



On Paracompact and Perfectly Zero Dimensional Spaces by Using Semi Feebly Open Sets

Ghazwan Farhan Shaker¹

Department of Mathematics,
College of science,
University of Al-Qadisiyah, Diwaniyah - Iraq.
ma20.post13@qu.edu.iq¹

Raad Aziz Hussain Al-Abdulla²

Department of Mathematics,
College of science,
University of Al-Qadisiyah, Diwaniyah - Iraq.
raad.hussain@qu.edu.iq²

ABSTRACT

The aim of this paper is to introduce contains definitions of paracompact , sf-paracompact , perfectly zero- dimensional spaces , sf-perfectly zero- dimensional spaces, perfect mapping and sf – perfect mapping and we will explain the relationship among them

Keywords:

paracompact , sf-paracompact , perfectly zero-dimensional , sf-perfectly zero-dimensional , perfect mapping and sf – perfect mapping

1. Introduction

The foundation of dimension theory is the "dimension function," It has the properties of $d(X)=d(Y)$ if X and Y are homeomorphic and $d(R^n) = n$ for every positive integer n . It is a function defined on the class of topological spaces where $d(X)$ is an integer or ∞ . The dimension functions taking topological spaces to the set $\{-1,0,1,\dots\}$.[1] studied paracompact perfectly zero-dimensional, perfect mapping. Actually s-paracompact s-perfectly s-zero-dimensional, perfect mapping were examined using S-open sets in [5], b-paracompact b-perfectly, zero-dimensional, b – perfect mapping , were researched using b-open sets in [6], and f-paracompact, f-perfectly zero-dimensional, f – perfect mapping , were studied using f-open sets in [3], [2]

investigated N-paracompact, N-perfectly zero-dimensional, N – perfect mapping utilizing N-open sets. We recall the definitions of paracompact ,perfectly zero-dimensional and perfect mapping [1] , and then use sf – open sets to add sf-paracompact, sf-perfectly zero-dimensional and sf-perfect mapping .Finally, certain connections between them are investigated, and some conclusions about these notions are established .

2. Preliminaries

In this section, we recall some of the basic definitions and theorems.

Definition(2.1):[1]

A topological space X is said to be paracompact if each open covering of X has locally finite open refinement.

Definition(2.2):[1]

A space X is called perfectly zero dimension space if it has base of open and closed sets and every open covering of X has disjoint open refinement.

Definition(2.3):[1]

A continuous surjection $f: X \rightarrow Y$ is said to be perfect mapping if it is closed and $f^{-1}(y)$ is a compact subset of X for each y in Y .

Proposition(2.4):[1]

Each paracompact regular space is normal and each paracompact Hausdorff space is T_4 –space.

Proposition(2.5):[1]

A topological space X is paracompact and normal space if, and only if, each open cover of X has a locally finite closed refinement.

Proposition (2.6):[1]

A space X is a perfectly zero –dimensional space if, and only if, is paracompact regular space such that $\dim X = 0$.

Proposition (2.7):[1]

Disjoint compact subset in a Hausdorff space have disjoint open neighborhoods

Definition (2.8):[4]

Let B be subset of a topological space ,then B called semi feebly open (sf –open) set in X ; if for any semi open set V such that $B \subseteq V$ then $\overline{B}^f \subseteq U$. the complement of semi feebly open is called semi feebly closed (sf-closed) that $V \subseteq B^f$ where V semi closed set in X .

Definition (2.9):[4]

Let X be a topological space, then X is said to be sf - T_1 -space if for every $x \neq y$ in X there is sf -open sets A and B such that $x \in A, y \notin A$ and $y \in B, x \notin B$.

Proposition (2.10): [4]

Let X be a conduct union topological space, then $\{x\}$ is sf – closed set $\forall x \in X$ iff X is sf - T_1 -space

Definition (2.11):[4]

A space X is called sf - T_2 -space (sf -Hausdorff space) if for each $x \neq y$ in X there exists disjoint an sf -open sets U, V such that $x \in U, y \in V$.

Definition (2.12): [4]

A topological space X is said to be sf -regular space if for each x in X and sf -closed subset A such that $x \notin A$ there exists disjoint

sets U, V such that U open set , V is sf -open sets $x \in U, A \subseteq V$.

