𝑒−𝜆𝑡   ;       t > 0                                             
... (5) 
From (5) we obtain,  

𝐹̃(𝑡̃𝐴(α)) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡̃

𝐴(α)

0
   

              = 1 − 𝑒
𝜆𝑡̃

𝑨(𝛂) = 𝐹(𝑡̃𝑨(𝛂))                                                                                      

… (6)    
The probability density function for the fuzzy 
Exponential distribution can be obtained as 
follows: 

𝑓(𝑡̃𝑨(𝛂)) =
𝜕𝐹̃(𝑡̃𝑨(𝛂))

𝜕𝑡̃𝑨(𝛂)
=

𝜕

𝜕𝒕̃
[1 − 𝑒

𝜆𝑡̃
𝑨(𝛂) ] 

                                       = 𝜆𝑒−𝜆𝑡̃
𝑨(𝛂)  = 𝑓(𝑡̃𝑨(𝛂))                          

… (7)   
6. Fuzzy Weibull distribution: 

The probability density function for a crisp 
Weibull distribution is : 

𝑓(𝑡, 𝜃, 𝜆) = 𝜃𝑝𝑡𝜃−1𝑒−𝑝𝑡𝜃
   ;       t, θ, p > 0                           

... (8) 
From (4) we obtain,  

𝐹̃(𝑡̃𝐴(α)) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡̃

𝐴(α)

0
   

              = 1 − 𝑒−𝑝𝑡̃
𝑨(𝛂)

𝜃

=𝐹(𝑡̃𝑨(𝛂))                                                    

… (9)    
The probability density function for the fuzzy 
Weibull distribution can be obtained as 
follows: 

𝑓(𝑡̃𝑨(𝛂)) =
𝜕𝐹̃(𝑡̃𝑨(𝛂))

𝜕𝑡̃𝑨(𝛂)
=

𝜕

𝜕𝒕̃
[1 − 𝑒−𝑝𝑡̃

𝑨(𝛂)
𝜃

] 

                                       = 𝑝𝜃𝑡̃𝑨(𝛂)
𝜃−1

𝑒−𝑝𝑡̃
𝑨(𝛂)

𝜃

=
𝑓(𝑡̃𝑨(𝛂))           … (10)   
7. Fuzzy Kumaraswamy distribution: 

The probability density function for a crisp 
Kumaraswamy distribution is : 

𝑓(𝑡, θ, β) =   θβ 𝒕𝜷−𝟏 [𝟏 − 𝒕𝜷 ]
θ−𝟏

                 0 <

𝑡 < 1                           ... (11) 
From (4) we obtain,  

𝐹̃(𝑡̃𝐴(α)) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡̃

𝐴(α)

0
   

              = 1 − [𝟏 −  𝑡̃𝑨(𝛂)
𝛽

 ]
θ

 =  𝐹(𝑡̃𝑨(𝛂))                                                    

… (12)    
The probability density function for the fuzzy 
Kumaraswamy distribution can be obtained as 
follows: 
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𝑓(𝑡̃𝑨(𝛂)) =
𝜕𝐹̃(𝑡̃𝑨(𝛂))

𝜕𝑡̃𝑨(𝛂)
=

𝜕

𝜕𝒕̃
[1 − [𝟏 −  𝑡̃𝑨(𝛂)

𝛽
 ]

θ

] 

                                       = 𝜃β𝑡̃𝑨(𝛂)
𝛽−1

[𝟏 −

 𝑡̃𝑨(𝛂)
𝛽

 ]
θ−1

= 𝑓(𝑡̃𝑨(𝛂))           … (13)   

8. Proposed Robust Bayesian method 
Bayesian modeling takes into account the 
inaccuracy of the unknown parameters in a 
statistical model (Gelman et al., 2014). 
Therefore, the Bayesian model uses a set of 
sample data 𝑡𝑖 Which is represented by the 
likelihood function of the current observations, 
as we have the original distribution of the 
items of the current sample, which represents 
the probability density function of the data 
𝜑(𝑡𝑖  𝜃) with parameter vector 𝜃 and prior 

distribution 𝜋(𝜃 𝜗) with hyper- parameters 𝜗 .  

