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1.Introduction

The foundation of dimension theory is
the "dimension function,” It has the properties
of d(X)=d(Y) if X and Y are homeomorphic and
d(R™) = n for every positive integer n. It is a
function defined on the class of topological
spaces where d(X) is an integer or o .The
dimension functions taking topological spaces
to the set {-1,0,1,...} .[1] studied paracompact
perfectly zero-dimensional, perfect mapping
Actually s-paracompact s-perfectly s-zero-
dimensional, perfect mapping were examined
using S-open sets in [5], b-paracompact b-
perfectly, zero-dimensional, b — perfect
mapping , were researched using b-open sets
in [6], and f-paracompact, f-perfectly zero-
dimensional, f— perfect mapping , were
studied wusing f-open sets in [3], [2]

investigated N-paracompact, N-perfectly zero-
dimensional, N — perfect mapping utilizing N-
open sets. We recall the definitions of
paracompact ,perfectly zero-dimensional and
perfect mapping [1] , and then use sf-—
open sets to add sf-paracompact, sf-perfectly
zero-dimensionaland  sf-perfect = mapping
.Finally, certain connections between them are
investigated, and some conclusions about
these notions are established .
2.Preliminaries

In this section, we recall some of the basic
definitions and theorems.

Definition(2.1):[1]

A topological space X is said to be
paracompact if each open covering of X has
locally finite open refinement.
Definition(2.2):[1]
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A space X is called perfectly zero
dimension space if it has base of open and
closed sets and every open covering of X has
disjoint open refinement.

Definition(2.3):[1]

A continuous surjection f: X — Y is said to
be perfect mapping if it is closed and f~1(y) is
a compact subset of X foreachyinY.

Proposition(2.4):[1]

Each paracmopact regular space is normal
and each paracmopact Hausdorff space is
T, —space.

Proposition(2.5):[1]

A topological space X is paracmopact and
normal space if, and only if, each open cover of
X has a locally finite closed refinement.
Proposition (2.6)[1]:

A space X is a perfectly zero —dimensional
space if, and only if, is paracmopact regular
space such that dimX = 0.

Proposition (2.7):[1]

Disjoint compact subset in a Hausdorff
space have disjoint open neighborhoods
Definition (2.8): [4]

Let B be subset of a topological space ,then
B called semi feebly open (sf —open) set in X ;
if for any semi open set V such that B&V then

ng U. the complement of semi feebly open is
called semi feebly closed (sf-closed) that V <
B°fwhere V semi closed set in X.

Definition (2.9): [4]

Let X be a topological space, then X is said
to be sf-T;-space if for every x # y in X there is
sf-open sets A and B such that x € A,y €
A andy € B, x¢& B.

Proposition (2.10): [4]

Let X be a conduct union topological space,
then {x} is sf — closed set V x € Xiff Xis sf -T;-
space
Definition (2.11): [4]

A space X is called sf-T,-space (sf-Hausdorff
space ) if for each x #y in X there exists
disjoint an sf-open setsU,V such that x €
UyevVv.

Definition (2.12): [4]

A topological space X is said to be sf -
regular space if for each x in X and sf-closed
subset A such that x € A there exists disjoint

sets U, V such that U open set, V is sf-open sets
x€eUACV.
Definition (2.13):[7]

Let X be a topological space, then Xis
called sf”-regular space if any x in X and sf-
closed subset Fsuch that x ¢ Fthere is
disjoint sf-open sets A, B such that x € A,F ©
B.

Proposition (2.14):[4]

Let X be a conduct union topological
space, then Xis sf -normal space iff V sf -
closed set E € X, and V sf -open set Vin X 3
Ec V,3sf-opensetUSECU cUSf c v
Definition(2.15):

A topological space X is said to be sf”-
normal space if for any disjoint sf -closed set
N; , N,, there exists is disjoint sets V; , V, such
that V; sf —open,V,openset and N; € V, ,
N,C V,.

Definition(2.16):[4]

Letf:X — Y be a function of a topological
space (X,1) into a topological space (Y,t ),then f
is called an sf*-continuous function if f71(A) is
an open setin X for every sf-open setA inY.
Definition(2.17):[4]

A function f:(X,1) — (Y, T‘) is called sf-
open function if f(A)
is an sf-open setin Y for every open set Ain X.
Definition(2.18):[4]

f is called sf — closed function if f(F) is sf-
closed setin Y for every closed set F in X.
Definition (2.19): [4]

Let X be a topological space and A € X. An
sf-neighborhood of A is every subset of X
which contains an sf-open set containing A .
The sf- neighborhood of a subset {x} is said to
be sf- neighborhood of the point x.

