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1. Introduction 
           In 2013 Thivagar M. Lellis [10] idea of 
Nano-topological space (𝑁_𝑇𝑆)with respect to a 
subset 𝑋 of universe 𝑈 which is defined as an 
upper and lower approximation of 𝑥. The 
element of 𝑁_𝑇𝑆 is called a Nano-open 
sets(𝑁_os). 
In 1963 levine [2] establish the notion of semi-
cont. function. In 1983 M.E. Abd EL-Monsef [1] 
establish the notion of 𝛽-cont. function, 𝛼-cont 
function [12], pre-cont. function [9], 𝛿- cont. 
function, 𝜃 − semi cont. function, Regular-cont. 
function [3], 𝜃 − cont. function. In 2022 [4] 
Mohmmed N.H and Shihab A. A and we will 
intrudes new type of  Nano-cont. function and 
introduced definition of Nano-M - open set.  
 
2. Preliminaries 
A subset A of 
 a space (X, T) is called semi-open(se_o) [10]( resp.α-open(α
_o) [10], 
β-open(β_o) [7], pre open(pr_o) [10], δ −

open(δ_o) [6], θ-open(θ_o) [8], Regular-
open(Re_o) [10], θ-semi-open( θS_o)[6] set. The  
complement of se_o 
(resp., α_o, β_o, pr_o,δ_o, θ_o, Re_o, θS_o) set is 
said to be  semi-closed(se_c) 
(resp.,𝛼-c, 𝛽-c, pre-c, 𝛿-c, 𝜃-c, Regular-c, 𝜃𝑆_c) 
set.  Intersection of all se_ c (resp. 𝛼- c, 𝛽- c, pre 
- c, 𝛿- c, 𝜃- c, Regular- c, 𝜃𝑆_c) sets continuing 𝐴 is 
called the semi- closure (resp. 𝛼- closure, 𝛽- 
closure, pre -closure, 𝛿- closed, 𝜃- closure, 
Regular- closure, 𝜃- semi - closure) and is 
dented by 𝑆𝑐𝑙(𝐴)[ 
resp. 𝛼𝑐𝑙(𝐴), 𝛽𝑐𝑙(𝐴), 𝑝𝑐𝑙(𝐴),𝜃𝑐𝑙(𝐴), 𝑅𝑐𝑙(
𝐴) , 𝛿𝑐𝑙𝜃(𝐴)]. 
 The union of all se_o. (resp. 𝛼_o., 𝛽_o., pr_o., 𝛿_o., 
𝜃_o., Re_o., 𝜃𝑆_o.) sets contained in 𝐴 is said 
semi- interior (resp. 𝛼- interior, 𝛽- interior, pre 
interior, 𝛿- interior, 𝜃- interior, Regular- 
interior, 𝜃- semi - interior) and denoted 
by 𝑆𝑖𝑛𝑡(𝐴)[resp.𝛼𝑖𝑛𝑡(𝐴), 𝛽𝑖𝑛𝑡(𝐴),𝑝𝑖𝑛𝑡(𝐴),𝜃𝑖𝑛𝑡(
𝐴), 𝑅𝑖𝑛𝑡(𝐴) , 𝛿𝑖𝑛𝑡𝜃(𝐴)] . 
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The family of all semi-cont 
(resp.,𝛼-cont, 𝛽-cont, pre-cont, 𝛿-cont, 𝜃-cont, Regular-cont, 𝜃-semi-cont) 
is denoted by 𝛿𝑐𝑜𝑛𝑡(𝑥), [𝑟𝑒𝑠𝑝. , 𝛼 −
𝑐𝑜𝑛𝑡(𝑥), 𝛽 − 𝑐𝑜𝑛𝑡(𝑥), 𝜃 − 𝑐𝑜𝑛𝑡(𝑥), 𝑅 −
𝑐𝑜𝑛𝑡(𝑥), 𝛿 − 𝑐𝑜𝑛𝑡(𝑥)].  
Definitions 2.1.:[10] Let (𝑈, 𝑇𝑅(𝑥)) be a 𝑁_𝑇𝑆 
and 𝐴 ⊆ 𝑈. Then 𝐴 be called. 

1- 𝑁𝛼-o. if 𝐴 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴)). 

2- N-pre-o. if 𝐴 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴)). 