Definition (2.13):[7]

Let X be a topological space, then X is called sf ~regular space if any x in X and sf -closed subset F such that $x \notin F$ there is disjoint sf -open sets A, B such that $x \in A, F \subseteq B$.

Proposition (2.14):[4]

Let X be a conduct union topological space, then X is sf ~normal space iff \forall sf -closed set $E \subseteq X$, and \forall sf -open set V in $X \exists E \subseteq V, \exists$ sf -open set $U \ni E \subseteq U \subseteq \overline{U}^sf \subseteq V$

Definition(2.15):

A topological space X is said to be sf ~normal space if for any disjoint sf -closed set N_1, N_2 , there exists is disjoint sets V_1, V_2 such that V_1 sf – open , V_2 open set and $N_1 \subseteq V_1, N_2 \subseteq V_2$.

Definition(2.16):[4]

Let $f: X \rightarrow Y$ be a function of a topological space (X, τ) into a topological space (Y, τ') ,then f is called an sf^* -continuous function if $f^{-1}(A)$ is an open set in X for every sf -open set A in Y .

Definition(2.17):[4]

A function $f: (X, \tau) \rightarrow (Y, \tau')$ is called sf -open function if $f(A)$ is an sf -open set in Y for every open set A in X .

Definition(2.18):[4]

f is called sf – closed function if $f(F)$ is sf -closed set in Y for every closed set F in X .

Definition (2.19): [4]

Let X be a topological space and $A \subseteq X$. An sf -neighborhood of A is every subset of X which contains an sf -open set containing A . The sf - neighborhood of a subset $\{x\}$ is said to be sf - neighborhood of the point x .

Definition (1.20): [4]

The a family $\{A_\lambda: \lambda \in \Lambda\}$ of subsets of a topological space X is said to be sf -locally finite if for each point x of X there exists an sf -neighborhood N_x of x such that the set $\{\lambda \in \Lambda: N_x \cap A_\lambda \neq \emptyset\}$ is finite.

Definition(2.21):[4]

A topological space X is said to be sf – paracompact if each sf – open covering of X , has sf – locallyfinite sf – open refinement.

Definition (2.22):[7]

A non-empty collection $\mathcal{B}_{(x)}$ of sf -neighborhoods for $x \in X$ is called sf -base for sf -

neighborhood system of x of all sf -open sets in X if and only if for every sf -neighborhood N_x of x there is $B \in \mathcal{B}_{(x)}$ such that $B \subset N_x$

3.The Main Results

Definition(3.1):

A topological space X is said to be sf^* – paracompact if each sf – open covering of X , has locallyfinite open refinement.

Definition(3.2):

sf^* –continuous surjection $f: X \rightarrow Y$ is said to be sf – perfectly mapping if and only if it is sf – closed and $f^{-1}(y)$ is a compact subset of X for each y in Y .

Definition(3.3):

A space X is called sf – perfectly zero dimension space if and only if it has sf – base of sf – open and sf – closed sets and every sf – open covering of X has disjoint sf – open refinement .

Proposition (3.4):

Let X be sf^* – paracompact subset of X , let A be a subset of X and let B be a sf – closed sub set of X which disjoint from A . If every $x \in B$ there exist disjoint sf – open sets U_x and V_x such that $A \subseteq U_x$ and $x \in V_x$, then there exists sets U, V such that U is sf – open and V is open and $A \subseteq U, B \subseteq V$.

Proof:

The sf – open covering of sf^* – paracompact space X which consist of X/B together with the sets V_x for x in B has a locally finite open refinement $\{W_\gamma\}_{\gamma \in \Gamma}$. Let $\Gamma = \{\gamma \in \Gamma: W_\gamma \subseteq V_\gamma \text{ for some } x \text{ in } B\}$, if $\gamma \in \Gamma$ then $U_x \cap W_\gamma = \emptyset$ for some x ,so that $A \cap W_\gamma = \emptyset$. Now let $U = X / \bigcup_{\gamma \in \Gamma} W_\gamma$ and $V = \bigcup W_\gamma$, then $A \subseteq U$ and $B \subseteq V$ and U, V are disjoint sets. Clearly U is sf – open set and V is open set

