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The aim of this work is to definition new type of Nano- M -continuous function. It is
named Nano-M-(Nano semi, Nano pre_, Nanoa_, Nanof3_ Nanod — Nano 6_, Nanof_,
Nano Re_, NanoBg_) continuous function and to reach a relationship with types of Nano-
M - cont function are studied with some examples, properties and necessary theorems
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1. Introduction

In 2013 Thivagar M. Lellis [10] idea of
Nano-topological space (N_TS)with respect to a
subset X of universe U which is defined as an
upper and lower approximation of x. The
element of N_TS is called a Nano-open
sets(N_os).
In 1963 levine [2] establish the notion of semi-
cont. function. In 1983 M.E. Abd EL-Monsef [1]
establish the notion of -cont. function, a-cont
function [12], pre-cont. function [9], - cont.
function, 8 — semi cont. function, Regular-cont.
function [3], 8 — cont. function. In 2022 [4]
Mohmmed N.H and Shihab A. A and we will
intrudes new type of Nano-cont. function and
introduced definition of Nano-M - open set.

2. Preliminaries
A subset A of

open(d_o) [6],6-open(6_o) [8], Regular-
open(Re_o) [10], 6-semi-open( 65_0)[6] set. The
complement of se_o
(resp., a_o, _o, pr_o,56_o, 06_o, Re_o,05_0) set is
said to be semi-closed(se_c)
(resp.,a-c, B-c, pre-c, 8-c, 6-c, Regular-c, 65_c)
set. Intersection of all se_ c (resp. a- c, 5- ¢, pre
- ¢, 8- ¢, 0-c,Regular- ¢, 65_c) sets continuing 4 is
called the semi- closure (resp. a- closure, -
closure, pre -closure, 6- closed, 8- closure,
Regular- closure, 8- semi - closure) and is
dented by Scl(A)[
resp. acl(A), Bcl(A), pcl(A),0cl(A), Rel(
A),bclg(A)].

The union of all se_o. (resp.a_o., f_o.,pr_o.,6_o.,
0_o., Re_o., O5_0.) sets contained in Ais said
semi- interior (resp. a- interior, - interior, pre
interior, §- interior, - interior, Regular-
interior, 8- semi - interior) and denoted

a space (X, T) is called semi-open(se_o) [10]( resp.a-open{int(A)[resp.aint(A), fint(A),pint(A),0int(

_0) [10],
B-open(f3_o) [7], pre open(pr_o) [10],6 —

A),Rint(A) , Sinty(A)] .
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The family of all semi-cont

2- Nanoa —continuous (N, — Con) if

(resp.,a-cont, $-cont, pre-cont, §-cont, 8-cont, Regular-cont, 8-ferriddast),-open set in U, V N-open set

is denoted by écont(x), [resp., a —
cont(x), — cont(x),0 — cont(x),R —
cont(x),d — cont(x)].
Definitions 2.1.:[10] Let (U, Tz(x)) be a N_TS
and A € U. Then A be called.

1- Ng-o.if A € Nint(Ncl(Ni (4)).

2- N-pre-o.if A C Nint(Ncl(A)).

3- Ns-0.if A € Ncl(Nint(4)).

4- Ngs-o.if A € AY. [6]

5- Ng-o.if A = Nint(Ncl(A)).

6- Ng-o0.if A = NAY. [8]

7- Ns-o.if A € AS. [6]

8- Ng-0.if A € Ncl(Nint(Ncl(A)).[7]

3. Some Types of M-N-continuity
Definition 3.1:[4] let (U, Tg(x)) be N_TS. The
subset A of U is called MN-open set (MN - o.s.)
inN_TSifA < NAJ U NA; .
Remark 3.2: The complement of MN - o.s. is
said to be MN -closed set(MN - c.s.)
Definitions 3.3: Let (U, Tz(x)) and (Q, Tz (H))
be N_T spaces. Afunction f:(U,Tg(x)) -
(Q,Tr(A)) is called:

1- Nano-continuous(N — Con) if f~1(4) is

N-opensetin U,V N-open set Ain Q. [11]

Ain Q. [12]

