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Introduction 
At the turn of the XIX-XX centuries, a 
completely new field separated from geometry 
- topology, which, in fact, determined the 
development of mathematics of the XX century. 
Those geometric structures that turned out to 
be the most fundamental, simplest and most 
related to physics of the XX century have gone 
into topology. The merit in this belongs 
primarily to the great French mathematician 
Henri Poincaré, who identified topological 
structures and who developed the language to 
describe them. If we talk about the difference 
between geometry and topology, then distance 
plays a major role in geometry [1-4]. 
Topology is a Greek word which means the 
study of place. This well-defined branch of 
mathematics emerged in the initial. 
Furthermore, topology became popular not 
least because it has found its application in 
physics. Just at the turn of the century, physics 

ceased to be linear. It turned out that the 
Newtonian world, in which our space is equally 
extended and evenly in all directions, is not a 
sufficiently accurate tool for describing reality. 
Because of this, Poincaré took a decisive part, 
made our world curved, twisted. And so, to 
describe the non-flat world, topology turned 
out to be the most suitable tool [5-9]. 
For example, the shape of the Earth we know 
through the simplest astronomical 
observations that simply describe the shadow 
from the Earth during a lunar eclipse. The 
shadow cast by our planet is round. And we can 
conclude from here that the Earth itself is 
round. If we were in more difficult conditions, 
we would have simple topological means to 
understand which planet we live on. To do this, 
it would be enough to simply divide the Earth 
into triangles, triangulate it and calculate the 
number of triangles involved in the partition, 
the number of their vertices and their sides. 
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And then the famous Euler formula, obtained 
by him long before the results of Poincaré, 
would allow people to say the topological 
nature of the surface of the planet on which 
they live [10-14].  
Nowadays, mathematicians and scientists use 
topology to model and comprehend the real-
world occurrences. Topology basically has 
emerged out of geometry, expanding some 
notions and losing some of the erections 
appearing therein, where the concept of 
distances and angles are excluded. Here objects 
are taken and treated as if they are made of 
rubber which one can stretch, crumble, twist 
and even deform but without cutting and 
pasting. In topology, the objects we take are 
called topological spaces. From the topological 
perspective, circle and square are same, which 
are totally different in other perspectives. 
Topologically, we can deform a circle into a 
square and vice versa, we call them 
topologically equivalent. Consequently, a 
sphere cannot be deformed into torus and vice 
versa, and hence they are not topologically 
equivalent. In topology, the properties that 
remain preserved during deformations are 
taken into consideration and are called as 
topological invariants. Topologists cannot 
distinguish between a circle and a square, 
sphere and a cube, because they share 
topological properties throughout the 
deformation mathematically called 
homeomorphism. The properties that remain 
unchanged during homeomorphism are what 
we call topological properties or topological 
invariants [15-19]. In this paper we describe 
some applications of topology in other fields of 
Science and technology. We discuss 
applications to Biology, Robotics, GIS, 
Computer Sciences, and Engineering. Topology 
has influenced the world of Science and 
technology with much great effects.  
The basis of Topology is the classical set theory. 
A topological space is an ordered pair (X, τ) 
consisting of a set X and topology τ on X and 
satisfies the following: topology on a set is the 
collection τ of the subsets of the set X such that 
τ contains the empty set, the set itself, and 
which is closed under finite intersection and 
arbitrary unions. The elements of this 

collection are called open sets [20-24]. There 
are many ways of defining topology on a set, as 
in Subspace topology, product topology, order 
topology. We usually find a basis to generate 
topology on a set. Basis for a topology τ on a set 
X is the collection of subsets B of subsets of X 
such that (if for each xϵX, there exists at least 
one basis element B containing x. (ii) If x 
belongs to the intersection of two basis 
elements B1, B2, then there is a basis element 
B3 containing x such that B3 ⊂ B1 ∩ B2. 
Topology has expanded its boundaries and 
crossed almost every other field like Robotics, 
Chemistry, Computer Sciences, Geography, 
Biology and etc. Now we describe various 
applications of topology and try to understand 
its influence [25-29].  
 