3- 𝑁𝛿-o. if 𝐴 ⊆ 𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴)). 

4- 𝑁𝜃𝑆-o. if 𝐴 ⊆ 𝐴𝜃
0̅̅̅̅ . [6] 

5- 𝑁𝑅-o. if 𝐴 = 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴)). 
6- 𝑁𝜃-o. if 𝐴 = 𝑁𝐴θ

0 . [8] 

7- 𝑁𝛿-o. if 𝐴 ⊆ 𝐴𝛿
0̅̅̅̅ . [6] 

8- 𝑁𝛽-o. if 𝐴 ⊆ 𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴)). [7] 

 
3. Some Types of  M-N-continuity  
Definition 3.1:[4] let (𝑈, 𝑇𝑅(𝑥)) be 𝑁_𝑇𝑆. The 
subset 𝐴 of 𝑈 is called MN-open set (MN – o.s.) 

in 𝑁_𝑇𝑆 if 𝐴 ⊆ 𝑁𝐴𝜃
0̅̅ ̅̅ ̅̅ ∪ 𝑁𝐴𝛿

̅̅ ̅̅ ̅̅ 0
. 

Remark 3.2: The  complement of MN – o.s. is 
said to be  MN -closed set(MN – c.s.) 
Definitions 𝟑. 𝟑: Let (𝑈, 𝑇𝑅(𝑥)) and (𝑄, 𝑇𝑅(𝐻)) 
be 𝑁_𝑇 spaces. Afunction 𝑓: (𝑈, 𝑇𝑅(𝑥)) →
(𝑄, 𝑇𝑅(𝐴)) is called: 

1- Nano-continuous(𝑁 − 𝐶𝑜𝑛) if 𝑓−1(𝐴) is 
𝑁-openset in U , ∀ N-open set 𝐴 in 𝑄. [11] 

2- Nano𝛼 −continuous (𝑁𝛼 − 𝐶𝑜𝑛)  if 
𝑓−1(𝐴) is 𝑁𝛼-open set in 𝑈, ∀ 𝑁-open set 
A in 𝑄. [12] 

3- N 𝑝𝑟𝑒 - continuous(𝑁 − 𝑝𝑟𝑒 − 𝐶𝑜𝑛) if 
𝑓−1(𝐴) is N-pre-o.s. in 𝑈, ∀ 𝐴 𝑖𝑠 N −
pre − o. s.  in 𝑄. [9] 

4- 𝑁𝛽-continuous(𝑁𝛽 − 𝐶𝑜𝑛)  if 𝑓−1(𝐴) is 

𝑁𝛽 − 𝑜. 𝑠. in 𝑈,∀  𝐴 is 𝑁𝛽 − 𝑜. 𝑠. in 𝑄. [5] 

5- 𝑁𝑆-continuous(𝑁𝛿 − 𝐶𝑜𝑛) if 𝑓−1(𝐴) is 
𝑁𝑆 − 𝑜. 𝑠. in 𝑈, ∀  𝐴𝑁𝑆 − 𝑜. 𝑠. is  in 𝑄. [13] 

6- 𝑁𝑅-continuous (𝑁𝑅 - 𝐶𝑜𝑛 ) if 𝑓−1(𝐴) is 
𝑁𝑅 − 𝑜. 𝑠. in 𝑈, ∀   𝐴 is 𝑁𝑅 − 𝑜. 𝑠. in 𝑄. [3] 

7- 𝑁𝜃-continuous(𝑁𝜃 − 𝐶𝑜𝑛) if 𝑓−1(𝐴) is 
𝑁𝜃 − 𝑜. 𝑠. in 𝑈, ∀ 𝐴  is 𝑁𝜃 − 𝑜. 𝑠. in Q. 

8- 𝑁𝜃-semi-continuous(𝑁𝜃𝑆 − 𝐶𝑜𝑛) if 
𝑓−1(𝐴) is 𝑁𝜃𝑆 − 𝑜. 𝑠. in 𝑈, ∀  𝐴is 𝑁𝜃𝑆 −
𝑜. 𝑠. in 𝑄. 

9- 𝑁𝛿-continuous(𝑁𝛿 − 𝐶𝑜𝑛) if 𝑓−1(𝐴) is 
𝑁𝛿 − 𝑜. 𝑠.  in 𝑈, ∀ 𝐴 is 𝑁-open set in 𝑄. 