3- Npre - continuous(N — pre — Con) if
f~1(A) is N-pre-os. in UVAisN-—
pre —o.s. in Q. [9]

4- Ng-continuous(Ng — Con) if f~1(A) is
Ng —o.s.inUV Ais Ng —o0.s.in Q. [5]

5- Ns-continuous(Ng — Con) if f~1(A) is
Ng —o0.s5.inU,V ANg —o0.s.is in Q.[13]

6- Ng-continuous (Ng - Con ) if f71(A) is
Nr —o0.5.inU,V AisNg —o.s.in Q. [3]

7- Ng-continuous(Ny — Con) if f~1(A) is
Ng —o0.5.inU,V A is Ng — 0.5.in Q.

8- Ny-semi-continuous(Ngg — Con) if
f7Y(A) is Ngs —0.s.in U, V Ais Nyg —
0.s.in Q.

9- Ngs-continuous(Ns — Con) if f~1(A) is
Ng —o0.s. inU,V Ais N-open setin Q.

Definition 3.4: let
(U,Tg(x)) and (Q,Tg(H)) be  M-Nano-
topological space (MN —TS). Then a
function f: (U, Tr(x)) - (Q, Tr(H)) is My-
continuous (My — Con) on U if f~1(A) is MN
-o0.s. inU,VAis MN - 0.s.in Q.

Remark 3.5: The following diagram explains

the relations between continuous functions

Diagram (1)

Ny — continuous — N — continuous — N,

N\

N; — continuous
— continuous Ng — continuous

\ /V

N, — continuous

Ng — umtmuou\

Ng — continuous — Ny — semi continuous — M —

— continuous

The relationship between continuous functions

Example 3.6: Let U = {a, b, c,d} with Tr(x) =
{U, ¢,{a,b, c}}, then
MN - o.s.(U) ={ U, 9,{a},{b},{c},{a,b},{a,c},{b,c}
{ab,c}land let Q ={1,2,3,4} with TRr(H) =
{Ql ¢; {1'2'3}} ,then

MN - o.s5.(Q) ={ Q, 0{1},{2},{3},{1,.2},{1,3}.{2,3
1{1,2,3}}.Define f:U - Qas f(a) =1,f(b) =
2and f(c) = 3. Therefore f is My-cont.
mapping on U , so the above diagram (1)
achieves it.
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Theorem 3.7: A function f:(U,Tz(x) -
(Q,Tr(H)) is My — Con & f~1(A) MN - c.s. in
QisMN- c.s. inU.
Proof: his My — Con,H is MN - c.s. in Q. That
is, @ — H is MN - o.s. in Q Since h is My — Con,
f~1(Q —H)isMN -o.s.in U. Thatis, U — f"1(H)
is MN - o.s. in U. Therefore, f "1 (H) is MN - c.s.
in U. Thus, the inverse image of every MN - c.s.
be MN - c.s. LetGbe MN-o0.s.in Q, Then Q — G
is MN - cs in Q. Then f~1(H — G) is My-closed
in U. That is, U—f"1 is My-closed in U.
Therefore f~1(G) is MN - o.s. in U. Thus, the
inverse image of every MN - o.s.in @ is MN - o.s.
in U. Thatis, his My — Conon U.
Theorem 38: A function f:(U,Tz(x) -
(Q Tr(¥)) is My —Cone Mycl(f~'(4)
f 1 (Mycl(4)), VA <€ Q.
Theorem 3.9: A function f:(U,Tz(x)) —
(Q, Tr(¥)) is My — Con & f~1(My int(4)) <
My int(f~1(A)), VA € Q.
Proof: let f be My —Con and A <€ Q. Then
My int(A) is MN - o.s. in (Q,TR(y)). Therefore
f~1(My int(4)) is MN - os. in (U, Tr(X)).
Thatis f~(My int (4)) =
My int[f~1(My int(A))]. Also, My int(A) S A =
f~Y(My int(4)) € f1(A). Therefore,
My int(f~1(My int(A)) € My int(f~1(4)).
That is f~*(My int (4)) S Myint(f~1(4)).
Conversely, let f~1(Myint(4)) <
Myint(f~1(A)),VA € Q. If A is My-open in Q,
Myint(A4) = A. Also f~1(My int(4)) S
Myint(f~1(4)). That is 14 c
My int(f~1(A4))). But Myint(f~1(4)) € f~1(A).
Therefore  f~1(A) = Myint(f~1(4)). Thus,
f71(A) is MN - o.s. in U,YMN - o0.s.4 in Q.
Therefore, f is My — Con.
Definitions 3.10: Let (U, Tz(x)) and (Q, Tr(H)
be MN —TS with respect to X and H
respectively. A function f:(U,Tr(x)) —
(Q, Tr(H) be called:
1- Mpyg,-contif f~1(A) is My,-0.sin U, VM-
0.s.4 € Q.
2- Mys-cont if f~1(A) is Mys-0.s. in U, VM-
0s.4 € Q.
3- Mpyy-contif f~1(A) is Myy-0.s in U, VMy-
0.s.4 € Q.
4- Mys-contif f~1(A) is Mys-0.s.in U, VM-
0s.4 € Q.