Applications to Biology 
Topology besides being a very different branch 
of mathematics, it plays a very good role in 
Biology. Since genotypes-phenotypes are 
primary important in biology, we see how 
topology is even useful in sequencing the right 
nucleotides in DNA strand. Genotypes are the 
internally veiled and inheritable information of 
a living being while as phenotypes are the 
physical appearances of that information. 
Topology solves one most important problem 
in DNA research. As we know that DNA is 
composed of four nucleotides: Adenine, 
Cytosine, Guanine and Thymine. These are 
arranged in a manner that they resemble a 
sequence. The sequence of nucleotides on 
every single chain of DNA decides the sequence 
of the other chain. The problem found in DNA 
research is in the comparison of distinct DNA 
sequences. The genotype-phenotype 
relationship is of fundamental importance in 
biology. The genotype is internally coded, 
inheritable information possessed by all living 
organisms, while the phenotype is the physical 
realization of that information. For instance, 
the collection of genes responsible for eye color 
in a particular individual is a genotype. The 
observable eye coloration in the individual is 
the corresponding phenotype. A model of 
evolutionary proximity established by defining 
a topology on a set of phenotypes. Molecular 
biologists propose this model as a means for 
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formally defining continuous and 
discontinuous evolutionary change, providing a 
mathematical framework for understanding 
evolutionary processes. 
The idea of phenotype space via an example 
involving ribonucleic acid (RNA) molecules. 
Strands of RNA are formed from smaller 
molecules, called nucleotides, that bond 
together to make strong, flexible chains. There 

are four different nucleotides in RNA: guanine 
(G), cytosine (C), adenine (A) and uracil (U). 
Nonadditive nucleotide pairs undergo 
additional bonding, contorting the chain into a 
more complicated folded arrangement as: 
GUGAUGGAUU AGGAUGUCCU ACUCCUUUGC 
UCCGUAAGAU AGUGCGGAGU UCCGAACUUA 
CACGGCGCGC GGUUAC 

 

 
Figure. 1. 

 
Pairing of guanines with cytosine and adenine 
with uracil contribute the most to folding, 
though guanine and uracil can also pair. In 
theory, there are many ways that a particular 
nucleotide chain can fold and bond, but only 
the most energetically favorable of these are 
likely to occur. For simplicity, we assume that 
this bonding occurs in a unique way. Here, we 
consider only relatively short nucleotide chains 
to illustrate the structures and the topological 
model. RNA molecules in living cells can be 
anywhere from tens to thousands of 
nucleotides in length. 
For a particular RNA molecule, the associated 
unfolded nucleotide chain is called the primary 
structure. We represent the nucleotide chain by 
a sequence of C’s, G’s, A’s and U’s called the 
genotype sequence for the molecule.  
Given a genotype sequence, its bonding 
diagram is an unlabeled diagram depicting the 
bonding that occurs in the resulting RNA 
molecule. The dots on the diagram refers to the 
location of the first nucleotide in the sequence, 
and the rest of the sequence wraps 
counterclockwise around the perimeter of the 
diagram. The bonding diagram is the 
phenotype in the model: it is also referred to as 
the RNA shape or secondary structure for the 

RNA molecule. The phenotype spaces we 
introduce are sets of RNA shapes on which a 
topology is defined. 
 
Application in DNA sequence 
DNA is a long thin molecule made up of 
millions of atoms. Within its structure lies the 
code that determines our genetic makeup. RNA, 
DNA is composed of nucleotides. While an RNA 
molecule consists of a single chain of 
nucleotides, a DNA molecule consists of two 
chains wound together to form the familiar 
double helix. The nucleotides in DNA come in 
four types: adenine (A), cytosine (C), guanine 
(G), and thymine (T). In our introduction to 
RNA we showed that nucleotides in a chain 
tend to pair together, contorting the chain into 
a folded shape. Nucleotides in a DNA chain also 
pair, but do so with their neighbors on the 
opposite chain (adenine pairs with thymine, 
and guanine pairs with cytosine). In fact, the 
two chains are constructed such that every 
nucleotide on one chain pairs with its neighbor 
on the other. Thus, the sequence of nucleotides 
on one chain determines the sequence on, he 
opposite chain, and we can represent part or all 
of a DNA molecule with a sequence of the 
letters A, C, G, and T, corresponding to the 
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sequence of nucleotides found in one of the two chains. 
 

 
Figure 2. 

 
One of the most important problems in DNA 
research is how to compare distinct DNA 
sequences. How different is one sequence of 
DNA from another? In some sense, this is a 
measure of the evolutionary distance between 
the two sequences. When a species splits into 
two new species, resulting in a fork in the 
evolutionary tree, the species' initially identical 
DNA sequences begin to accumulate unique 
changes. Measuring the distance between the 
two sequences as a function of these 
differences provides insight into the nature of 
the evolutionary history of each species. During 
the course of evolution, DNA sequence 
differences arise in a variety of ways. One of the 
most common is nucleotide substitution, the 
apparent replacement of a letter in one DNA 
sequence relative to the original sequence. If 
this is the only type of change that has occurred 
between two sequences, then the Hamming 
distance provides a useful measure of the 
distance between them. Another commonly 
occurring change in DNA is the insertion or 
deletion of nucleotides, realized as the 
insertion or deletion of letters in the 
corresponding DNA sequence. In this case, all 
of the subsequent letters in the altered 
sequence appear offset relative to the original 
sequence. This results in a large Hamming 
distance between the two DNA sequences, 
when in reality they are quite similar. To deal 
with this problem, we introduce another metric 
that is useful in making comparisons. 
Let x and y be two sequences of the letters A, C, 
G, and T. we measure distance between x and y 
by determining how many operations on x are 
necessary to turn it into y. We allow three types 
of operations on x: We can insert any letter into 
x, we can delete any letter in x, and we can 
replace any letter with a different letter. For 

