Volume 8 | July 2022 ISSN: 2795-7667

M - Projective Curvature Tensor of Nearly Kahler Manifold

Ali Khalaf Ali ¹	^{1,2} Department of Mathematics, College of Education for Pure
	Sciences, Tikrit University, Tikrit, Iraq- University of Tikrit, Iraq
	Salahaddin
A. A. Shihab ²	^{1,2} Department of Mathematics, College of Education for Pure
	Sciences, Tikrit University, Tikrit, Iraq- University of Tikrit, Iraq
	Salahaddin
	Shihabdraliabd@tu.edu.iq
Dr.prof .Ali Abdul Al Majeed	ali.abd82@yahoo.com

The geometrical characteristics of one of the NK ("Nearly Kahler") manifold structures are provided by M, where M represents for the Nearly kahler manifold, and the M-**Projective Curvature Tensor**

In this work, we study the properties of a virtually kahler manifold. Important findings of the study include the following: - It was shown that this tensor had the standard properties of Riemannian curvature symmetry. Projective tensor (M- tensor) components to be calculated for the NK manifold. Links between this manifold's tensor components were created after certain observations were made.

For these components M_0 , M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 , of basically kahler is haler manifold, provide a neutral equation.

Keywords:

M-Projective Tensor, Nearly kahler manifold.

Introduction

In essence, the Kahler structure is one of differential geometry's most recognizable works, and the Riemannien structures feature a number of conformal transformations that are crucial study topics in "differential geometry" since they maintain the smoothness of **Projective** harmonic functions. curvature tensor M is described by R. N. Singh and Shravan K. Panday [6].

where R and g, respectively, represent the Ricci tensor and the so-called Riemannian curvature tensor.

1975. Russian researcher Kirichenko developed a new method for examining the classes of NK ("Nearly ")manifolds, based on M with structure group

being the unitary group U.(n). These spaces are referred to as adjoined G-structure spaces. Kirichenko used adjoined G-structure space to obtain two tensors from the NK ("Nearly Kahler")-manifold: the structure and virtual tensors [4]. In establishing the NK ("Nearly Kahler ")manifold structure group, he was supported by these tensors. Banaru [1] defined the sixteen types of Nearly Kahler manifolds in 1993 using the structure and Virtual tensors, also known as Kirichenko's tensors [5].

Preliminaries

Let M be a smooth 2n dimension manifold, $C^{\infty}(M)$ - soft function algebra on M; α(M)vector fields of smoothness module on "manifold" of M; g = <.,.> - Riemannian metrics

ABSTRACT

Volume 8 | July 2022

is a Riemannian metrics link g onM, d: the element of distinction from the outside. The smooth class is assumed for all manifolds, Tensor fields, and other objects C in the following. The structure of NK ("nearly kahler") on the "(manifold M)" is a pair "(Q,g)" where Q: represents the structure of the almost $("Q^2 = id")$ complicated onM. represents the Riemannian "(pseudo)" metric on M, where in this case $<0\alpha,0\beta>=<\alpha,\beta>$ $; \alpha, \beta \in \alpha(M).$

Let M be a n1-dimensional 2n-dimensional smooth manifold. On M, C(M) is a smooth function algebra., and $\alpha(M)$ is the vector field module on M. The Riemannian connection of the metric is denoted by g, while the exterior differentiation is denoted by d.

Theorem 1[3]

The following are the components of the Riemannian curvature in adjoint G-structure space, the tensor of the NK-manifold:

1)
$$R_{bcd}^{a} = R_{b\hat{c}\hat{d}}^{a} = R_{\hat{b}\hat{c}d}^{\hat{a}} = R_{\hat{b}\hat{c}\hat{d}}^{\hat{a}} = R_{bcd}^{\hat{a}} = R_{b\hat{c}\hat{d}}^{\hat{a}} = R_{b\hat{c}\hat$$

2)
$$R_{hcd}^a = B^{adh}B_{hbc} + A_{hc}^{ad}$$

3)
$$R_{\text{bcd}}^{\text{ac}} = B^{\text{adc}}B_{\text{bdh}} - A_{\text{bd}}^{\text{ac}}$$

4)
$$R_{\widehat{b}c\widehat{d}}^{\widehat{a}} = B^{bdh}B_{ahc} - A_{ac}^{bd}$$

5)
$$R_{\hat{b}\hat{c}d}^{\hat{a}} = B^{bch}B_{adh} + A_{ad}^{bc}$$

6)
$$R_{b\hat{c}\hat{d}}^{\hat{a}} = 2B^{dch}B_{abh}$$

7)
$$R_{\widehat{b}cd}^{a} = 2B^{abh}B_{dch}$$

Theorem 2 [2]