Definition 𝟑. 𝟒: let 
(𝑈, 𝑇𝑅(𝑥)) and (𝑄, 𝑇𝑅(H)) be M-Nano-
topological space (M𝑁 − 𝑇𝑆). Then a 
function f: (U, 𝑇𝑅(𝑥)) → (𝑄, 𝑇𝑅(H)) is 𝑀𝑁-

continuous (𝑀𝑁 − 𝐶𝑜𝑛) on 𝑈 if 𝑓−1(𝐴) is MN 
– o.s.  in 𝑈, ∀𝐴 is MN – o.s. in 𝑄. 

Remark 3.5: The following diagram explains 
the relations between continuous functions 

 

Example 3.6:  Let 𝑈 = {𝑎, 𝑏, 𝑐, d} with 𝑇𝑅(𝑥) =
{𝑈, 𝜙, {𝑎, 𝑏, 𝑐}}, then 

MN –  o. s. (𝑈) ={ 𝑈, ∅,{a},{b},{c},{a,b},{a,c},{b,c}
,{a,b,c}}and let 𝑄 = {1,2,3,4} with 𝑇𝑅(H) =
{𝑄, 𝜙, {1,2,3}} ,then 

MN –  o. s. (𝑄) ={ 𝑄, ∅,{1},{2},{3},{1,2},{1,3},{2,3
},{1,2,3}}.Define 𝑓: 𝑈 → 𝑄 𝑎𝑠 𝑓(𝑎) = 1, 𝑓(𝑏) =
2 and  𝑓(𝑐) = 3. Therefore 𝑓 is 𝑀𝑁-cont. 
mapping on 𝑈 , so the above diagram (1) 
achieves it.  
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Theorem 3.7: A function 𝑓: (𝑈, 𝑇𝑅(𝑥) →
(𝑄, 𝑇𝑅(𝐻)) is 𝑀𝑁 − 𝐶𝑜𝑛 ⇔ 𝑓−1(𝐴) MN –  c. s.  in 
𝑄 is MN –  c. s.   in 𝑈. 
Proof:  h is 𝑀𝑁 − 𝐶𝑜𝑛 , 𝐻 is MN –  c. s.   in 𝑄. That 
is, 𝑄 − 𝐻 is MN – o.s. in 𝑄 Since ℎ is 𝑀𝑁 − 𝐶𝑜𝑛 , 
𝑓−1(𝑄 − H) is MN – o.s. in 𝑈. That is, 𝑈 − 𝑓−1(𝐻) 
is MN – o.s. in 𝑈. Therefore, 𝑓−1(H) is MN –  c. s.  
in 𝑈. Thus, the inverse image of every MN –  c. s. 
be MN –  c. s.  Let G be MN – o.s. in 𝑄, Then 𝑄 − 𝐺 
is MN –  cs  in 𝑄. Then 𝑓−1(H − 𝐺) is 𝑀𝑁-closed 
in 𝑈. That is, 𝑈 − 𝑓−1 is 𝑀𝑁-closed in 𝑈. 
Therefore 𝑓−1(𝐺) is MN – o.s. in 𝑈. Thus, the 
inverse image of every MN – o.s. in 𝑄 is MN – o.s. 
in 𝑈. That is, ℎ is 𝑀𝑁 − 𝐶𝑜𝑛 on 𝑈. 
Theorem 38: A function 𝑓: (𝑈, 𝑇𝑅(x) →
(𝑄, 𝑇𝑅(𝑦)) is 𝑀𝑁 − 𝐶𝑜𝑛 ⇔ 𝑀𝑁𝑐𝑙(𝑓−1(𝐴)) ⊆
𝑓−1(𝑀𝑁𝑐𝑙(𝐴)), ∀𝐴 ⊆ 𝑄. 

Theorem 3.9: A function 𝑓: (𝑈, 𝑇𝑅(x)) →
(𝑄, 𝑇𝑅(𝑦)) is 𝑀𝑁 − 𝐶𝑜𝑛 ⇔ 𝑓−1(𝑀𝑁 𝑖𝑛𝑡(𝐴)) ⊆

𝑀𝑁 𝑖𝑛𝑡(𝑓−1(𝐴)), ∀𝐴 ⊆ 𝑄. 

