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1. Introduction 
In recent times, many researchers [5,6] have an 
interest in solving a singularly perturbed 
second order integro-differential-difference 
equation with one interval condition involving 
the left extremum of the boundary and another 
stipulation at the correct extreme of the 
boundary. The singular perturbation parameter 
and therefore the delay parameter are selected 
as small as possible. Such problems play a 
crucial role in an exceedingly form of physical 

problems like microscale heat transfer, 
diffusion in polymers, control of chaotic 
systems, so on (relevant references quoted in 
[5]). within the present paper, we formulate a 
special problem, namely, an integro-
differential-difference equation with 
differential order one and a difference of order 
two with only interval conditions. this could be 
done by considering the subsequent integro-
differential-difference equation of order (2,2): 

𝜀𝑦′′(𝑡) = 𝑦′(𝑡) − [ℎ(𝑡) + 𝐻1(𝑦(𝑡 − 𝜔), 𝑦′(𝑡 − 𝜔)) + 𝐻2(𝑦(𝑡 − 2𝜔), 𝑦′(𝑡 − 2𝜔)) + ∫  
𝑡

0
 𝐺(𝑦(𝑡1 −

2𝜔))𝑑𝑡1] 

We may sometimes allow 𝐺 to equals zero. Then 
it will be a differential-difference equation of 
order(2,2). Further, if we set 𝜀 = 0, then it 

becomes differential-difference equation of 
order (1,2). Since it is a first order differential-
difference equation, we avoid the boundary 
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condition at the right extreme and work with 
only one interval condition: 

𝑦(𝑡) = 𝑘, 𝑡 ∈ (0,2𝜔). 
Again, only interval condition is used for 
integro-differential-difference equation of 
order (1,2) 
In the present article, we apply the Laplace 
decomposition method for such problems. The 
method is motivated by the Adomian 
decomposition method for solving differential 
equations [3,4,8,7,9,11], Laplace transform 
method for solving differential difference 
equations [10], and the Laplace decomposition 
method as well as Laplace decomposition with 
Pade approximation for solving 
integrodifferential equations [2]. It is shown in 

[1] that the method gives exact solutions for 
linear problems and suitable approximate 
solutions for nonlinear problems related to 
integrodifferential difference equations with 
both differential and difference of order one as 
well as one interval condition. The aim of this 
research is to formulate the interval-valued 
problem (2.1) and describe the Laplace 
decomposition method. Then we explain the 
method with three different problems. Finally, 
we give concluding remarks about the 
suitability of the method for both linear and 
nonlinear problems. 

 

2. Formulation and Description of The 
Method 
Let us consider the following integro-
differential-difference equation with 

differential order one and difference of order 
two: 

𝑢′(𝑡) = 𝑓(𝑡) + 𝐹1(𝑢(𝑡 − 𝜔), 𝑢′(𝑡 − 𝜔)) + 𝐹2(𝑢(𝑡 − 2𝜔), 𝑢′(𝑡 − 2𝜔)) + ∫  
𝑡

0

 𝐺(𝑦(𝑡1 − 2𝜔))𝑑𝑡1, 𝑡

> 2𝜔(2.1) 
and the following interval condition: 

𝑢(𝑡) = 𝑘, 0 ≤ 𝑡 ≤ 2𝜔(2.2) 
In the above equations (2.1) and (2.2), 𝜔 > 0  
and 𝑘 are known constants, the functions 
𝑓, 𝐹1, 𝐹2 and 𝐺 are either linear or nonlinear 
functions depending upon the actual problem 
discussed. so as to use Laplace decomposition 

method, further, they're selected in such the 
simplest way that, they'll be approximated by 
Adomian polynomial suitable for the iterative 
computation of Laplace transform still as 
inverse Laplace transform for 𝑢(𝑡). 