Definition (1.20): [4]

The a family {4;: 1 € A} of subsets of a
topological space X is said to be sf-locally
finite if for each point x of X there exists an sf-
neighborhood N, of x such that the set {4 € A :
N, N A; # @} is finite.

Definition(2.21):[4]

A topological space X is said to be sf—
paracmopact if each sf — open covering of X,
has sf — locallyfinite sf — open refinement.

Definition (2.22):[7]

A non-empty collection Byof sf-
neighborhoods for x € X is called sf-base for sf-
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neighborhood system of x of all sf-open sets in
X if and only if for every sf-neighborhood Ny of
x there is B € By, such that B © Ny

3.The Main Results
Definition(3.1):

A topological space X is said to be sf* —
paracmopact if each sf — open covering of X,
has locallyfinite open refinement.
Definition(3.2):

sf* —continuous surjection f: X — Y is said
to be sf — perfectly mapping if and only if it is
sf — closed and f~1(y) is a compact subset of X
foreachyinY.

Definition(3.3):

A  space X is called sf— perfectly zero
dimension space if and only if it has sf — base
of sf — open and sf — closed sets and every sf —
open covering of X has disjoint sf— open
refinement.

Proposition (3.4):

Let X be sf* — paracmopact subset of X, let
A be a subset of X and let B be a sf — closed sub
set of X which disjoint from A. If every x € B
there exist disjoint sf — open sets U, and Vi
such that A € U, and x € V; , then there exists
sets U, V such that U is sf — open and V is open
andAc UBcV.
Proof:

The sf—open covering of sf*—
paracmopact space X which consist of X/B
together with the sets V; for x in B has a locally
finite open refinement {W,},er. Let T'={y €
IW, €V, forsomexinB} , ify €T thenUy N
W, = @ for some x ,s0 thatANW, = @ . Now
let U=X/UyerWyandV =U W,, thenAc U
and B € V and U,V are disjoint sets. Clearly U is
sf — open set and V is open set
Theorem (3.5):

if X is sf* — paracmopact sf-Hausdorff space
then Xis sf — regular space
proof:

let x € X and B be sf-closed set in X such
that x¢ B then for any y€ B,there is disjoint sf-
open set Uy and Vy where x € Uy, y € Vy (since
X is sf-Hausdorff space).Then by proposition
(3.4) there is disjoint sets U and V such that U
is sf-open set and Vis opensetandx € UBCS V
therefor X is sf — regular

Proposition(3.6):

Each sf* — paracmopact sf —regular
topological space is sf  — normal space.
Proof:

Let X be sf* — paracmopact sf — regular
and let A and F be disjoint sf — closed sets in X.
Since A is sf — closed set of the sf — regular
topological space X. Hence for every x in F
there exist disjoint sf — open sets U, and Vg
such that Ac U,,x€V,. It follows from
Proposition(3.4) that there exist disjoint sets U
and V such that U sf — open set and V open set
andAC UFCV. Thus X is sf —normal
space .

Theorem (3.7):

If each finite sf — open covering of a space X
has a sf-locally finite sf-closed refinement ,
then Xis sf — normal space.

Proof:

Let X be a topological space each finite sf-
open covering which has a locally finite sf -
closed refinement and Let A,B be disjoint sf -
closed sets of X. The sf - open covering {X /A
, X / B } of X hast sf-locally finite sf - closed
refinement F. Let U be the union of members of
F disjoint from A and V be the union of the
members of F disjoint from B. Then U and B
are sf - closed sets and UUV =X. Thusif G =x /
Uand W =X /V, then G, W are disjoint sf -
open sets such that ACG, BEW . Hence X is sf -
normal space .

Theorem(3.8):

Let {Ay}«ea be a family of subsets of a space
X , let {By}yerbe sf-locally finite sf-closed
covering of X such that for each yin I, the set
Byn{a €A : B,NAy =@} is finite . Then
There exists a sf-locally finite family {Hg}qea 0of
sf - open sets of X such that A, € H,for each
ainA.