Proof: let 𝑓 be 𝑀𝑁 − 𝐶𝑜𝑛 and  𝐴 ⊆ 𝑄. Then 
𝑀𝑁 𝑖𝑛𝑡(𝐴) is MN – o.s. in (𝑄, 𝑇𝑅(𝑦)). Therefore 

𝑓−1(𝑀𝑁 𝑖𝑛𝑡(𝐴)) is MN – o.s. in (𝑈, 𝑇𝑅(x)). 

That is 𝑓−1(𝑀𝑁 int (𝐴)) =

𝑀𝑁 𝑖𝑛𝑡[𝑓−1(𝑀𝑁 int(A))]. Also, 𝑀𝑁 int(𝐴) ⊆ 𝐴 ⇒
𝑓−1(𝑀𝑁 int(𝐴)) ⊆ 𝑓−1(𝐴). Therefore, 

𝑀𝑁 𝑖𝑛𝑡(𝑓−1(𝑀𝑁 int(𝐴)) ⊆ 𝑀N 𝑖𝑛𝑡(𝑓−1(𝐴)). 

That is 𝑓−1(𝑀𝑁 int (𝐴)) ⊆ 𝑀𝑁int(𝑓−1(𝐴)). 

Conversely, let 𝑓−1(𝑀𝑁int(𝐴)) ⊆
𝑀𝑁𝑖𝑛𝑡(𝑓−1(𝐴)), ∀𝐴 ⊆ 𝑄. If 𝐴 is 𝑀𝑁-open in 𝑄, 

𝑀𝑁int(𝐴) = 𝐴. Also 𝑓−1(𝑀𝑁 int(𝐴)) ⊆
𝑀𝑁𝑖𝑛𝑡(𝑓−1(𝐴)). That is 𝑓−1(𝐴) ⊆
𝑀𝑁 int(𝑓−1(𝐴))). But 𝑀𝑁𝑖𝑛𝑡(𝑓−1(𝐴)) ⊆ 𝑓−1(𝐴). 
Therefore 𝑓−1(𝐴) = 𝑀𝑁int(𝑓−1(𝐴)). Thus, 

𝑓−1(𝐴) is MN – o.s. in 𝑈, ∀MN –  o. s. 𝐴 in 𝑄. 
Therefore, 𝑓 is 𝑀𝑁 − 𝐶𝑜𝑛. 
Definitions 3.10: Let (𝑈, 𝑇𝑅(𝑥)) and (𝑄, 𝑇𝑅(𝐻) 
be M𝑁 − 𝑇𝑆 with respect to 𝑋 and 𝐻 
respectively. A function 𝑓: (𝑈, 𝑇𝑅(𝑥)) →
(𝑄, 𝑇𝑅(H) be called: 

1- 𝑀𝑁𝛼-cont if 𝑓−1(𝐴) is 𝑀𝑁𝛼-o.s in 𝑈, ∀𝑀𝑁-
o.s. 𝐴 ⊆ 𝑄. 

2- 𝑀𝑁𝑠-cont if 𝑓−1(𝐴) is 𝑀𝑁𝑠-o.s. in 𝑈, ∀𝑀𝑁-
o.s. 𝐴 ⊆ 𝑄. 

3- 𝑀𝑁𝑝-cont if 𝑓−1(𝐴) is 𝑀𝑁𝑝-o.s in 𝑈, ∀𝑀𝑁-

o.s. 𝐴 ⊆ 𝑄. 
4- 𝑀𝑁𝛿-cont if 𝑓−1(𝐴) is 𝑀𝑁𝛿-o.s. in 𝑈, ∀𝑀𝑁-

o.s. 𝐴 ⊆ 𝑄. 

5- 𝑀𝑁𝛽-cont if 𝑓−1(𝐴) is 𝑀𝑁𝛽-o.s .in 𝑈, ∀𝑀𝑁-

o.s. 𝐴 ⊆ 𝑄. 
6- 𝑀𝑁𝜃-cont if 𝑓−1(𝐴) is 𝑀𝑁𝜃-o.s. in 𝑈, ∀𝑀𝑁-

o.s. 𝐴 ⊆ 𝑄. 
7- 𝑀𝑁𝜃𝑠-cont if 𝑓−1(𝐴) is 𝑀𝑁𝜃𝑠-o.s. in 

𝑈, ∀𝑀𝑁-o.s. 𝐴 ⊆ 𝑄. 
Example 3.11: 𝑈 = {1,2,3} with 𝑈/𝑅 =
{{1}, {2,3}} and 𝑋 = {2,3}. Then 𝑇𝑅(𝑥) =