First, we see that 

∫
0

2𝜔
 𝑢′(𝑡)𝑒−𝑝𝑡𝑑𝑡 = 0 as a result, we get ∫

2𝜔

∞
 𝑢′(𝑡)𝑒−p𝑡𝑑𝑡 = 𝐿{𝑢′(𝑡)} 

Hence multiply both sides of (2.1) by 𝑒−𝑝𝑡 and integrate between 2𝜔 and ∞ to get 

∫  
∞

2𝜔

 𝑢′(𝑡)𝑒−𝑝𝑡𝑑𝑡

= ∫  
∞

2𝜔

𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡 +∫  
∞

2𝜔

 𝐹1(𝑢(𝑡 − 𝜔), 𝑢′(𝑡 − 𝜔))𝑒−𝑝𝑡𝑑𝑡

+ ∫  
∞

2𝜔

 𝐹2(𝑢(𝑡 − 2𝜔), 𝑢′(𝑡 − 2𝜔))𝑒−𝑝𝑡𝑑𝑡 + ∫  
∞

2𝜔

  𝑒−𝑝𝑡∫  
𝑡

0

 𝐺(𝑢(𝑡1 − 2𝜔))𝑑𝑡1𝑑𝑡 

If we apply a suitable shifting of variables to get 

𝐿{𝑢′(𝑡)} = 𝑒−2𝜔𝑝𝐿{𝑓(𝑡 + 2𝜔)} + 𝑒−𝜔𝑝𝐿{𝐹1(𝑢(𝑡), 𝑢
′(𝑡))} −

𝜆𝑒−𝜔𝑝

𝑝
(1 − 𝑒−𝜔𝑝)

+ 𝑒−2𝜔𝑝𝐿{𝐹2(𝑢(𝑡), 𝑢
′(𝑡))} + 𝑒−2𝜔𝑝𝐿 {∫  

𝑡

0

 𝐺(𝑢(𝑡1))𝑑𝑡1} 

where 𝜆 = 𝐹1(𝑘, 0) and see that, ∫
2𝜔

𝑡+2𝜔
 𝐺(𝑢(𝑡1 − 2𝜔))𝑑𝑡1 = ∫

0

𝑡
 𝐺(𝑢(𝑡1))𝑑𝑡1. 

Finally, we obtain 



7667-2795ISSN:         2022                                                                                                                          August| 9Volume  

 

                            Eurasian Journal of Physics, Chemistry and Mathematics 
www.geniusjournals.org 

P a g e  | 3 

𝐿{𝑢(𝑡)} =
𝑘

𝑝
−
𝜆𝑒−𝜔𝑝

𝑝2
+
𝜆𝑒−2𝜔𝑝

𝑝2
+
𝑒−2𝜔𝑝

𝑝
𝐿{𝑓(𝑡 + 2𝜔)} +

𝑒−𝜔𝑝

𝑝
𝐿{𝐹1(𝑢(𝑡), 𝑢

′(𝑡))}

+
𝑒−2𝜔𝑝

𝑝
𝐿{𝐹2(𝑢(𝑡), 𝑢

′(𝑡))} +
𝑒−2𝜔𝑝

𝑝2
𝐿{𝐺(𝑢(𝑡))}(2.3) 

In this research, we look forward to the following kind of decomposition for the series solution 𝑢(𝑡): 

𝑢(𝑡) = ∑  

∞

𝑛=0

𝑢𝑛(𝑡 − 𝑛𝜔)𝑒(𝑡−𝑛𝜔)(2.4) 

where 𝑒𝑡 is a unit step function, given as 
𝑒(𝑡−c) = 0,𝑡 < 𝑐 
𝑒(𝑡−c) = 1,𝑡 > 𝑐 

By using the relation (2.4), 𝑢(𝑡) takes the following form in each of the following intervals: 

𝑢(𝑡) = ∑  

𝑁

𝑛=0

 𝑢𝑛(𝑡 − 𝑛𝜔),𝑁𝜔 ≤ 𝑡 ≤ (𝑁 + 1)𝜔,𝑁 = 0,1,2, …(2.5) 

And by applying Laplace transform, we have the following Laplace decompositions: 

𝐿{𝑢(𝑡)} = ∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}(2.6) 

𝐿{𝐹1(𝑢(𝑡), 𝑢
′(𝑡))} = ∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐴𝑛(𝑡)}(2.7) 