Theorem (3.5):

if X is sf^* – paracompact sf -Hausdorff space ,then X is sf – regular space

proof:

let $x \in X$ and B be sf -closed set in X such that $x \notin B$ then for any $y \in B$,there is disjoint sf -open set U_y and V_y where $x \in U_y, y \in V_y$ (since X is sf -Hausdorff space).Then by proposition (3.4) there is disjoint sets U and V such that U is sf -open set and V is open set and $x \in U, B \subseteq V$.therefor X is sf – regular

Proposition(3.6):

Each sf^* – paracompact sf – regular topological space is sf – normal space.

Proof:

Let X be sf^* – paracompact sf – regular and let A and F be disjoint sf – closed sets in X . Since A is sf – closed set of the sf – regular topological space X . Hence for every x in F there exist disjoint sf – open sets U_x and V_x such that $A \subseteq U_x, x \in V_x$. It follows from Proposition(3.4) that there exist disjoint sets U and V such that U sf – open set and V open set and $A \subseteq U, F \subseteq V$. Thus X is sf – normal space .

Theorem (3.7):

If each finite sf – open covering of a space X has a sf -locally finite sf -closed refinement , then X is sf – normal space .

Proof:

Let X be a topological space each finite sf -open covering which has a locally finite sf - closed refinement and Let A, B be disjoint sf - closed sets of X . The sf - open covering $\{X / A, X / B\}$ of X hast sf -locally finite sf - closed refinement F . Let U be the union of members of F disjoint from A and V be the union of the members of F disjoint from B . Then U and B are sf - closed sets and $U \cup V = X$. Thus if $G = X / U$ and $W = X / V$, then G, W are disjoint sf - open sets such that $A \subseteq G, B \subseteq W$. Hence X is sf - normal space .

Theorem(3.8):

Let $\{A_\alpha\}_{\alpha \in \Lambda}$ be a family of subsets of a space X , let $\{B_\gamma\}_{\gamma \in \Gamma}$ be sf -locally finite sf -closed covering of X such that for each γ in Γ , the set $B_\gamma \cap \{\alpha \in \Lambda : B_\gamma \cap A_\alpha = \emptyset\}$ is finite . Then There exists a sf -locally finite family $\{H_\alpha\}_{\alpha \in \Lambda}$ of sf - open sets of X such that $A_\alpha \subseteq H_\alpha$ for each α in Λ .

Proof:

For each α , let $H_\alpha = X / \bigcup \{B_\gamma / A_\alpha = \emptyset\}$. Clearly $A_\alpha \subseteq H_\alpha$, and since $\{B_\gamma\}_{\gamma \in \Gamma}$ is sf -locally finite sf -closed , then H_α is sf - open . Let X be point of X , there exists a sf -neighborhood N of x , and a finite subset K of Γ such that $N \cap B_\gamma = \emptyset$ for $\gamma \notin K$, Hence $N \subseteq \bigcup_{\gamma \in K} B_\gamma$. Now $H_\alpha \cap B_\gamma \neq \emptyset$ if and only if $A_\alpha \cap B_\gamma \neq \emptyset$. For each γ in K the set $\{\alpha \in \Lambda: A_\alpha \cap B_\gamma \neq \emptyset\}$ is

finite. Hence the set $\{\alpha \in \Lambda : N \cap H_\alpha \neq \emptyset\}$ is finite.

Theorem(3.9):

Let X be a topological space. If each sf-open cover of X has a sf-locally finite sf-closed refinement, then X is sf-paracompact sf-normal.