{𝑡𝑖   𝜃 ~𝑖𝑖𝑑  𝜑(𝑡𝑖 𝜃)  , 𝜃~ 𝜋(𝜃 𝜗) } ,          𝑖 =

1,2, … … , 𝑛               … (14) 
To find the Joint posterior distribution, 

ℎ(𝜃 𝑡𝑖  𝜗) =
𝜋(𝜃 𝜗) ∏  𝜑(𝑡𝑖 𝜃) 𝑛

𝑖=1

∫ 𝜋(𝜃 𝜗) ∏  𝜑(𝑡𝑖 𝜃) 𝑛
𝑖=1𝜃

                                       

… (15) 
We note in Model (2-68) that for the parameter 
estimated from the observations of the sample 
as a whole, there is one primary distribution, 

which is 𝜋(𝜃 𝜗) with hyper- parameters 𝜗   his 

does not achieve robustness in the estimation 
because all the items of the current sample data 

will have a common initial distribution so that 
the vocabulary of the same format and the 
abnormal vocabulary will have the same 
previous probability. In order to make the 
model (68-2) enjoy robustness, we will suggest 
that for each of the parameters to be estimated 
at each item of the sample vector 𝑡𝑖  drawing 
from 𝜑(𝑡𝑖  𝜃𝑖) there is preliminary information 
represented by an initial distribution 𝜋(𝜃𝑖  𝜗) 

for parameter 𝜃𝑖  with hyper- parameters  𝜗 ,  

𝑡𝑖  𝜃𝑖  ~ 𝑖𝑖𝑑  𝜑(𝑡𝑖 𝜃𝑖)   , 𝜃𝑖~ 𝑖𝑖𝑑 𝜋(𝜃𝑖  𝜗)  ,          𝑖 =

1,2, … … , 𝑛          … (16) 
The robust posterior joint distribution of (𝜃 𝑡𝑖) 

with parameters 𝜃 = (𝜃1, 𝜃2 … . , 𝜃𝑛)  as 

following: 

ℍ(𝜃 𝑡𝑖  𝜗) =
∏ 𝜋(𝜃𝑖 𝜗) 𝜑(𝑡𝑖 𝜃𝑖) 𝑛

𝑖=1

∫ ∏ 𝜋(𝜃𝑖 𝜗) 𝜑(𝑡𝑖 𝜃𝑖) 𝑛
𝑖=1 𝜃𝑖

                                     

… (17) 
And the model (17) will include that each 
observation of the sample is completely 
independent from the other observation and is 
conditional on the estimation of the parameter 
(𝜃𝑖). In other words, the sample data will be 
completely independent of each other.  
The probability for each of the independent 
and identically distributed data (iid) can be 
obtained as follows: 

𝜑(𝑡𝑖  𝜗) = ∫ 𝜋(𝜃𝑖  𝜗) 𝜑(𝑡𝑖  𝜃𝑖)𝑑𝜃𝑖                                        

... (18) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (1) Graphic representation (a) Standard Bayes model (b) The proposed robust Bayes model 
6. General Formula of Proposed Fuzzy Robust Bayesian method 
When we substitute the fuzzy probability distribution in the formula (4) instead of the traditional 
probability distribution in the proposed robust Bayes formula (17), we get the following: 
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ℎ̃ (𝜃 𝑡̃𝐴(𝛼)
𝑖
 𝜗̂) =

∏ 𝜋(𝜃𝑖 𝜗̂) 𝜑̃(𝑡̃
𝐴(𝛼)

𝑖
 𝜃𝑖) 𝑛

𝑖=1

∫ ∏ 𝜋(𝜃𝑖 𝜗̂) 𝜑̃(𝑡̃
𝐴(𝛼)

𝑖
 𝜃𝑖) 𝑑𝜃𝑖

𝑛
𝑖=1

                                    … (18) 

And the formula (18) represents the fuzzy robust posterior probability distribution of the fuzzy 

sample data from which the fuzzy robust Bayes estimator 𝜃̂̃ 𝐵𝑅𝐹 can be found at any loss function. 