𝐿{𝐻2(𝑢(𝑡), 𝑢
′(𝑡))} = ∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐵𝑛(𝑡)}(2.8) 

𝐿{𝐺(𝑢(𝑡))} = ∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐶𝑛(𝑡)}(2.9) 

In the equation (2.7), 𝐴𝑛′𝑠 are the 𝑛𝑡ℎ Adomian Polynomials [2] of 𝐹1(𝑢(𝑡), 𝑢
′(𝑡)) as given below: 

𝐴0(𝑡) = 𝐹1(𝑥, 𝑦) |(𝑢0(𝑡),𝑢´0(𝑡))
 

𝐴1(𝑡) =
𝜕𝐹1
𝜕𝑥

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢1(𝑡) +
𝜕𝐹1
𝜕𝑦

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢′1(𝑡) 

𝐴2(𝑡) =
𝜕𝐹1
𝜕𝑥

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢2(𝑡) +
𝜕𝐹1
𝜕𝑦

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢′2(𝑡) 

+
1

2!
[
𝜕2𝐹1
𝜕𝑥2

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢1
2(𝑡) + 2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

|(𝑢0(𝑡),𝑢´0(𝑡))𝑢1(𝑡)𝑢′1(𝑡) 

+
𝜕2𝐹1
𝜕𝑦2

|(𝑢0(𝑡),𝑢´0(𝑡)
(𝑢1

′ (𝑡))2] 

and so on. In eqaution (2.8), 𝐵𝑛
′𝑠 are the 𝑛𝑡ℎ Adomian Polynomials [2] of 𝐹2(𝑢(𝑡), 𝑢

′(𝑡)). Let us note 
that 𝐵0, 𝐵1, 𝐵2, … are same as 𝐴0, 𝐴1, 𝐴2, … except for the fact that 𝐹1 should be replaced by 𝐹2 throughout. 
In (2.9), 𝐶𝑛

′𝑠 are the 𝑛th  Adomian Polynomials [3] of 𝐺(𝑢(𝑡)) as given below: 
𝐶0(𝑡) = 𝐺(𝑢0(𝑡))

𝐶1(𝑡) = 𝐺′((𝑢0(𝑡)))𝑢1(𝑡)

𝐶2(𝑡) = 𝐺′((𝑢0(𝑡)))𝑢2(𝑡) +
1

2!
𝐺′′((𝑢0(𝑡)))𝑢1

2(𝑡)

 

and so on. Applying the Laplace decompositions (2.6) − (2.9) and substitute in (2.3), we get 
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∑ 

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}

=
𝑘

𝑝
−
𝜆𝑒−𝜔𝑝

𝑝2
+
𝜆𝑒−2𝜔𝑝

𝑝2
+
𝑒−2𝜔𝑝

𝑝
𝐿{𝑓(𝑡 + 2𝜔)} +

𝑒−𝜔𝑝

𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐴𝑛(𝑡)}

+
𝑒−2𝜔𝑝

𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐵𝑛(𝑡)} +
𝑒−2𝜔𝑝

𝑝2
∑ 

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐶𝑛(𝑡)}(2.10) 

We may compute 𝐿{𝑢𝑛(𝑡)} iteratively as follows: 

𝐿{𝑢0(𝑡)} =
𝑘

𝑝
 

𝐿{𝑢1(𝑡)} = −
𝑘

𝑝2
+
1

𝑝
𝐿{𝐴0(𝑡)} 

𝐿{𝑢2(𝑡)} =
𝜆

𝑝2
+
1

𝑝
𝐿{𝑓(𝑡 + 2𝜔)} +

1

𝑝
𝐿{𝐴1(𝑡)} +

1

𝑝
𝐿{𝐵0(𝑡)} +

1

𝑝2
𝐿{𝐶0(𝑡)} 

⋮ 

𝐿{𝑢𝑛+1(𝑡)} =
1

𝑝
𝐿{𝐴𝑛(𝑡)} +

1

𝑝
𝐿{𝐵𝑛−1(𝑡)} +

1

𝑝2
𝐿{𝐶𝑛−1(𝑡)}, 𝑛 = 2,3,4, … 

We can obtain the approximate or exact solutions by applying inverse Laplace transform. 
3. Explanatory examples 
In this section, we work on 3 illustrative examples to explain the procedure of the method. 
Example 3.1: Let we have the following linear differential-difference equation with order (1,2): 