The following forms in the adjoint G- structural space represent the components of the Ricci tensor of the NK-manifold:

1)
$$r_{ab} = r_{\hat{a}\hat{b}} = 0$$
;

2)
$$r_{\hat{a}\hat{b}} = 3B^{cah}B_{hbc} - A^{ac}_{cb};$$

3) $r_{a\hat{b}} = 3B_{cah}B^{cbh} - A^{cb}_{ac}.$

$$3) r_{a\hat{b}} = 3B_{cah}B^{cbh} - A_{ac}^{cb}.$$

Definition3 [6]

The from defines the M- projective curvature tensor . :

$$M_{ijkl} = R_{ijkl} - \frac{1}{2(n-1)} [S_{jk} g_{il} - S_{ik} g_{jl} + g_{jK} S_{il} - g_{iK} S_{jl}]$$

The Riemannian curvature tensor and the Ricci tensor, respectively, are R and S.

Thus, the projective tensor satisfies all of the algebraic curvature tensor's characteristics.:

1)M (
$$\propto$$
, β , θ , γ) = – M(β , \propto , θ , γ);

2)M(
$$\propto$$
, β , θ , γ) = - M(\propto , β , γ , θ);

3)M(
$$\propto$$
, β , θ , γ) + M(β , θ , \propto , γ) +M(θ , \propto , β , γ) = 0;

$$4)M(\alpha, \beta, \theta, \gamma) = M(\theta, \gamma, \alpha, \beta); \alpha, \beta, \theta, \gamma \in \alpha(M).$$
 (4)

Proof: :- we shall prove (1)

$$M(\alpha, \beta, \theta, \gamma) = R(\alpha, \beta, \theta, \gamma) - \frac{1}{2(n-1)} \left[S(\beta, \theta) g(\alpha, \gamma) - S(\alpha, \theta) g(\beta, \gamma) + g(\beta, \theta) S(\alpha, \gamma) - g(\alpha, \theta) S(\beta, \gamma) \right]$$

$$=-R(\beta,\alpha,\theta,\gamma)+\frac{1}{2(p-1)}\left[-S(\beta,\theta)g(\alpha,\gamma)+S(\alpha,\theta)g(\beta,\gamma)-g(\beta,\theta)S(\alpha,\gamma)+g(\alpha,\theta)S(\beta,\gamma)\right]$$

$$= -M(\beta, \propto, \theta, \gamma)$$

Properties are similarly proved:

2)M(
$$\propto$$
, β , θ , γ) = -M(\propto , β , γ , θ);

3)M(
$$\propto$$
, β , θ , γ) + M(β , θ , \propto , γ) +M(θ , \propto , β , γ) = 0;

4)M(
$$\propto$$
, β , θ , γ)= M(θ , γ , \propto , β);

Covarient projective tensor M type (3,1) have form

$$M(\alpha,\beta) \theta = R(\alpha,\beta)\theta + \frac{1}{2N-1} \{ <\alpha, \theta > \beta - <\beta, \theta > \alpha \}$$

Volume 8 | July 2022 ISSN: 2795-7667

Where R is the Riemannian curvature tensor and \propto is the Scalar Curvature, $\propto \beta \theta \in \propto M$

Remark 5

By definition of a spectrum tensor.

 $M(\alpha,\beta) \theta = M(\alpha,\beta)\theta + M_1(\alpha,\beta)\theta + M_2(\alpha,\beta)\theta + M_3(\alpha,\beta)\theta + M_3(\alpha,\beta$

 $\mathsf{M}_4(\alpha,\beta)\theta + \mathsf{M}_5(\alpha,\beta)\theta + \mathsf{M}_6(\alpha,\beta)\theta + \mathsf{M}_7(\alpha,\beta)\theta; \quad \alpha,\beta \; \theta, \in \alpha \; (\mathsf{M}).$

tensor $M_0(\propto,\beta)\theta$ as nonzero-The component can have only components of the form $\{M^a_{0\ bcd}\,,M^{\hat a}_{0\ \widehat b\widehat c\widehat d}\}=\{M^a_{bcd}\,,M^{\hat a}_{\widehat b\widehat c\widehat d}\};$