9. Exponential Non-Informative Robust Fuzzy Bayesian Estimator  
Suppose we have failure times 𝑡1, 𝑡2, … , 𝑡𝑛 whrer 𝒕𝐓 has an exponential distribution with parameter 
(λ), then the conventional probability density function is: 
𝑓(t) = 𝜆𝑒−𝜆𝑡        ;  𝑡, 𝜆 > 0                                                 … (19) 
The possibility function of the exponential distribution can be written as: 

𝐿𝑒𝑥𝑝 = ∏ 𝑓(t𝑖, 𝜆)

𝑛

𝑖=1

 

           = 𝜆𝑛𝑒−𝜆 ∑ t𝑖
𝑛
𝑖=1                                                          … (20) 

According to Jeffery's rule, the previous distribution of the parameter to be estimated (λ) is as follows: 

()  √I() 
() = Constant √I() 
= K √I() 
I() = −𝑛̃𝐸 [

𝜕2𝐿𝑛𝑓(t)

𝜕2 ] 

𝐿𝑛𝑓(t) = 𝐿𝑛(𝜆𝑒−𝜆𝑡 ) = 𝐿𝑛(𝜆) − 𝜆𝑡 
𝜕𝐿𝑛𝑓(t)

𝜕
=

1


− 𝑡 

𝜕2𝐿𝑛𝑓(t)

𝜕2 = −
1

𝜆2
 

𝐸 [
𝜕2𝐿𝑛𝑓(t)

𝜕2 ] = 𝐸 [−
1

𝜆2
] = 

  I() = −𝑛𝐸 [
𝜕2𝐿𝑛𝑓(t)

𝜕2 ] =
𝑛

𝜆2 

Therefore, the previous distribution of the parameter (λ) is as follows: 

() = K √I()    
          = K √

𝑛

𝜆2 = K
√𝑛

𝜆
                                                                   … (21) 

Therefore, the joint probability density function for the two variables t, λ is: 
𝐆(t𝑖, ) = () ∏  𝑓(t𝑖)

𝑛̃
𝒊=𝟏    

                = K√𝑛𝜆𝑛−1𝑒−∑ t𝑖
𝑛
𝑖=1                                            … (22) 

From equation (22), we find the marginal function of the variable ti, as follows: 

M(ti) = ∫ K√nλn−1e−∑ ti
n
i=1  d



 0

 

            =
K√n(n)

(∑ ti
n
i=1 )

n                                                               … (23) 

Therefore, the conditional posterior distribution is as follows: 

h( ti) =
G(ti,)

M(ti)
   

              =
(∑ ti

n
i=1 )

n

(n)
λn−1e−∑ ti

n
i=1                                          … (24) 

 حفظ الترجمة 
We note that the previous distribution is nothing but a gamma distribution with the two parameters 
(α = n, β = ∑ t𝑖

𝑛
𝑖=1 ). 



7667-2795ISSN:                                                                                                                                   2Volume 11| October 202 

 

www.geniusjournals.org                                                              Eurasian Journal of Physics, Chemistry and Mathematics  
P a g e  | 56 

The non-informative standard Bayes estimator in light of a squared loss function is nothing but an 
expectation of the subsequent distribution of the parameter to be estimated as follows: 

̂NISBexp =
n

∑ ti
n
i=1

                                                                                                        … (25)  