2𝑢′(𝑡) − 𝑢(𝑡 − 𝜔) = 𝑢(𝑡 − 2𝜔), 𝑡 > 2𝜔(3.1) 
with a condition 

𝑢(𝑡) = 1, 0 ≤ 𝑡 ≤ 2𝜔(3.2) 
By applying the steps of the method for the equations (3.1) and (3.2), we have directly: 

𝐿{𝑢(𝑡)} =
1

𝑝
−
𝑒−𝜔𝑝

2𝑝2
+
𝑒−2𝜔𝑝

2𝑝2
+
𝑒−𝜔𝑝

2𝑝
𝐿{𝑢(𝑡)} +

𝑒−2𝜔𝑝

2𝑝
𝐿{𝑢(𝑡)}(3.3) 

Now, apply the equation (2.6) in (3.3), we have 

∑ 

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}

=
1

𝑝
−
𝑒−𝜔𝑝

2𝑝2
+
𝑒−2𝜔𝑝

2𝑝2
+
𝑒−𝜔𝑝

2𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}

+
𝑒−2𝜔𝑝

2𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}(3.4) 

By Equating the terms with coefficient of 𝑒−𝑛𝜔𝑝 on both sides of (3.4) we obtain 𝐿{𝑢𝑛(𝑡)}.  
Taking the inverse Laplace transform will result 𝑢𝑛(𝑡): 

𝑢0(𝑡) = 1; 𝑢1(𝑡) = 0 
And for 𝑛 ≥ 2 we get, 

𝑢𝑛(𝑡) = ∑  

⌊
𝑛
2
⌋

𝑟=1

  (
𝑛 − 𝑟 − 1
𝑟 − 1

)
𝑡𝑛−𝑟

2𝑛−𝑟−1 ⋅ (𝑛 − 𝑟)!
, 𝑛 ≥ 2(3.5) 

Now, by using the equation (3.5) we have, 
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𝑢(𝑡) = 1 +∑  

∞

𝑛=2

∑ 

⌊
𝑛
2
⌋

𝑟=1

(
𝑛 − 𝑟 − 1
𝑟 − 1

)
(𝑡 − 𝑛𝜔)𝑛−𝑟𝑒(𝑡−𝑛𝜔)

2𝑛−𝑟−1 ⋅ (𝑛 − 𝑟)!
, 𝑡 > 0(3.6) 

Furthermore, through an equation (3.6) we can get the exact solution of (3.1) in the interval wise: 

𝑢(𝑡) = 1 +∑  

𝑁

𝑛=2

 ∑  

⌊
𝑛
2
⌋

𝑟=1

  (
𝑛 − 𝑟 − 1
𝑟 − 1

)
(𝑡 − 𝑛𝜔)𝑛−𝑟

2𝑛−𝑟−1 ⋅ (𝑛 − 𝑟)!
, 𝑁𝜔 ≤ 𝑡 ≤ (𝑁 + 1)𝜔

𝑁 = 2,3,4, … .

 

When 𝜔 → 0, the equation (3.1) becomes an ordinary first order differential equation and when we use 
(3.6), the solution becomes 

𝑢(𝑡) = 1 +∑  

∞

𝑛=1

  [(
𝑛 − 1
0

) + (
𝑛 − 1
0

) +⋯+ (
𝑛 − 1
𝑛 − 1

)]
𝑡𝑛

2𝑛−1 ⋅ 𝑛!
 