5- Myg-contif f~*(A) is Myg-0.s.in U, VMy-
0s.4 € Q.
6- Myg-contif f~1(A) is Myg-0.s.in U, VM-
0s.4 C Q.
7- Mpgs-cont if f71(A) is Mygs-0.s. in
U,VMy-0.s. A C Q.
Example 3.11: U ={1,23} with U/R =
{{1},{2,3}} and X =1{23}. Then Tx(x)=
{U,$,{2,3}}, My —closed sets are U, ¢ and {1},
TR%(x) = {U, o, {2,3}} and let Q = {a, b, c} with
Q/R = {{a}, {b, c}} and H ={b,c}. Then
Tr(H) ={Q,¢,{b,c}}. Define f:U->Q as
fM=af(@)=>band f(3) =c f({b,c}) =
{2,3} € T§(x) and inverse image of @ and Q are
¢ and U respectively. Therefore, f is My,-cont
function.
Example 3.12: U ={1,2,3} withU/R =
{{13, {233}, x = {1,2}. Then Tr(x) =
{U,¢,{13,{2,3}, Mys U, x) = {U,¢,{1},{2,3}}.
Suppose Q ={a,b,c} with Q/R = {{a, b},{c}}
and H = {b,c}. Then Tx(H) ={Q, ¢, {c},{a b}}.
Define f:U - Q as f(1)=c,f(2)=b,f(3) =
a, then f~1({c}) = {1} and f1({a, b}) = {2,3}.
Hence, f is My — con.
Example 3.13 U ={1,2,3}withU/R =
{{1},{2,3}}, x = {2,3}. Then Tr(x) =
{U,$,{1},{2,3}, MN-cs are U,0 and {1}.
Mypo (U, x) = {U, ¢,{2}, {3}, {1,2},{1,3},{2,3}}
and let Q = {a, b, ¢} with Q/R = {{a},{b, c}} and
H = {b,c}. Then Tx(H) ={Q, ®,{b,c}}. Define
fiU—-Q as f(1) =a,f(2) =b,f(3) =c, then

f1({b,c}) = {2,3} € My, (U, %), and
f71({8,Q}) = @ and U respectively. That f is
My,-con.

Example 3.14 U =1{1,23}withU/R =

{{1},{2,3}}, x = {1,3}. Then Tr(x) =
{U,$,{1},{2,3}, My._o0.s.and U, @, {1} and {2,3}.
The Mpg-0s. in U are Myg(U,x)=
{U,¢$,{1},{2,3}} and let Q = {p, q, s} withQ/R =
{{p}, {q,s}} and H ={q,s}. Then Tz(H)=
{0,¢,{q,s}}. Define f:U-Q as f(1)=
p,f(2)=q,f(3) =s,thenf '({g,s}) = {23} €
Myr(U,x),and f~1({p}) = 1 € Myx(U, x). Since
f~1({®,Q}) = @ and U respectively. Therefore f
is Myg-cont function.