Proof:

Let U be an sf-open covering of X and let $\{F_\lambda\}_{\lambda \in \Lambda}$ be a sf-locally finite sf-closed refinement of U . Since $\{F_\lambda\}_{\lambda \in \Lambda}$ is sf-locally finite, each point of X has a sf-neighborhood G_x such that $\{\lambda \in \Lambda : G_x \cap F_\lambda \neq \emptyset\}$ is finite. If $\{E_\lambda\}_{\lambda \in \Gamma}$ is a sf-locally finite sf-closed refinement of the sf-open covering $\{G_x\}_{x \in X}$ of X then for each $\lambda \in \Gamma$ the set $\{\lambda \in \Lambda : E_\lambda \cap F_\lambda \neq \emptyset\}$ is finite. It follows from Theorem (3.8) that there exists a sf-locally finite family $\{V_\lambda\}_{\lambda \in \Lambda}$ of sf-open sets, such that $F_\lambda \subseteq V_\lambda$ for each λ . For each λ in Λ , let U_λ be member of U such that $F_\lambda \subseteq U_\lambda$, then $\{V_\lambda \cap U_\lambda\}_{\lambda \in \Lambda}$ is a sf-locally finite sf-open refinement of U . Thus X is sf-paracompact. So that by Theorem (3.7) X is sf-normal space.

Definition(3.10):

Let X be a topological space. The sf-covering dimension, $\text{sf-dim } X$, of X is the least integer n where each finite sf-open covering of X has an sf-open refinement of order $\leq n$ or is ∞ if no such integer exists. Thus $\text{sf-dim } X = -1$ if and only if X is empty, and $\text{sf-dim } X \leq n$ if each finite sf-open covering of X has sf-open refinement of order $\leq n$. We have $\text{sf-dim } X = n$ if it is true that $\text{sf-dim } X \leq n$ but $\text{sf-dim } X \leq n-1$ is not true. Finally $\text{sf-dim } X = \infty$ if for every integer n it is false that $\text{sf-dim } X \leq n$.

Theorem(3.11):

Let X be a topological space. If X has sf-base of sets which are both sf-open and sf-closed, then $\text{sf-dim } X = 0$.

For sf-T₁-space the convers is true

Proof:

Let X has a sf-base of sets which are both sf-open and sf-closed.

Let $\{U_i\}_{i=1}^k$ be a finite sf-open covering of X . It has sf-open refinement \mathcal{H} . If $H \in \mathcal{H}$ then $H \subseteq U_i$ for some i . Let each H in \mathcal{H} associated with one of the sets U_i containing it, and let V_i be the union of those members of \mathcal{H}

That is associated with U_i . Thus V_i is sf-open set and hence $\{V_i\}_{i=1}^k$ forms a disjoint open refinement of $\{U_i\}_{i=1}^k$. Then $\text{sf-dim } X = 0$ conversely:

Let X be a sf-T₁-space where $\text{sf-dim } X = 0$, if $x \in X$ and A is sf-open in X such that $x \in A$, then $\{A, X - \{x\}\}$ is finite sf-open cover of X . Since $\text{sf-dim } X = 0$ then there is sf-open refinement $\{W, V\}$ of order zero, where $W \cap V = \emptyset$, $W \cup V = X$, $V \subseteq A$ and $W \subseteq X - \{x\}$. Then V and W are open and closed sets in X , therefore V and W are sf-open and sf-closed such that $x \in W^c = V \subseteq A$. Thus X has sf-base of sf-open and sf-closed sets

Theorem (3.12):

If X is sf-perfectly zero dimension space then, X is sf-paracompact space and $\text{dim } X = 0$

Proof:

Let X be sf-perfectly zero dimension space then X has a base of sf-open and sf-closed sets. Hence by theorem (3.11) $\text{sf-dim } X = 0$. And since every sf-open covering has disjoint sf-open refinement, then it is sf-locally finite sf-open refinement. Thus X is sf-paracompact space.

Proposition(3.13):

If a mapping $g : X \rightarrow Y$ is sf-closed sf^* -continuous surjection, then for each $y \in Y$ and an open set G in X , where $g^{-1}(y) \subseteq G$, there exists an sf-open set V in Y such that $y \in V$ and $g^{-1}(V) \subseteq G$.

Proof:

Let $y \in Y$ and G an open in X such that $g^{-1}(y) \subseteq G$ and

let $V = Y/g(X/G)$, since G is an open set in X , then X/G is closed in X , $g(X/G)$ sf-closed in Y and hence $V = Y/g(X/G)$ is sf-open in Y .