The proposed non-informational, fuzzy standard Bayesian estimator for the exponential distribution: 
Suppose we have a failure times t1, t2, … , tn  where  tT has an exponential distribution with the 
parameter (λ) then the fuzzy set at the cutoff 𝛼 , A෩α = {t̃1, t̃2, … , t̃ñ} , where  t̃T෩ , t̃ = {[𝟎, ∞), µ𝑡̃(𝑡)} has 
a fuzzy exponential distribution with the parameter λ with the following fuzzy probability density 
function: 

𝑓(𝑡̃𝑨(𝛂)) = 𝜆𝑒−𝜆𝑡̃
𝑨(𝛂)       𝑡̃𝑨(𝛂) , 𝜆 > 0                                       … (26) 

According to Jeffery's rule, the prior distribution of the parameter to be estimated (λ) is as follows: 

() = Constant √I() 
= K √I() 

I() = −𝑛̃𝐸 [
𝜕2𝐿𝑛𝑓(t)

𝜕2 ] 

𝐿𝑛𝑓(𝑡̃𝑨(𝛂)) = 𝐿𝑛 (𝜆𝑒−𝜆𝑡̃
𝑨(𝛂)  ) = 𝐿𝑛(𝜆) − 𝜆𝑡̃𝑨(𝛂)  

𝜕𝐿𝑛𝑓(𝑡̃𝑨(𝛂))

𝜕
=

1


− 𝑡̃𝑨(𝛂)  

𝜕2𝐿𝑛𝑓(𝑡̃𝑨(𝛂))

𝜕2 = −
1

𝜆2
 

𝐸 [
𝜕2𝐿𝑛𝑓(𝑡̃𝑨(𝛂))

𝜕2 ] = 𝐸 [−
1

𝜆2
] 

  I() = −𝑛̃𝐸 [
𝜕2𝐿𝑛𝑓̃(𝑡̃

𝑨(𝛂))

𝜕2 ] =
𝑛̃

𝜆2 

Therefore, the prior distribution of the parameter (λ) is as follows: 

() = K √I() 
          = K √

𝑛̃

𝜆2 = K
√𝑛̃

𝜆
                                                       … (27) 

According to the impenetrable fuzzy Bayes method proposed in the formula (27), the previous 
distribution of each parameter estimated from each of the observations of the fuzzy sample will be as 
follows: 

(𝜆𝑖)  = K 
√𝑛̃

𝜆𝑖
                                                                 … (28) 

Therefore, the joint probability density function for the two variables 𝑡̃𝑨(𝛂)  ,   is: 

𝐆 (𝑡̃𝑨(𝛂)
𝑖
, 𝑖) = ∏ (𝜆𝑖)

𝑛̃
𝒊=𝟏   𝑓 (𝑡̃𝑨(𝛂)

𝑖
)  

                        = (𝐾√𝑛̃)
𝑛̃

∏ 𝑒
−𝜆𝑖𝑡̃

𝑨(𝛂)
𝑖
 𝑛̃

𝒊=𝟏                                  … (29) 

From equation (30), we find the marginal function of the variable 𝑡̃𝑨(𝛂)
𝑖
as follows: 

M(𝑡̃𝑨(𝛂)
𝑖
) = (𝐾√𝑛̃)

𝑛̃
∫ [∏ 𝑒

−𝜆𝑖𝑡̃
𝑨(𝛂)

𝑖
 

𝑛̃

𝒊=𝟏

] 𝑑𝑖



 0

 

               = (𝐾√𝑛̃)
𝑛̃

∫ [  𝑒
−𝜆1𝑡̃

𝑨(𝛂)
1

   
. 𝑒

−𝜆2𝑡̃
𝑨(𝛂)

2
   

…  𝑒
−𝜆𝑛̃𝑡̃

𝑨(𝛂)
𝑛̃

   
] 𝑑𝑖



 0

 

              = (𝐾√𝑛̃)
𝑛̃

[∫ 𝑒
−𝜆1𝑡̃

𝑨(𝛂)
1

   
𝑑1. ∫ 𝑒

−𝜆1𝑡̃
𝑨(𝛂)