our particular x and y, we can use a sequence S 
of these operations to turn x into y. Let iS 
represent the number of insertions in the 
sequence, dS the number of deletions, and rS 
the number of replacements. So, the total 
number of operations to turn x into y is iS +
dS + rS. But of course, there are many different 
choices of sequences of operations to turn x 
into y, and therefore we define the distance 
between x and y as follows: The Levenshtein 
distance between sequences x and y is given by 
DL(x, y) = minS{iS + dS + rS}, where the 
minimum is taken over all sequences S that 
turn x into y. 
 
Applications to Digital Image Processing 
The main purpose of Digital Topology is the 
study of topological properties of discrete 
objects which are obtained digitizing 
continuous objects. Digital Topology plays a 
very important role in computer vision, image 
processing and computer graphics. A digital 
image is an object in the computer screen 
where the smallest elements are pixels or, 
more abstractly, compact topological cells such 
that they only have intersection in their 
borders. So it is natural to abstract the 
screen model as a graph whose vertices 
corresponding to the pixels and the edges 
represent the adjacency between the pixels. 
In the initial development of the field of digital 
topology, work focused on defining and 
studying digital analogs of topological concepts 
(for example, connectedness and continuity) 
without having an underlying topology on the 
model of the digital image display. The 1979 
paper, "Digital Topology," by Azriel Rosenfeld 
(1931—2004), was one of the first 
introductions to these ideas. Later, topological 
spaces were found that appropriately model 
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the digital image display, enabling topological 
concepts to be used directly in the digital 
domain.  
The digital image display contains a 
rectangular pixel array. In digital topology, this 
array is modelled by what is known as the 
digital plane.  

Example 1.1. for each n ∈ Z, define 

B(n) = {
{n} if n is odd

{n − 1, n, n + 1} if n is even
  

The collection B = {B(n)| n ∈ Z} is a basis for a 
topology on Z. The resulting topology is called 
the digital line topology. 

 

 
Figure 3. 

 
This example shows a one-dimensional digital 
image display. We assume that we have an 
infinite line of pixels, each of which 
corresponds to an odd integer. For each odd 
integer we have a basis element B(n) = {n}. 
Subsequently, each individual pixel is an open 
set in the digital line topology. Each even 
integer n represented the boundary between 

the pixels at n − 1 and n + 1. In addition to this, 
we should admit, that in the digital line, every 
odd integer is an open set, and every even 
integer is a closed set.  
So, the digital line as a set of open pixels 
corresponding to the odd integers, along with 
the set of closed boundaries between the pixels 
corresponding to the even integers. 

 

 
Figure 4. 

 
Application to Robotics 
Topology and physics have a very deep 
connection. It requires the most advanced 
knowledge of topology to study the most 
sophisticated applications in other fields. One 
of the modern fields nowadays become 
robotics. Topology enters robotics through the 
notion of configuration space. Any mechanical 
system R determines the variety of all its 
possible states X which is called the 
configuration space of R. Usually a state of the 
system is fully determined by finitely many real 
parameters; in this case the configuration 
space X can be viewed as a subset of the 
Euclidean space Rk. Each point of X represents 
a state of the system and different points 

represent different states. The configuration 
spaces X comes with the natural topology 
(inherited from Rk) which reflects the technical 
limitations of the system. Many problems of 
control theory can be solved knowing only the 
configuration space of the system. Peculiarities 
in the behavior of the system can often be 
explained by topological properties of the 
system’s configuration space. We will discuss 
this in more detail in the case of the motion 
planning problem. We will see how one may 
predict the character of instabilities of the 
behavior of the robot knowing the cohomology 
algebra of its configuration space. If the 
configuration space of the system is known one 
may often forget about the system and study 
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instead the configuration space viewed with its 
topology and with some other geometric 
structures, e.g., with the Riemannian metric. In 
this field of robotics can be defined by 
continuous function that is called the forward 
kinematics map, which plays a role in motion 
planning for linkages, robot arms and other 
similar mechanisms. The linkage presented in 
pic. 3 had two rods. We assume that rod B is 

shorter than rod A. the configuration space for 
system is the torus, S1 × S1, where the first S1 
corresponds to the circle of angles θA through 
which rod A can turn about its fixed end, and 
the second S1 corresponds to the circle of 
angles θA through which B can turn about its 
end that is fixed to rod A. 