Proof:

For each o, let H, =X /U {B, / A, =@}.
Clearly A, < Hg , and since {B, },eris sf-locally
finite sf-closed , then H, is sf - open . Let X be
point of X, there exists a sf-neighborhood N
of x , and a finite subset K of I' such
that NN B, =@ for y € K, Hence NE U, kB, .
Now Hy, N B,#@ ifand only if A, N B,#@
.ForeachyinKtheset{a € A: A, NB,#@ } is
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finite . Hence the set {a € A: NNHy# @ } is
finite
Theorem(3.9):

Let X be a topological space. If each sf—
open cover of X has asf—locally finite

sf —closed refinement, then X is
sf —paracompact sf —normal
Proof:

Let U be an sf —open covering of X and Let
{Fa}heabe a sf—locally finite sf—closed
refinement of U. since {F,}yepis sf—locally
finite, each point of X has a sf —neighborhood
Gy such that {A€ A: Gy, NF, # @ }is finite .If
{Exbaer is a sf—locally finite sf— closed
refinement of the sf —open covering {G, }yex of
X then for each A €T theset{fA € A: E; NF; #
@ } is finite . It follows from Theorem (3.8) that
there exists a sf—locally finite family
{Vi }hen of sf —open sets, such that F, € V, for
each A. for each A in A, Let U, be member of
U such that F, € U, ,then {V, N Uyhep is
a sf —locally finite sf —open refinement of U .
Thus X is sf —paracompact . so that by
Theorem (3.7) X is sf —normal space.
Definition(3.10):

Let X be a topological spaceThe
sf —covering dimension,sf — dimX, of X is the
least integer n where each finite sf-open
covering of X has an sf — open refinement of
order < n or is o if no such integer exists
.Thus sf—dimX =—1 if and only if X is
empty,and sf — dimX < n if each finite sf-open
covering of X has sf— open refinement of
order < n. We have sf — dimX = n if it is true
thatsf — dimX <n but sf—dimX<n-1 is
not true. Finally sf —dimX = oo if for every
integer n it is false that sf — dimX < n.
Theorem(3.11):

Let X be a topological space . If X has sf-base
of sets which are both sf-open and sf-closed ,
then sf — dim X = 0.

For sf-T1-space the convers is true
proof:

let X has a sf-base of sets which are both
sf — open and sf — closed
let {U; }X, be a finite sf — open covering of X .
It has sf-open refinement ' . If H € H then
H € U; for some i . Let each H in H associated
with one of the sets U; containing it , and
let V;be the union of those members of H

.That is associated with U;. thus V;is sf-open
set and hence {V; }%;1 forms a disjoint open
refinement of {U; }X , .Then sf — dim X = 0
conversely:

let X be a sf-T1-space where sf-dim X =0, ifx €
X and A is sf-open in X such that x € A, then
{A,X-{x}} is finite sf-open cover of X .since sf-
dim X=0 then there is sf-open refinement
{W,V} of order zero, where WNV=@g , WuV=X
,VE€ A and WE X — {x} .then V and W are open
and closed sets in X, therefor V.and W are sf-
open and sf-closed such that x € We
=VC A. Thus X has sf-base of sf-open and sf-
closed sets

Theorem (3.12):

If X is sf — perfectly zero dimension space
then , X is sf — paracmopact space and dim
X=0
Proof:

Let X be sf — perfectly zero dimension space
then X has a base of sf — open and sf — closed
sets . Hence by theorem (3.11) sf —dimX = 0.
And since every sf—opencovering has
disjoint sf — open refinement , then it issf—
locally finite sf — open refinement . Thus X is
sf — paracompact space .

Proposition(3.13) :

If a mapping g :x—y is sf—closed
sf* —continuous surjection, then for each y €
Y and an open set G inX, where g~1(y) € G,
there exists an sf —open set V in Y such that y
€Vandg (V) €G.

Proof:
Let y € Yand G an open in X such that

g 1(y) € Gand
let V=Y/g(X/G) ,since G is an open set in X,
then X /G is closed in X, g(X/G) sf—closed
inY and hence V=Y/g(X/G) issf—openinY.
Now to prove: (1)y€V, (2)g (V) €G
(1) sinceg1(y) € G, so X/G € X/ g (y) =
g 1(Y/y) which implies that g(X/G) <
g(g~'(Y/y)) =(Y/y) and hencey € Y/g(X/G)
=V
2) g'(V) = g '[Y/e(X/®)] =X/g " (e(X/
G)) =X/X/G=G.