1
   

𝑑2


 0



 0
… ∫ 𝑒

−𝜆1𝑡̃
𝑨(𝛂)

1
   

𝑑𝑛̃


 0
]  

              = (𝐾√𝑛̃)
𝑛̃

 ∏ [∫ 𝑒
−𝜆𝑖𝑡̃

𝑨(𝛂)
𝑖
   

𝑑𝑖


0
]𝑛̃

𝒊=𝟏                                    
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              = (𝐾√𝑛̃)
𝑛̃

 ∏
1

𝑡̃
𝑨(𝛂)

𝑖

(∫  𝑒−𝑢   𝑑𝑢


0
)𝑛̃

𝒊=𝟏   

             =
(𝐾√𝑛̃)

𝑛̃

∏ 𝑡̃
𝑨(𝛂)

𝑖

𝑛̃
𝒊=𝟏

                                                   … (31)  

Therefore, the conditional fuzzy post hoc distribution is as follows: 

𝒉 ( 𝑡̃𝑨(𝛂)
𝑖 

) =
𝐆(𝑡̃

𝑨(𝛂)
𝑖
,𝑖)

M(𝑡̃
𝑨(𝛂)

𝑖
)

   

              =
(𝐾√𝑛̃)

𝑛̃
∏ 𝑒

−𝜆𝑖𝑡̃
𝑨(𝛂)

𝑖
 𝑛̃

𝒊=𝟏

(𝐾√𝑛̃)
𝑛̃

∏ 𝑡̃
𝑨(𝛂)𝑖

𝑛̃
𝒊=𝟏

  

             = ∏ 𝑡̃𝑨(𝛂)
𝑖

𝑛̃
𝑖=1 𝑒

−𝜆𝑖𝑡̃
𝑨(𝛂)

𝑖
 
                                           … (32)  

And to prove that the posterior distribution in equation (32) is a probability function as follows: 

∫ ∏ 𝑡̃𝑨(𝛂)
𝑖

𝑛̃
𝑖=1 𝑒

−𝜆𝑖𝑡̃
𝑨(𝛂)

𝑖
 
  



0
𝑑𝑖   

(𝑡̃𝑨(𝛂)
𝑖
)

𝑛̃
∏ ∫   



0
𝑒

−𝜆𝑖𝑡̃
𝑨(𝛂)

𝑖
 
𝑑𝑖

𝑛̃
𝑖=1    

 (𝑡̃𝑨(𝛂)
𝑖
)

𝑛̃
∏ ∫   



0
𝑒−𝑢 𝟏

𝑡̃
𝑨(𝛂)

𝑖

𝑑𝑢 𝑛̃
𝑖=1 = 1   

The non-informational fuzzy standard Bayes estimator under a quadratic loss function is nothing but 
the expectation of the post-distribution, that is: 

̂NRFSBexp ∫= 𝑖 ∏ 𝑡̃𝑨(𝛂)
𝑖

𝑛̃

𝑖=1

𝑒
−𝜆𝑖𝑡̃

𝑨(𝛂)
𝑖
 
𝑑𝑖  



0

 

                   (= 𝑡̃𝑨(𝛂)
𝑖
)

𝑛̃
∏ (

𝟏

𝑡̃
𝑨(𝛂)

𝑖

)

1

𝑛̃
+1

 (
1

𝑛̃
+ 1)𝑛̃

𝑖=1                … (33) 

9. Simulation experiments 
The Monte-Carlo Simulation method was adopted for the purpose of comparing the Bayes estimators 
for crisp data and the proposed robust fuzzy bass estimators the exponential distribution, Non-
informative prior at a squared error loss function. The theoretical values for the parameter of the 
distribution were obtained empirically from conducting several experiments and selecting the values, 
and then the Bayes estimates were stable and gave the best results: 

3 2 1 Parameter 
4 1.5 1 λ 

The crisp data was generated that the 
distributions represented by the vector t from 
each distribution by using inverse cumulative 
distribution function by applying the inverse 
transformation method according to ti =