{𝑈, 𝜙, {2,3}}, 𝑀𝑁 −closed sets are 𝑈, 𝜙 and {1}, 

𝑇𝑅
𝛼(𝑥) = {𝑈, 𝜙, {2,3}} and let 𝑄 = {𝑎, 𝑏, 𝑐} with 

𝑄/𝑅 = {{𝑎}, {𝑏, 𝑐}} and 𝐻 = {𝑏, 𝑐}. Then 

𝑇𝑅(𝐻) = {𝑄, 𝜙, {𝑏, 𝑐}}. Define 𝑓: 𝑈 → 𝑄 as 

𝑓(1) = 𝑎, 𝑓(2) = 𝑏 and 𝑓(3) = c, 𝑓−1({𝑏, 𝑐}) =
{2,3} ∈ 𝑇𝑅

𝛼(𝑥) and inverse image of ∅ and 𝑄 are 
𝜙 and 𝑈 respectively. Therefore, 𝑓 is 𝑀𝑁𝛼-cont 
function. 
Example 3.12: 𝑈 = {1,2,3} with U/R =

{{1}, {2,3}}, 𝑋 = {1,2}. Then 𝑇𝑅(𝑥) =

{𝑈, 𝜙, {1}, {2,3}, 𝑀𝑁𝑠𝑜(𝑈, 𝑥) = {𝑈, 𝜙, {1}, {2,3}}. 

Suppose 𝑄 = {𝑎, 𝑏, 𝑐} with 𝑄/𝑅 = {{𝑎, 𝑏}, {𝑐}} 

and 𝐻 = {𝑏, 𝑐}. Then 𝑇𝑅(𝐻) = {𝑄, 𝜙, {𝑐}, {𝑎, 𝑏}}. 

Define 𝑓: 𝑈 → 𝑄 as 𝑓(1) = c, 𝑓(2) = 𝑏, 𝑓(3) =
𝑎, then 𝑓−1({𝑐}) = {1} and 𝑓−1({𝑎, 𝑏}) = {2,3}. 
Hence, 𝑓 is 𝑀𝑁𝑠 − con. 
Example 3.13 :  𝑈 = {1,2,3} with U/R =

{{1}, {2,3}} , 𝑋 = {2,3}. Then 𝑇𝑅(𝑥) =

{𝑈, 𝜙, {1}, {2,3}, MN –  cs   are 𝑈, ∅ and {1}. 
𝑀𝑁𝑝𝑜(𝑈, 𝑥) = {𝑈, 𝜙, {2}, {3}, {1,2}, {1,3}, {2,3}} 

and let 𝑄 = {𝑎, 𝑏, 𝑐} with 𝑄/𝑅 = {{𝑎}, {𝑏, 𝑐}} and 

𝐻 = {𝑏, 𝑐}. Then 𝑇𝑅(𝐻) = {𝑄, 𝜙, {𝑏, 𝑐}}. Define 

𝑓: 𝑈 → 𝑄 as 𝑓(1) = 𝑎, 𝑓(2) = 𝑏, 𝑓(3) = 𝑐, then 
𝑓−1({b, c}) = {2,3} ∈ 𝑀𝑁𝑝𝑜(𝑈, 𝑥), and 

𝑓−1({∅, Q}) = ∅ and 𝑈 respectively. That 𝑓 is  
𝑀𝑁𝑝-con. 

Example 3.14 :  𝑈 = {1,2,3} with U/R =

{{1}, {2,3}} , 𝑋 = {1,3}. Then 𝑇𝑅(𝑥) =

{𝑈, 𝜙, {1}, {2,3}, 𝑀𝑁𝑐−o.s. and 𝑈, ∅, {1} and {2,3}. 
The 𝑀𝑁𝑅-o.s. in 𝑈 are 𝑀𝑁𝑅(𝑈, 𝑥) =
{𝑈, 𝜙, {1}, {2,3}} and let 𝑄 = {𝑝, 𝑞, 𝑠} with 𝑄/𝑅 =