=X/ g1 (8(X/®))

c X/X/G=G.
Proposition(3.14) :
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If a mapping g :x—>y is sf—closed
sf* —continuous surjection, then for each A <
Y and each open set G in X, where g71(A) € G,
there exists an sf —open set V in Y such that A
cVandg }(V) €G.

Proof:

Let A €Y and G an open in X such that
g 1(A) € Gand
let V=Y/g(X/G) ,since G is an open set in X,
then X /G is closed in X, g(X/G) sf—closed
inY and hence V=Y/g(X/G) issf—openinY.
Now to prove: (1)ACSV, (2) g X(V) €G
(1) sinceg™1(A) € G, so X/G € X/ g 1(A) =
g 1(Y/A) which implies that g(X/G) <
g(g1(Y/A)) =(Y/A) and hence A < Y/g(X/
G)=V
(2) g7 (V) =g '[Y/g(X/G)]

=X/ g7 (8(X/®))
c X/X/G=G.
Proposition(3.15):
Let g :X = Y be a sf —perfect mapping and
X is T2—space then Y is sf —T2—space.
Proof:

Let a ,b be distinct point of Y. then
g 1(@) n g 1(b) = @ and since g is sf —perfect
mapping , then g~(a),g '(b)are compact
space subsets of T,-space X. hence by
proposition (2.7) there exist disjoint open sets
Vand W such that g71(a) € Vand g 1(b) C
W. Then by proposition (3.13) there exist
sf —open sets G,H inYsuchthata€e G,,b€H,
g1 (G)c V ,g7(H)c WIt is clear that
g 1 (GNH) =@ then GNH = @. And hence Y
is sf =Tz space .

Theorem (3.16):

Let (X, T) and (Y, T) be a topological space.
A function g:X — Y is sf*-continuous if and
only if the invers image under g of every sf-
closed in Y is closed in X.

Proof:

Assume that f is sf*-continuous and let F
be any sf-closed set in Y. To show that f~1(F) is
closed set in X. Since g is sf*-continuous and
Y —F is sf-open in Y, that f"}(Y—F) =X —
f~1(F) is open in X, that is f "1 (F) is closed in X.
Conversely, let f~1(F) is closed in X for every
sf-closed set F in Y . We want to show that fis a
sf*-continuous function. Let G be any sf-open
in Y, then Y—Gis sf-closed in Y and by
hypothesis f™1(Y —G) = X —f~1(G) is closed

in X, that is f~1(G) is open in X. Hence fbe a
sf*-continuous .
Proposition (3.17):

Let g : X = Y be a sf —perfect mapping. If X
is regular space then y is sf" —regular space .
Proof:

Let y €Y and F be sf —closed subset of Y
such that y €Y /F then
by Proposition (3.16) g~1(F) is closed set in Y
and g~1(y) is non emply compact sup set in X.
clearly, g ! (y) ng }(F) =@ . Let x€ g 1(y)
so x ¢ g 1(F) since X is regular space, there
exist disjoint open set Uy. Vy in X such that
x €Uy,g Y(F) €V,  therefore g 1(y)c
Uxeg-1(y) Ux and then there is xy,..,X, €
g~'(y) such that g™*(y) € Uy, UUy, U Uy, U
o UUyg . Let U=U, VU, UU, U..UU,
and letV = ni“:lvxi ,then U,V are open sets in
X .since g7 }(F) € Vy, foreachi=1,...,n. then
g ' cNL,Vi=V, thus Uy NV, =@, for
eachi=1,..,n.

So that Uy, n(NL,Vy) =0, then U, NV=
@,i=1,..,n thus UnV = (UL, Uy)NV=
UL, (U, NV)=0UQUQBU..U0 =0,

then there exist disjoint open set U, V such that
g X (y)cU,g I(F) € V. Sinceg is sf—closed
,then by proposition (3.13),(3.14). there exists
sf —open sets W, Gin Y such thaty € W,F € G
and g'Wcu, glG®cv,gtWn
g (G)cuUnV=4¢gso thatg!(WnG)=a.
Thus WN G = @ and hence Y is sf' —regular
space .

Proposition(3.18)

If £:X->Y is sf*-continuous sf-closed
surjection mapping and X is normal space
,Then y is sf -normal space.