−
ln(1−u)

λ
 . Then the crisp data vector has been 

polluted with outlier values by finding the 
arithmetic mean and standard deviation of the 
crisp sample vector and adding the outlier 
values to it according to the equation 
t_Outlier = mean(t: i) + 3(SD: i) . The crisp 
sample vector t_Outlier = (t1, t2, … , tn)′  is 

transformed from each distribution to the 
fuzzy by finding the degree of membership 

corresponding to each of the observations of 
the polluted crisp sample vector using a 
triangular membership function as follows:  

𝜇𝐴(𝑡) = {

0         𝑖𝑓   𝑡   <      𝑎
𝑡−𝑎

𝑏−𝑎
   𝑖𝑓  𝑎 ≤  𝑡 ≤ 𝑏

1           𝑖𝑓     𝑡 > 𝑏

                                               

… (33) 
As a represents the lowest value of the 
observations values of the crisp sample and b 
represents the largest value of the observations 
values of the traditional sample vector, which 
results in us a fuzzy sample vector 𝑡̃ =

𝑡̃1, 𝑡̃2, … , 𝑡̃𝑛 includes each observation and its 
corresponding degree of membership which : 
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𝑡̃𝑖 = ൛(𝑡𝑖, 𝜇𝐴(𝑡1)), (𝑡2, 𝜇𝐴(𝑡2)), … . , (𝑡𝑛̃,

𝜇𝐴(𝑡𝑛))}                  … (34) 

After that, the fuzzy set is obtained at the cutoff 
𝛼 A෩α = {t̃1, t̃2, … , t̃ñ} for the studied 
distribution by choosing the elements in the 
fuzzy set that have a degree of belonging 
greater or equal to the cut, 𝛼 that is 𝐴̃𝛼 = {𝑡̃ ∈
𝑇; µ𝐴̃(𝑡) ≥ 𝛼} by choosing  α − cut =
0.2, 0.4, 0.5, 0.7, 0.9 . The Estimation methods 

were compared using the mean squared error 
criterion (MSE) by using Matlab 2015 
First: When the data contains one outlier: 
Table (1) Estimation of parameters and mean 
square error of MSE in the crisp and proposed 
Bayesian methods at cutoff coefficients α-
cut=0.2,0.4,0.5,0.7,0.9 and at default value of 
exponential  distribution parameter 𝛌 = 1 and 
one outlier.  

Distribution Exponential 
Best 

cut Method Estimation MSE 

0.2 
NSB 1.65962 0.16740 

NRFES 
NRFES 1.33242 0.12127 

0.4 
NSB 1.52244 0.14246 

NRFES 
NRFES 1.26246 0.11784 

0.5 
NSB 1.32574 0.12238 

NRFES 
NRFES 1.22257 0.11238 

0.7 
NSB 1.22772 0.11531 

NRFES 
NRFES 1.21356 0.11085 

0.9 
NSB 1.22156 0.09531 

NRFES 
NRFES 1.22111 0.01457 

Table (2) Estimation of parameters and mean square error of MSE in the crisp and proposed Bayesian 
methods at cutoff coefficients α-cut=0.2,0.4,0.5,0.7,0.9 and at default value of exponential  distribution 

parameter λ = 1.5  and one outlier. 
Distribution Exponential 

Best 
cut Method Estimation MSE 

0.2 
NSB 1.89321 0.67363 

NRFES 
NRFES 1.72195 0.21723 

0.4 
NSB 1.73166 0.44597 

NRFES 
NRFES 1.63966 0.11580 

0.5 
NSB 1.71135 0.41244 

NRFES 
NRFES 1.61246 0.10577 

0.7 
NSB 1.61238 0.23248 

NRFES 
NRFES 1.52145 0.04351 

0.9 
NSB 1.5672 0.07833 

NRFES 
NRFES 1.51214 0.03113 

Table (2) Estimation of parameters and mean square error of MSE in the crisp and proposed Bayesian 
methods at cutoff coefficients α-cut=0.2,0.4,0.5,0.7,0.9 and at default value of exponential distribution 