= 1 +∑  

∞

𝑛=1

 
𝑡𝑛

𝑛!
= 𝑒𝑡 

Example 3.2: Let the following nonlinear differential-difference equation  
𝑢′(𝑡) = 2 − 𝑢(𝑡 − 𝜔) + 𝑎𝑢3(𝑡 − 2𝜔), 𝑡 > 2𝜔(3.7) 

with  
𝑢(𝑡) = 1, 0 ≤ 𝑡 ≤ 2𝜔(3.8) 

By applying the method on above equation, we obtain 

𝐿{𝑢(𝑡)} =
1

𝑝
+
𝑒−𝜔𝑝

𝑝2
+
𝑒−2𝜔𝑝

𝑝2
−
𝑒−𝜔𝑝

𝑝
𝐿{𝑢(𝑡)} − 𝑎

𝑒−2𝜔𝑝

𝑝
𝐿{𝑢3(𝑡)}. 

Now, we will compute Laplace decomposition series 

𝐿{𝑢3(𝑡)} = ∑  

∞

𝑛=0

𝑒−𝑛𝜔𝑝𝐿{𝐴𝑛(𝑡)} 

where 𝐴𝑖
′𝑠 are Adomian Polynomials, 

𝐴0(𝑡) = 𝑢0
3(𝑡)

𝐴1(𝑡) = 3𝑢0
2(𝑡)𝑢1(𝑡)

𝐴2(𝑡) = 3𝑢0
2(𝑡)𝑢2(𝑡) + 3𝑢0(𝑡)𝑢1

2(𝑡)

𝐴3(𝑡) = 3𝑢0
2(𝑡)𝑢3(𝑡) + 3𝑢0(𝑡)𝑢1(𝑡)𝑢2(𝑡) + 𝑢1

3(𝑡) and so on. 

 

By using the equations (2.6) and (3.10) in the equation (3.9), we have 

∑ 

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}

=
1

𝑝
+
𝑒−𝜔𝑝

𝑝2
+
𝑒−2𝜔𝑝

𝑝2
−
𝑒−𝜔𝑝

𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)}

− 𝑎
𝑒−2𝜔𝑝

𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐴𝑛(𝑡)}(3.11) 

Simply, by equating the terms with coefficient of 𝑒−𝑛𝜔𝑝 on both sides of the equation (3.11) we obtain 
𝐿{𝑢𝑛(𝑡)}. By taking the inverse Laplace transform will lead us to 𝑢𝑛(𝑡). 
For 4𝜔 ≤ 𝑡 ≤ 5𝜔, the approximate solution is 

𝑢(𝑡) = ∑  

4

𝑛=0

 𝑢𝑛(𝑡 − 𝑛𝜔) 
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= 1 + (1 − 𝑎)(𝑡 − 2𝜔) − (1 − 𝑎)
(𝑡 − 3𝜔)2

2!
 

+(1 − 𝑎)
(𝑡 − 4𝜔)3

3!
+ 3𝑎(1 − 𝑎)

(𝑡 − 4𝜔)2

2!
(3.12) 

When 𝜔 → 0 and 𝑎 = 0, the equation (3.7) becomes an ordinary linear first order differential equation, 
𝑢′(𝑡) = 2 − 𝑢(𝑡)(3.13) 

and the exact solution for it will be given by 2 − 𝑒−𝑡. 
Applying Laplace decomposition method to the equation (3.13), we have 

𝑢𝑛(𝑡) = (−1)𝑛
𝑡𝑛−1

(𝑛 − 1)!
, 𝑛 ≥ 2 

Hence, 

𝑢(𝑡) = 1 +∑  

∞

𝑛=2

 𝑢𝑛(𝑡) 

= 1 + 𝑡 −
𝑡2

2!
+
𝑡3

3!
−
𝑡4

4!
+ ⋯+ (−1)𝑛

𝑡𝑛−1

(𝑛 − 1)!
+ ⋯ 

= 2 − 𝑒−𝑡 
Example 3.3: Suppose the following integrodifferential difference equation with differential order one 
and difference of order two. 