{{𝑝}, {𝑞, 𝑠}} and 𝐻 = {q, s}. Then 𝑇𝑅(𝐻) =

{𝑄, 𝜙, {𝑞, 𝑠}}. Define 𝑓: 𝑈 → 𝑄 as 𝑓(1) =

𝑝, 𝑓(2) = 𝑞, 𝑓(3) = 𝑠, then 𝑓−1({𝑞, 𝑠}) = {2,3} ∈
𝑀𝑁𝑅(𝑈, 𝑥), and 𝑓−1({𝑝}) = 1 ∈ 𝑀𝑁𝑅(𝑈, 𝑥). Since 
𝑓−1({∅, 𝑄}) = ∅ and 𝑈 respectively. Therefore 𝑓 
is  𝑀𝑁𝑅-cont function. 
Example 3.15:  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with U/R =
{{𝑎, 𝑏}, {𝑐, 𝑑}} , 𝑋 = {𝑎, 𝑏}. Then 𝑇𝑅(𝑥) =
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{𝑈, 𝜙, {𝑎, 𝑏}}, MN –  c. s.   in 𝑈 are 𝑈, ∅ and {𝑐, 𝑑}. 

𝑀𝑁βo(𝑈, 𝑥) =

{𝑈, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}. {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, {𝑐, 𝑑, 𝑎}, {𝑑, 𝑎, 𝑏}} 

and let 𝑄 = {𝑟, 𝑝, 𝑞, 𝑠} with 𝑄/𝑅 = {{𝑟, 𝑝}, {𝑞, 𝑠}} 

and 𝐻 = {𝑟, 𝑝}. Then 𝑇𝑅(𝐻) = {𝑄, 𝜙, {𝑟, 𝑝}}. 

MN –  c. s.   in 𝑄 are 𝑄, ∅ and {𝑞, 𝑠}. Define 𝑓: 𝑈 →
𝑄 as 𝑓(𝑎) = 𝑟, 𝑓(𝑏) = 𝑝, 𝑓(𝑐) = 𝑞, 𝑓(𝑑) = 𝑠. 
Then 𝑓−1({Q, ∅}) are 𝑈 and 𝑄. And 𝑓−1({𝑟, 𝑝}) =
{𝑎, 𝑏} ∈ 𝑀𝑁𝛽𝑜(𝑈, 𝑥). Hence, 𝑓 is 𝑀𝑁𝛽-cont. 

Definitions 3.16:[11] A function 
𝑓: (𝑈, 𝑇𝑅(𝑥)) → (𝑄, 𝑇𝑅(𝐻)) is called: 

1- MN- open map if the image of every  MN 
– o.s.  in 𝑈 is MN – o.s.  in 𝑄. 

2- MN- closed map if the image of every  MN 
– c.s.  in 𝑈 is MN – c.s.  in 𝑄. 

Theorem 3.17 : A function 𝑓: (𝑈, 𝑇𝑅(𝑥)) →
(𝑄, 𝑇𝑅(𝐻)) is MN −  closed map ⇔
𝑀𝑁𝑐𝑙(𝑓(𝐴)) ⊆ 𝑓(𝑀𝑁𝑐𝑙(𝐴)), ∀𝐴 ⊆ 𝑈. 

Proof: Let 𝑓 MN- closed, 𝑓(𝑀𝑁𝑐𝑙(𝐴)) is MN- 

closed in 𝑄( because 𝑀𝑁𝑐𝑙(𝐴) is MN – c.s.  in 𝑄). 
Since 𝐴 ⊆ 𝑀𝑁𝑐𝑙(𝐴) then  𝑓(𝐴) ⊆ 𝑓(𝑀𝑁𝑐𝑙(𝐴)). 

Therefore 𝑀𝑁𝑐𝑙(𝑓(𝐴)) ⊆ 𝑓(𝑀𝑁𝑐𝑙(𝐴)) if  

𝑓(𝑀𝑁𝑐𝑙(𝐴) is MN – c.s. containing 𝑓(𝐴).  
Conversely,  if 𝑀𝑁𝑐𝑙(𝑓(𝐴)) ⊆ 𝑓(𝑀𝑁𝑐𝑙(𝐴)), ∀𝐴 ⊆