Proof:

Let A,B be disjoint sf — closed in y , thus
g 1(A)and g7 1(B) disjoint closed in X by
Proposition (3.16).Since X is normal space
then there exist disjoint open sets U, V such
that g l(A)cU,g(B) €V Now by
proposition (3.14) there exist sf — open sets
GH in Y such that ACG andg 1(G) <
UsothatBS H,g }(H) €V .It is clear that
g (G nglH) cUNnV=
®,sothatg™(GN H) =@. andhence GNH =
@, Theny is sf-normal space.

Theorem(3.19)
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Let X be a paracompact normal space and
g:X = Y is sf-closed sf*-continuous surjection
mapping where Y has sf—locally finite
covering , then Y is sf— paracompact sf
—normal space.

Proof:

Let {G;}en be an sf —open cover of Y ,
then { g71(Gy)}ren is open cover of X. Since X is
paracompact normal space then by
proposition(2.5) it has is locally finite closed
refinement {U,} e ,Such that Uy € g 1(Gy)
and hence g(U,) S G, ,because Y has sf—
locally finite covering then { g(Uy)}aea is sf-
locally finite sf- closed refinement of {G,}ep -
Then by proposition(3.9) Y is sf -paracompact
sf -normal space.

Lemma(3.20):

Let X be a paracompact Hausddorff space
and g:X—-Y is a sf-closed sf*-continuous
surjection mapping where Y has sf-—
locally finite covering then y is sf —
paracompact sf —normal space
Proof:

Since X is paracompact Hausddorff space
,then by proposition (2.4) X is normal space .
Hence by theorem(3.19) Y is sf —
paracompact sf —normal space
Corollary(3.21):

Let X be a perfectly zero-dimension space
and g:X—Y is a sf-closed sf*-continuous
surjection mapping where Y has sf-—
locally finite covering then y is sf —
paracompact sf —normal space.

Proof:

Since X is perfectly zero-dimension space
,then by Proposition(2.6) X is paracompact
regular and dim X=0,hence by
Proposition(2.4) X is normal space.thus by
theorem (3.19) Y is sf— paracompact sf
—normal space.

Corollary(3.22):

Let X be a paracompact Hauddorff space
and g: X — Y is a sf — perfect mapping where Y
has sf —locally finite covering then y is sf—
paracompact sf —normal sf —T>—space and
sf” — regular space
Proof:

By Lemma(3.20) Y is sf — paracompact sf
—normal space . Since X is Tz-space then by
proposition (3.15) Y is sf —T2—space and since

X is paracompact T2-space , hence X is regular
by proposition (2.4) .Then (3.17) Y is sf” —
regular space

Corollary(3.23):

Let X be a perfectly zero-dimension space
and g: X — Y is a sf — perfect mapping where Y
has sf —locally finite covering then y is sf—
paracompact sf —normal and sf” — regular
space
Proof:

since X be a perfectly zero-dimension space
, then X is paracompact regular space such that
dim X=0 by proposition(2.6) .So that X is
normal space by proposition(2.4) . Hence by
theorem (3.19) Y is sf— paracompact sf
-normal .since X is regular space then by
proposition (3.17) Y is sf” — regular and g: X =
Y is a sf — perfect mapping where Y has sf —
locally finite covering then y is sf—
paracompact sf —normal and sf” — regular
space

Theorem(3.24):

Let X be a paracompact space and f: X - Y
is sf-open sf*-continuous surjection mapping
where Y has sf-locally finite covering , then y is
sf-paracompact.

Proof:

Let {G)}yea be an sf-open covering of Y,
then { g71(G;)}en is open covering of X. Since
X is paracompact space then there is locally
finite open refinement {U, },ca ,Such that U, <
g (G for  each Aand Ujea Uy =
X,then g(Uy) € G, and hence {g(Uy)}hea is
sf- locally finite sf- open refinement of {G;}5ea
and covering of Y , then Y is sf-paracompact
space.

Corollary(3.25):

Let X be a perfectly zero dimensional space
and g:X—>Y is a sf-open sf*-continuous
surjection mapping where Y has sf-locally
finite covering , then y is sf-paracompact
space.

Proof:

Since X is perfectly zero dimensional space,
then by theorem (2.6) X is paracompact space.
Thus by theorem (3.24) Y is sf-paracompact
space.
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