Example 3.15: U ={a,b,c,d}withU/R =
{{a, b}, {c, d}},X = {a, b}. Then Tr(x) =
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{U, ¢, {a, b}}, MN - c.s. in U are U, ® and {c, d}.
MNBO(U' X) =

{U, ¢,{a},{b} {a,b},{a,c}.{a,d},{a,b,c} {b c d} {cd,
andlet Q = {r,p, q,s} with Q/R = {{r,p}, {q,s}}
and H ={r,p}. Then Tx(H)={Q, ¢ {r,p}}
MN - c.s. inQ are Q,® and {g, s}. Define f: U -
Q as fla)=rf)=pf(c)=qf(d)=s.
Then f~1({Q, ®}) are U and Q. And f~*({r, p}) =
{a,b} € Myg,(U,x). Hence, f is Myg-cont.
Definitions 3.16:[11] A function
f: (U, Tr(x)) = (Q,Tr(H)) is called:

1- MN- open map if the image of every MN
-o0.s. inUis MN -o.s. in Q.
2- MN- closed map if the image of every MN

-cs. inUis MN -c.s. in Q.

Theorem 3.17 : A function f:(U,Tg(x)) =
(Q,Tr(H)) is MN — closed map &
Mycl(f(A)) € f(Mycl(4)), VA< U.

Proof: Let f MN- closed, f(MNcl(A)) is MN-
closed in Q( because Mycl(A) is MN - c.s. in Q).
Since A € Mycl(A) then f(A) S f(Mycl(A)).
Therefore MNcl(f(A)) c f(MNcl(A)) if
f(Mycl(A) is MN - c.s. containing f (A).
Conversely, ifMNcl(f(A)) c f(MNcl(A)),VA c
UandifE is MN - c.s.in U, then My cl(E)= E ,then
f(E) & f(Mycl(E))=f(E).Thus , f(E) &S
Mpycl(f(E)) is MN - c.s. in Q. Then f is a MN-

closed map.
Theorem 3.18 : A function f:(U,Tz(x)) -
(Q, Tr(H)) is MN — open map &

f(Myint(A)) € Myint(f(A)), VA< U.

Proofis to the of similar to the theorem 3.18.
Definition 3.19 : A function f:(U,Tg(x)) —
(Q,Tr(H)) be called a My-homomorphism
(Homy,, )if:

1) fis1—1 and onto.
2) f is My-continuous.
is W -open function.

ﬁi@’rﬁﬁs}gm Let f: (U, Tr(x)) = (Q, Tr(H))
be a bijective mapping . Then f is Homy, iff f is
MN- closed and My -continuous.
Proof. Suppose that f be a Hom,,,, then f is My-
continuous. For any G is MN - c.s. in U, we get
U/Gis MN - o.s. and f(U/G ) is MN - o.s. in Q.
That is, Q/f(G) is MN - o.s. in Q. When f(G) is
MN - c.s. in Q(because the image of V MN - c.s.
in U is MN - cs. in Q)then f is MN- closed.
Conversely, since f is MN- closed and My-
continuous and K is MN - o.s.in U, then U/K is
MN - c.s. in U. Since f is MN - cs. and f(U/K
)= Q — f(K) is MN- closed in Q. Therefore, f(K)
is MN- open in Q. Then f is Hom,,.
Theorem 3.21: Let f: (U, Tr(x)) — (Q,Tr(H))
be a one-one map, then f is a Homy, iff
Mycl(f(A)) = f(Mycl(A)),VACS U.
Result 3.22 : 1) Mpg-continuous = My-
continuous.
2) My-continuous = M, -continuous.
3) My, -continuous = My -continuous.
4) My -continuous = My,,-continuous.
5) Mpys-continuous and My,-continuous =
My g-continuous.
6) My-continuous = Mpys-continuous = My -
continuous.
7) Myg-continuous = Mygs-continuous and
My g-semi-continuous and My-continuous. 8)
My g-continuous = My-continuous.
Remark 3.23: the following diagram explains
the relations between My -continuous functions.
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Diagram (2)

N —con

Myr — con — My — con — My, — con Myp — con
\ A'I.\’p — con
Mys — con
Myg — con — Myg — semi con — My — con

The relationship between M y-continuous functions
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