𝑈and if 𝐸 is MN – c.s. in 𝑈, then 𝑀𝑁𝑐𝑙(𝐸)= 𝐸 ,then 
𝑓(𝐸) ⊆ 𝑓(𝑀𝑁𝑐𝑙(𝐸))= 𝑓(𝐸).Thus , 𝑓(𝐸) ⊆
𝑀𝑁𝑐𝑙(𝑓(𝐸)) is MN – c.s.  in 𝑄. Then  𝑓 is a MN- 
closed map.  
Theorem 3.18 : A function 𝑓: (𝑈, 𝑇𝑅(𝑥)) →
(𝑄, 𝑇𝑅(𝐻)) is MN −  open map ⇔
𝑓(𝑀𝑁𝑖𝑛𝑡(𝐴)) ⊆ 𝑀𝑁𝑖𝑛𝑡(𝑓(𝐴)), ∀𝐴 ⊆ 𝑈. 

Proof is  to the of similar to the theorem 3.18. 
Definition 3.19 : A function 𝑓: (𝑈, 𝑇𝑅(𝑥)) →
(𝑄, 𝑇𝑅(𝐻)) be called a 𝑀𝑁-homomorphism 
(𝐻𝑜𝑚𝑀𝑁

)if: 

1) 𝑓 is 1 − 1 and onto. 
2) 𝑓 is 𝑀𝑁-continuous. 
3) 𝑓 is 𝑀𝑁-open function. 

Theorem 3.20: Let 𝑓: (𝑈, 𝑇𝑅(𝑥)) → (𝑄, 𝑇𝑅(𝐻)) 
be a bijective mapping . Then  𝑓 is 𝐻𝑜𝑚𝑀𝑁

iff 𝑓 is  

MN- closed and 𝑀𝑁-continuous. 
Proof. Suppose that 𝑓 be a 𝐻𝑜𝑚𝑀𝑁

, then 𝑓 is 𝑀𝑁-

continuous.  For any G is MN – c.s. in 𝑈, we get 
𝑈/G is MN – o.s. and 𝑓(𝑈/G ) is MN – o.s. in 𝑄. 
That is, 𝑄/𝑓(G) is MN – o.s. in 𝑄. When 𝑓(G) is 
MN – c.s. in 𝑄(because the image of ∀ MN – c.s. 
in 𝑈 is MN – c.s. in 𝑄)then 𝑓 is  MN- closed. 
Conversely, since 𝑓 is  MN- closed and 𝑀𝑁-
continuous and K is MN – o.s.in 𝑈, then 𝑈/K is 
MN – c.s. in 𝑈. Since 𝑓 is MN – c.s. and 𝑓(𝑈/K 
)= 𝑄 − 𝑓(K) is MN- closed in 𝑄. Therefore, 𝑓(K) 
is MN- open in 𝑄. Then 𝑓 is 𝐻𝑜𝑚𝑀𝑁

. 

Theorem 3.21: Let 𝑓: (𝑈, 𝑇𝑅(𝑥)) → (𝑄, 𝑇𝑅(𝐻)) 
be a one-one map, then  𝑓 is a 𝐻𝑜𝑚𝑀𝑁

 iff  

𝑀𝑁𝑐𝑙(𝑓(𝐴)) = 𝑓(𝑀𝑁𝑐𝑙(𝐴)), ∀𝐴 ⊆ 𝑈. 

Result 3.22  : 1) 𝑀𝑁𝑅-continuous ⟹ 𝑀𝑁-
continuous. 
2) 𝑀𝑁-continuous ⟹ 𝑀𝑁𝛼-continuous. 
3) 𝑀𝑁𝛼-continuous ⟹ 𝑀𝑁𝑆-continuous. 
4) 𝑀𝑁𝛼-continuous ⟹ 𝑀𝑁𝑝-continuous. 

5) 𝑀𝑁𝑆-continuous and  𝑀𝑁𝑝-continuous ⟹ 

𝑀𝑁𝛽-continuous. 

6) 𝑀𝑁-continuous ⟹ 𝑀𝑁𝛿-continuous ⟹ 𝑀𝑁-
continuous. 
7) 𝑀𝑁𝜃-continuous ⟹ 𝑀𝑁𝛿-continuous and 
𝑀𝑁𝜃-semi-continuous and 𝑀𝑁-continuous. 8) 
𝑀𝑁𝜃-continuous ⟹ 𝑀𝑁-continuous.  
Remark 3.23: the following diagram explains 
the relations between 𝑀𝑁-continuous functions. 
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