Now to prove: (1) $y \in V$, (2) $g^{-1}(V) \subseteq G$

(1) since $g^{-1}(y) \subseteq G$, so $X/G \subseteq X/g^{-1}(y) = g^{-1}(Y/y)$ which implies that $g(X/G) \subseteq g(g^{-1}(Y/y)) = (Y/y)$ and hence $y \in Y/g(X/G) = V$

(2) $g^{-1}(V) = g^{-1}[Y/g(X/G)] = X/g^{-1}(g(X/G)) = X/X/G = G$.

$$= X/g^{-1}(g(X/G))$$

$$\subseteq X/X/G = G.$$

Proposition(3.14):

If a mapping $g : x \rightarrow y$ is sf -closed sf^* -continuous surjection, then for each $A \subseteq Y$ and each open set G in X , where $g^{-1}(A) \subseteq G$, there exists an sf -open set V in Y such that $A \subseteq V$ and $g^{-1}(V) \subseteq G$.

Proof:

Let $A \subseteq Y$ and G an open in X such that $g^{-1}(A) \subseteq G$ and

let $V = Y/g(X/G)$, since G is an open set in X , then X/G is closed in X , $g(X/G)$ sf -closed in Y and hence $V = Y/g(X/G)$ is sf -open in Y .

Now to prove: (1) $A \subseteq V$, (2) $g^{-1}(V) \subseteq G$

(1) since $g^{-1}(A) \subseteq G$, so $X/G \subseteq X/g^{-1}(A) = g^{-1}(Y/A)$ which implies that $g(X/G) \subseteq g(g^{-1}(Y/A)) = (Y/A)$ and hence $A \subseteq Y/g(X/G) = V$

$$\begin{aligned} (2) g^{-1}(V) &= g^{-1}[Y/g(X/G)] \\ &= X/g^{-1}(g(X/G)) \\ &\subseteq X/X/G = G. \end{aligned}$$

Proposition(3.15):

Let $g : X \rightarrow Y$ be a sf -perfect mapping and X is T_2 -space then Y is sf - T_2 -space.

Proof:

Let a, b be distinct point of Y . then $g^{-1}(a) \cap g^{-1}(b) = \emptyset$ and since g is sf -perfect mapping, then $g^{-1}(a), g^{-1}(b)$ are compact space subsets of T_2 -space X . hence by proposition (2.7) there exist disjoint open sets V and W such that $g^{-1}(a) \subseteq V$ and $g^{-1}(b) \subseteq W$. Then by proposition (3.13) there exist sf -open sets G, H in Y such that $a \in G, b \in H$, $g^{-1}(G) \subseteq V, g^{-1}(H) \subseteq W$. It is clear that $g^{-1}(G \cap H) = \emptyset$ then $G \cap H = \emptyset$. And hence Y is sf - T_2 space.

Theorem (3.16):

Let (X, τ) and (Y, τ') be a topological space. A function $g : X \rightarrow Y$ is sf^* -continuous if and only if the invers image under g of every sf -closed in Y is closed in X .

Proof:

Assume that f is sf^* -continuous and let F be any sf -closed set in Y . To show that $f^{-1}(F)$ is closed set in X . Since g is sf^* -continuous and $Y - F$ is sf -open in Y , that $f^{-1}(Y - F) = X - f^{-1}(F)$ is open in X , that is $f^{-1}(F)$ is closed in X . Conversely, let $f^{-1}(F)$ is closed in X for every sf -closed set F in Y . We want to show that f is a sf^* -continuous function. Let G be any sf -open in Y , then $Y - G$ is sf -closed in Y and by hypothesis $f^{-1}(Y - G) = X - f^{-1}(G)$ is closed

in X , that is $f^{-1}(G)$ is open in X . Hence f be a sf^* -continuous.

Proposition (3.17):

Let $g : X \rightarrow Y$ be a sf -perfect mapping. If X is regular space then Y is sf^* -regular space.