𝑢′(𝑡) = 𝑢(𝑡 − 𝜔)𝑢′(𝑡 − 𝜔) + ∫  
𝑡

0

sin(𝑢(𝑡1 − 2𝜔))𝑑𝑡1 , 𝑡 > 2𝜔(3.14) 

with an interval condition: 
𝑢(𝑡) = 1, 0 ≤ 𝑡 ≤ 2𝜔(3.15) 

Following the steps of the method for the equations (3.14) − (3.15), we directly get 

𝐿{𝑢(𝑡)} =
1

𝑝
+
𝑒−𝜔𝑝

𝑝
𝐿{𝑢(𝑡)𝑢′(𝑡)} +

𝑒−2𝜔𝑝

𝑝2
𝐿{sin(𝑢(𝑡))}(3.16) 

The next step is to evaluate the next Laplace decomposition series for 𝐿{𝑢(𝑡)𝑢′(𝑡)} and 𝐿{sin(𝑢(𝑡))}: 

𝐿{𝑢(𝑡)𝑢′(𝑡)} = ∑  

∞

𝑛=0

𝑒−𝑛𝜔𝑝𝐿{𝐵𝑛(𝑡)} 

where 𝐵𝑖
′𝑠 are Adomian Polynomials, 

𝐵𝑛(𝑡) = 𝑢0(𝑡)𝑢𝑛
′ (𝑡) + 𝑢1(𝑡)𝑢𝑛−1

′ (𝑡) + ⋯+ 𝑢𝑛(𝑡)𝑢0
′ (𝑡), for 𝑛 ≥ 0 

And  

𝐿{sin(𝑢(𝑡))} = ∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐶𝑛(𝑡)}(3.18) 

where 𝐶𝑖
′𝑠 are Adomian Polynomials given below, 

𝐶0(𝑡) = sin(𝑢0(𝑡))

𝐶1(𝑡) = 𝑢1(𝑡)cos(𝑢0(𝑡))

𝐶2(𝑡) = 𝑢2(𝑡)cos(𝑢0(𝑡)) −
1

2
𝑢1
2(𝑡)sin(𝑢0(𝑡))

𝐶3(𝑡) = 𝑢3(𝑡)cos(𝑢0(𝑡)) − 𝑢1(𝑡)𝑢2(𝑡)sin(𝑢0(𝑡)) −
1

6
𝑢1
3(𝑡)cos(𝑢0(𝑡))

 

and so on. 
Now, by using the equations (2.6), (3.17) and (3.18) and substituting in the equation (3.16), we obtain, 

∑ 

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝑢𝑛(𝑡)} =
1

𝑝
+
𝑒−𝜔𝑝

𝑝
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐵𝑛(𝑡)} +
𝑒−2𝜔𝑝

𝑝2
∑  

∞

𝑛=0

  𝑒−𝑛𝜔𝑝𝐿{𝐶𝑛(𝑡)} 

By equally the terms with the coefficient of 𝑒−𝑛𝜔𝑝 on both sides of an equation (3.19) we get 𝐿{𝑢𝑛(𝑡)}.  
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Take inverse Laplace transform will result 𝑢𝑛(𝑡). For 4𝜔 ≤ 𝑡 ≤ 5𝜔, the approximate solution is 

𝑢(𝑡) ≈ ∑  

4

𝑛=0

 𝑢𝑛(𝑡 − 𝑛𝜔) 

= 1 + sin(1)
(𝑡 − 2𝜔)2

2!
+ sin(1)

(𝑡 − 3𝜔)2

2!
 

+sin(1)
(𝑡 − 4𝜔)2

2!
+ sin(1)cos(1)

(𝑡 − 4𝜔)4

4!
 

In this procedure, we can continue and workout higher level approximate solutions. 
 
4. Conclusion 
The above three illustrative examples clearly 
demonstrate the fact that Laplace 
decomposition method transforms a 
differential-difference equation or a integro-
differential-difference equation with 
differential order one and difference order two 
with a given interval condition into an algebraic 
equation suitable for applying inverse Laplace 
transformation technique. Finally, this results 
into a series expression involving unit step 
functions which represents the solution. It is 
interesting to note that one can get exact 
solution in the case of a linear problem. 
However, in the case of a nonlinear problem, 
one can compute iteratively approximate 
solutions without any hassles. If the nonlinear 
problem has a closed form solution, then after 
certain stage, every iteration leads to the same 
exact solution. Hence this method is suitable for 
both linear and nonlinear problems. 
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