 

 
Figure 5. 

 
The operational space for the linkage is the 
space traced out by the end of rod B and the 
resulting operational space is an annulus. 
In general, in studying the design of a machine 
or robot arm, we are interested in a particular 
point on the mechanism where there is a tool 
that serves a specific function, such as spraying 
the end effector and the operational space is 
the space traced out by the end effector.  
To each point in the configuration space of a 
mechanism, we associate the corresponding 
end-effector point in the operational space. 
Thus, a function f is defined; it is called the 
forward kinematics map for the mechanism. It 
is natural to assume that the forward 
kinematics map is continuous because points 
close together in the configuration space 
correspond to points clothe in the operational 
space. In the case of our two-rod linkage, f is a 
continuous map from the torus to the annulus.  
An important question in the field of robotics is 
whether a given path in the operational space 
of a mechanism can be traced by the end 
effector. In the given example, we can ask if 
there is a way to manipulate the configuration 
space variables θA and θB to yield a given path 
in the operational space annulus.  
An application to Geographic Information 
Systems 

A geographic information system (GIS) is a 
computer system capable of assembling, 
storing, manipulating and displaying 
geographically referred data. To date are often 
used for solving complex planning and 
management problems. To analyze spatial 
information, users select data from GIS by 
submitting queries. Typical GIS queries 
incorporate spatial relations to describe 
constraints about spatial objects to be analyzed 
or displayed. For example, in studying wetland 
protection within a state's recreation areas, a 
GIS user might ask for a display of all wetlands 
that lie partially or entirely within the state's 
parklands. The GIS would search for wetland 
areas and state parkland areas and examine the 
relationship of each to the other in order to 
return all wetlands that satisfied the specified 
requirements. 
Evidently, in a GIS there is a need to be able to 
distinguish different ways that land regions can 
lay in relation to each other. For a 
mathematician, it often suffices to know if two 
sets intersect or not, but in a GIS a classification 
finer than intersect/not-intersect is needed. 
For example, in Figure 6, while sets 
A and B and sets A' and B' intersect, there is an 
obvious difference in the nature of their 
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intersections. There is a need to make these distinctions precise. 
 

 
Figure 6. 

 
Furthermore, in Figure7, while the initial 
view of sets C and D suggests that they 
intersect, after zooming in it is obvious 
that they do not. Information stored in a 
GIS regarding the relationship between 
such sets should not depend on how the 
sets appear in a particular picture. Thus, 

by storing the information C and D do not 
intersect, the GIS ensures that the nature 
of the relationship between the two sets is 
independent of potentially misleading 
pictorial representations of them, 
particularly those characterized by poor 
resolution. 

 

 
Figure 7. 

 
Application in error-coding 
With the incredible amounts of information 
being transmitted over phone lines, through 
the internet, or from satellites in space to Earth, 
it is extremely important to know whether a 
given message has arrived intact. We expect 
that there will be some errors in transmission 
due to electrical surges, cosmic radiation, or a 
variety of other factors. We want to be able to 
recognize when this occurs and to correct the 
faulty message. This brings us to the theory of 
error-correcting codes. 
Suppose that we want to send a certain 
message. We assume that the message has been 
encoded in a binary code, which is to say that 
our message consists of a finite sequence of 0s 
and 1s, say n of them, which we call a word. We 
also assume that in transmission, some number 
of 0s may be turned into is and vice versa. We 
do not allow for lost entries or additional 
entries, so the word that arrives also has length 
n. Note that what we call a word here could 
consist of a few words, as we normally think of 
them, making up a particular message. 

Each word of length n can be thought of as a 
vector of length n, with all entries either 0s or 
1s, we write the set of all these possibilities as 

Vn = {(a1, … , an)| ai ∈

{0,1}}. So Vn is the product of n copies of the set 
{0,1}. We now put a metric on this set. The 
Hamming distance DH(x, y) between two words 
of length n is the number of places in which the 
words differ. A code of length n is any subset C 
of 
Vn. the elements of C are called the codewords. 
If the sender and receiver have agreed on a 
particular code, then when a word arrives that 
is not one of the codewords, the receiver knows 
that at least one error has occurred in 
transmission. Let C be a code of length n. define 
the minimum distance of the code C to be the 
least Hamming distance between two 
codewords in the code. 
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