Proof:

Let $y \in Y$ and F be sf -closed subset of Y such that $y \in Y / F$ then by Proposition (3.16) $g^{-1}(F)$ is closed set in Y and $g^{-1}(y)$ is non empty compact sup set in X . clearly, $g^{-1}(y) \cap g^{-1}(F) = \emptyset$. Let $x \in g^{-1}(y)$ so $x \notin g^{-1}(F)$ since X is regular space, there exist disjoint open set U_x, V_x in X such that $x \in U_x, g^{-1}(F) \subseteq V_x$, therefore $g^{-1}(y) \subseteq \bigcup_{x \in g^{-1}(y)} U_x$ and then there is $x_1, \dots, x_n \in g^{-1}(y)$ such that $g^{-1}(y) \subseteq U_{x_1} \cup U_{x_2} \cup U_{x_3} \cup \dots \cup U_{x_n}$. Let $U = U_{x_1} \cup U_{x_2} \cup U_{x_3} \cup \dots \cup U_{x_n}$ and let $V = \bigcap_{i=1}^n V_{x_i}$, then U, V are open sets in X . since $g^{-1}(F) \subseteq V_{x_i}$ for each $i = 1, \dots, n$. then $g^{-1}(F) \subseteq \bigcap_{i=1}^n V_i = V$, thus $U_{x_i} \cap V_{x_i} = \emptyset$, for each $i = 1, \dots, n$.

So that $U_{x_i} \cap (\bigcap_{i=1}^n V_{x_i}) = \emptyset$, then $U_{x_i} \cap V = \emptyset, i = 1, \dots, n$ thus $U \cap V = (U_{x_1} \cup U_{x_2} \cup \dots \cup U_{x_n}) \cap V = U_{x_1} \cap (U_{x_2} \cap \dots \cap U_{x_n}) = \emptyset \cup \emptyset \cup \dots \cup \emptyset = \emptyset$, then there exist disjoint open set U, V such that $g^{-1}(y) \subseteq U, g^{-1}(F) \subseteq V$. Since g is sf -closed, then by proposition (3.13), (3.14). there exists sf -open sets W, G in Y such that $y \in W, F \subseteq G$ and $g^{-1}(W) \subseteq U, g^{-1}(G) \subseteq V, g^{-1}(W) \cap g^{-1}(G) \subseteq U \cap V = \emptyset$, so that $g^{-1}(W \cap G) = \emptyset$. Thus $W \cap G = \emptyset$ and hence Y is sf^* -regular space.

Proposition(3.18):

If $f : X \rightarrow Y$ is sf^* -continuous sf -closed surjection mapping and X is normal space, Then Y is sf -normal space.

Proof:

Let A, B be disjoint sf -closed in Y , thus $g^{-1}(A)$ and $g^{-1}(B)$ disjoint closed in X by Proposition (3.16). Since X is normal space then there exist disjoint open sets U, V such that $g^{-1}(A) \subseteq U, g^{-1}(B) \subseteq V$. Now by proposition (3.14) there exist sf -open sets G, H in Y such that $A \subseteq G$ and $g^{-1}(G) \subseteq U$ so that $B \subseteq H, g^{-1}(H) \subseteq V$. It is clear that $g^{-1}(G) \cap g^{-1}(H) \subseteq U \cap V = \emptyset$, so that $g^{-1}(G \cap H) = \emptyset$. and hence $G \cap H = \emptyset$, Then Y is sf -normal space.

Theorem(3.19):

Let X be a paracompact normal space and $g: X \rightarrow Y$ is sf -closed sf^* -continuous surjection mapping where Y has sf -locally finite covering, then Y is sf -paracompact sf -normal space.

Proof:

Let $\{G_\lambda\}_{\lambda \in \Lambda}$ be an sf -open cover of Y , then $\{g^{-1}(G_\lambda)\}_{\lambda \in \Lambda}$ is open cover of X . Since X is paracompact normal space then by proposition(2.5) it has is locally finite closed refinement $\{U_\lambda\}_{\lambda \in \Lambda}$, Such that $U_\lambda \subseteq g^{-1}(G_\lambda)$ and hence $g(U_\lambda) \subseteq G_\lambda$, because Y has sf -locally finite covering then $\{g(U_\lambda)\}_{\lambda \in \Lambda}$ is sf -locally finite sf -closed refinement of $\{G_\lambda\}_{\lambda \in \Lambda}$. Then by proposition(3.9) Y is sf -paracompact sf -normal space.