parameter 𝛌 = 4  and one outlier 
Distribution Exponential 

Best 
cut Method Estimation MSE 

0.2 
NSB 4.52195 0.53155 

NRFES 
NRFES 4.34215 0.33253 

0.4 
NSB 4.32555 0.23465 

NRFES 
NRFES 4.22143 0.13668 

0.5 
NSB 4.321354 0.21142 

NRFES 
NRFES 4.21433 0.12645 

0.7 NSB 4.23167 0.11127 NRFES 
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NRFES 4.13583 0.11232 

0.9 
NSB 4.22125 0.10754 

NRFES 
NRFES 4.12355 0.10753 

Second: When the data contains three outlier 
Table (4) Estimation of parameters and mean square error of MSE in the crisp and proposed Bayesian 
methods at cutoff coefficients α-cut=0.2,0.4,0.5,0.7,0.9 and at default value of exponential distribution 

parameter 𝛌 = 1 and three outlier. 
Distribution Exponential 

Best 
cut Method Estimation MSE 

0.2 
NSB 5.6466 4.48655 

NRFES 
NRFES 1.32444 0.00434 

0.4 
NSB 5.11224 4.23144 

NRFES 
NRFES 1.21535 0.00316 

0.5 
NSB 1.14354 0.00296 

NRFES 
NRFES 2.18941 1.42555 

0.7 
NSB 1.66854 0.21854 

NRFES 
NRFES 1.12311 0.00136 

0.9 
NSB 1.34133 0.08918 

NRFES 
NRFES 1.11076 0.00136 

Table (5) Estimation of parameters and mean square error of MSE in the crisp and proposed Bayesian 
methods at cutoff coefficients α-cut=0.2,0.4,0.5,0.7,0.9 and at default value of exponential distribution 

parameter 𝛌 = 1.5 , and  three outlier. 
Distribution Exponential 

Best 
cut Method Estimation MSE 

0.2 
NSB 3.32455 4.45632 

NRFES 
NRFES 1.59533 0.16322 

0.4 
NSB 2.12686 2.12253 

NRFES 
NRFES 1.55462 0.11347 

0.5 
NSB 2.12121 2.11197 

NRFES 
NRFES 1.55227 0.10463 

0.7 
NSB 2.11057 2.10875 

NRFES 
NRFES 1.54352 0.09081 

0.9 
NSB 1.78576 1.44633 

NRFES 
NRFES 1.52243 0.04767 

Table (6) Estimation of parameters and mean square error of MSE in the crisp and proposed Bayesian 
methods at cutoff coefficients α-cut=0.2,0.4,0.5,0.7,0.9 and at default value of exponential distribution 

parameter 𝛌 = 4, and three outlier. 
Distribution Exponential 

Best 
cut Method Estimation MSE 

0.2 
NSB 7.5844 4.79446 

NRFES 
NRFES 4.67333 0.04543 

0.4 
NSB 5.79544 3.53744 

NRFES 
NRFES 4.43768 0.03122 

0.5 
NSB 4.56366 1.45881 

NRFES 
NRFES 4.24359 0.03111 

0.7 
NSB 4.41128 1.11046 

NRFES 
NRFES 4.11464 0.00456 

0.9 
NSB 4.35663 1.00463 

NRFES 
NRFES 4.03533 0.00045 
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10. Results and discussion: 
It is clear from Tables (1) to (6) the proposed 
Robust fuzzy Bayes method based on an Non-
informational prior distribution is superior to 
the traditional Bayes method under outliers' 
observations. The greater the cutoff 𝛼, the less 
the mean of the squares of error and the 
greater the accuracy of the estimates extracted 
according to the fuzzy robust Bayesian method 
and for all simulation experiments.  
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