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In this section, we show how to solve 
some algebraic equations and 
inequalities using surface formulas of 
geometric shapes. 
Issue 1. for the numbers    

( )1;0,, zyx   

( ) ( ) ( ) 1111 −+−+− xzzyyx  prove 

the inequality. 
Solution: Having made a regular triangle 
ABC with a side equal to 1, we place 
points M, K, N on its sides AB, BC, CA in 
such a way that AM=x, BK=z, CN=y (Fig. 
1) 
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Figure 2.1. A form suitable for the condition of the matter. 

 

If we assume that the surfaces of the 
resulting triangles AMN, CNK, BMK are  

1 2 3,  ,   S S S   corresponding, then 
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it is known. Based on this 
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1x)-z(1z)-y(1y)-x(1 ++  

originates. The inequality is proved 
Issue 2. It is known that x+y=6 for 

positive numbers x and y. 
yx

11
+  find the 

smallest value of the expression. 

Solution: We are given the equation 
x+y=6. If we multiply both parts by 2, we 
get 2x+2y=12. We can make a rectangle 
with a perimeter of 12. We change the 

form of the required sum of 
yx

11
+  as 

follows: 
we change the sum as follows: 
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It is known that the square with side 3 
has the largest area among rectangles 
with a perimeter of 12. This is because 
the face of the square is equal to 9 
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yx
 will be the 

result. So, the smallest value of the given 

expression 
yx

11
+  is equal to . 

Issue 3. If the following conditions are 
true for positive numbers x, y, z, a, b, c, 
find the value of the sum xy+yz+zx. 
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Solution: In addition to surface 
formulas, we use the theorem of cosines 
to solve this problem. We place three 
cross-sections with lengths x, y, z in such 
a way that they have a common point O 
and make an angle of 120° with each 
other. By connecting the other ends of 

these sections, we form a triangle ABC. 
We take the lengths of the sides of this 
triangle as a, b, c, respectively (Fig. 2.2). 
Based on the theorem of cosines   
x2+xy+y2=a2,  y2+yz+z2=b2,  z2+zx+x2=c2    
equalities will be appropriate.  
 

 
 

Figure 2.2. A form suitable for the condition of the matter 

Now if we call the surfaces COB, AOC 
and AOB formed 1 2 3,  ,   S S S , then 
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appropriate.  

1 2 3+   SABCS S S+ =  from the fact that 

originates. 

( )
3

4
ABCxy yz zx S+ + =  On the other hand, we find SABC - the face of a triangle 

using Heron's formula: ( )( )( )cpbpappS −−−=  formula 
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  and from that 

3

))()()(( acbbcacbacba
zxyzxy

−+−+−+++
=++  equalities will be 

appropriate.  

Issue 4. If  ,0y   ,25,72 =+ yx   22 =− zy   and zxy −−= 212
 if 

equalities are appropriate ( )zxy −+− 21  find the value of the expression. 

The solution. First, 2,1  zx  . In fact, if x=1 or z=2, then y=0. Any pair of 1's and 0's 

25,72 =+ yx  does not satisfy the condition. It can be seen that the pair of numbers 0 

and 2 does not satisfy the relation 22 =− zy . Secondly, for the numbers x>1 and z<2, 

we describe conditions 25,72 =+ yx  and 22 =− zy  as follows: 

( ) 25,61 2
2

=+− yx and ( ) 42
2

2 =−+ zy . now we can draw a corresponding 

drawing (Fig. 2.3). 

 
Figure 2.3. A form suitable for the condition of the matter. 
Thirdly, according to the formula for finding the face of this triangle, we write the 
following equation: 
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So, the value of the search expression is equal to 5. 
Issue 5. x, y, z for positive numbers  
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calculate the value of the sum xy+2yz+3xz without solving the system of equations. 
Solution: We will draw a diagram corresponding to the condition of the problem (Fig. 
2.4). 

 
Figure 2.4. A form suitable for the condition of the matter. 

As can be seen from the diagram, 
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On the other hand, the face of a right-angled triangle ABC is equal to 6. Accordingly 

( ) 632
34

1
=++ xzyzxy  

from that ( ) 32432 =++ xzyzxy  we determine that. Answer: 

( ) 32432 =++ xzyzxy  

2
2

2
2

2 2

25
3

9
3

16

y
x xy

y
z

z zx x


+ + =




+ =


+ + =





Volume 11| October 2022            ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
     P a g e  | 27 

Issue 6. If x>0, y>0, z>0 and 1)( =++ zyxxyz  if 2))(( ++ zxyx  prove the 

inequality. 
Solution: since x>0, y>0, z>0, there is a triangle ABC whose sides are AB=c=x+y, 
BC=a=y+z, AC=b=x+z (Figure 2.5) . 

 
Figure 2.5. A form suitable for the condition of the matter. 

 

The circle inscribed in this triangle 
corresponds to the sides AB, BC, AC try 
at points K, M, N. In this case, x+y+z=p, 
where p is the semiperimeter. In 
addition, AK=AN=p-a=x, BK=BM=p-b=y, 
CM=CN=p-c=z relations are appropriate. 
But as the case may be, 
xyz(x+y+z)=p(p-a)(p-b)(p-c)= S2 =1 or 
S=1, where S is a face of triangle ABC. On 
the other hand, 
2S AB ACsinBAC AB AC (x y)(x z)=    = + +  

will be. (x+y)(x+z)2S=2 Then the 
Inequality is proved. 
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