Lemma(3.20):

Let X be a paracompact Hausdorff space and $g: X \rightarrow Y$ is a sf -closed sf^* -continuous surjection mapping where Y has sf -locally finite covering then Y is sf -paracompact sf -normal space

Proof:

Since X is paracompact Hausdorff space, then by proposition (2.4) X is normal space. Hence by theorem(3.19) Y is sf -paracompact sf -normal space

Corollary(3.21):

Let X be a perfectly zero-dimension space and $g: X \rightarrow Y$ is a sf -closed sf^* -continuous surjection mapping where Y has sf -locally finite covering then Y is sf -paracompact sf -normal space.

Proof:

Since X is perfectly zero-dimension space, then by Proposition(2.6) X is paracompact regular and $\dim X=0$, hence by Proposition(2.4) X is normal space. thus by theorem (3.19) Y is sf -paracompact sf -normal space.

Corollary(3.22):

Let X be a paracompact Hausdorff space and $g: X \rightarrow Y$ is a sf -perfect mapping where Y has sf -locally finite covering then Y is sf -paracompact sf -normal sf - T_2 -space and sf -regular space

Proof:

By Lemma(3.20) Y is sf -paracompact sf -normal space. Since X is T_2 -space then by proposition (3.15) Y is sf - T_2 -space and since

X is paracompact T_2 -space, hence X is regular by proposition (2.4). Then (3.17) Y is sf -regular space

Corollary(3.23):

Let X be a perfectly zero-dimension space and $g: X \rightarrow Y$ is a sf -perfect mapping where Y has sf -locally finite covering then Y is sf -paracompact sf -normal and sf -regular space

Proof:

since X be a perfectly zero-dimension space, then X is paracompact regular space such that $\dim X=0$ by proposition(2.6). So that X is normal space by proposition(2.4). Hence by theorem (3.19) Y is sf -paracompact sf -normal. since X is regular space then by proposition (3.17) Y is sf -regular and $g: X \rightarrow Y$ is a sf -perfect mapping where Y has sf -locally finite covering then Y is sf -paracompact sf -normal and sf -regular space

Theorem(3.24):

Let X be a paracompact space and $f: X \rightarrow Y$ is sf -open sf^* -continuous surjection mapping where Y has sf -locally finite covering, then Y is sf -paracompact.

Proof:

Let $\{G_\lambda\}_{\lambda \in \Lambda}$ be an sf -open covering of Y , then $\{g^{-1}(G_\lambda)\}_{\lambda \in \Lambda}$ is open covering of X . Since X is paracompact space then there is locally finite open refinement $\{U_\lambda\}_{\lambda \in \Lambda}$, Such that $U_\lambda \subseteq g^{-1}(G_\lambda)$ for each λ and $\bigcup_{\lambda \in \Lambda} U_\lambda = X$, then $g(U_\lambda) \subseteq G_\lambda$ and hence $\{g(U_\lambda)\}_{\lambda \in \Lambda}$ is sf -locally finite sf -open refinement of $\{G_\lambda\}_{\lambda \in \Lambda}$ and covering of Y , then Y is sf -paracompact space.

Corollary(3.25):

Let X be a perfectly zero dimensional space and $g: X \rightarrow Y$ is a sf -open sf^* -continuous surjection mapping where Y has sf -locally finite covering, then Y is sf -paracompact space.

Proof:

Since X is perfectly zero dimensional space, then by theorem (2.6) X is paracompact space. Thus by theorem (3.24) Y is sf -paracompact space.

References

- [1] A.P.Pears "On Dimension Theory of General Spaces" Cambridge university press, (1975).
- [2] E. R. Ali "On Dimension Theory by Using N-Open Sets", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).
- [3] N.H.Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).
- [4] R. A. H. Al-Abdulla and O. R.M. Al-Gharani "On paracompactness Via sf-open sets " University of Al-Qadissiya , college. of Mathematics and . computer science , (2020) .
- [5] R.A.H.AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).
- [6] S.K.Gaber "On b-Dimension Theory" M.Sc. thesis university of Al-Qadissiya , college of mathematics and computer science, (2010).
- [7] Z.N.K. Hussain " On Countable Chain Condition by using sf-Open Sets " , M .Sc thesis University of Al-Qadissiya , college of science , (2021) .