tensor $M_1(\alpha, \beta)\theta$ - components of the form $\{M_{1\ bc\widehat{d}}^a, M_{1\ \widehat{b}\widehat{c}d}^{\widehat{a}}\} = \{M_{bc\widehat{d}}^a, M_{\widehat{b}\widehat{c}d}^{\widehat{a}}\};$

tensor $M_2(\alpha,\beta)\theta$ - components of the form $\{M_2^a_{b\hat{c}d}$, $M_2^{\hat{a}}_{b\hat{c}d}\}=\{M_{b\hat{c}d}^a$, $M_{b\hat{c}d}^{\hat{a}}\}$;

tensor $M_3(\propto,\beta)\theta$ - components of the form $\{M_{3\ b\hat{c}\hat{d}}^a,M_{3\ b\hat{c}d}^{\hat{a}}\}=\{M_{b\hat{c}\hat{d}}^a,M_{b\hat{c}d}^{\hat{a}}\}$;

tensor $M_4(\propto,\beta)\theta$ - components of the form $\{M_{4\ \hat{b}cd}^a,M_{4\ \hat{b}\hat{c}\hat{d}}^{\hat{a}}\}=\{M_{\hat{b}\hat{c}d}^a,M_{\hat{b}\hat{c}\hat{d}}^{\hat{a}}\}$;

tensor $M_5(\alpha,\beta)\theta$ - components of the form $\left\{M_{5-\widehat{b}c\widehat{d}}^a,M_{5-\widehat{b}\widehat{c}d}^{\hat{a}}\right\} = \left\{M_{\widehat{b}\widehat{c}\widehat{d}}^a,M_{\widehat{b}\widehat{c}d}^{\hat{a}}\right\}$;

tensor $M_6(\alpha, \beta)\theta$ - components of the form $\{M_{6\ \hat{b}\hat{c}d}^a, M_{6\ b\hat{c}\hat{d}}^{\hat{a}}\} = \{M_{6\ \hat{b}\hat{c}d}^a, M_{6\ b\hat{c}\hat{d}}^{\hat{a}}\}$;

tensor $M_7(\alpha,\beta)\theta$ - components of the form $\left\{M_{7\ \hat{b}\hat{c}\hat{d}}^a,M_{7\ bcd}^{\hat{a}}\right\} = \left\{M_{\hat{b}\hat{c}\hat{d}}^a,M_{bcd}^{\hat{a}}\right\}$.

Tensors $M_0 = M_0(\alpha, \beta)\theta$, $M_1 = M_1(\alpha, \beta)\theta$, ..., $M_7 = M_7(\alpha, \beta)\theta$.

The basic invariants projective NK-manifold will be named.

Definition 6

NK (" Nearly Kahler ") - manifold for which M_i = 0 is NK (" Nearly Kahler ") -manifold of class M_i , i = 0, 1, 7.

Theorem 7

1)NK ("Nearly Kahler") -manifold of classM₀ characterized by identity

2) NK (" Nearly Kahler ")- manifold of class M1characterized by identity

 $M(\alpha,\beta)\theta + M(\alpha,Q\beta)Q\theta - M(Q\alpha,\beta)Q\theta + M(Q\alpha,Q\beta)\theta + QM(\alpha,\beta)Q\theta - QM(\alpha,Q\beta)\theta - QM(Q\alpha,\beta)\theta - QM(Q\alpha,Q\beta)Q\theta = 0, \ \alpha,\beta,\theta \in \alpha(M).)$ (6)

3) NK (" Nearly Kahler ")- manifold of classM2 characterized by identity

 $M(\alpha, \beta)\theta - M((\alpha, Q \beta)Q\theta + M(Q\alpha, \beta)Q\theta + M(Q\alpha, Q \beta)\theta - QM(\alpha, \beta)Q\theta - QM(\alpha, Q \beta)\theta + QM(Q\alpha, \beta)\theta - QM(Q\alpha, Q\beta)Q\theta = 0, \ \alpha, \beta, \theta \in \alpha(M).$ (7)

4) NK ("Nearly Kahler") - manifold of classM₃ characterized by identity

 $M(\alpha, \beta)\theta + M((\alpha, Q \beta)Q\theta) + M(Q\alpha, \beta)Q\theta - M(Q\alpha, Q \beta)\theta - QM(\alpha, \beta)Q\theta + QM(\alpha, Q \beta)\theta + QM(Q\alpha, \beta)\theta + QM(Q\alpha, \beta)Q\theta + QM(Q$

5) NK (" Nearly Kahler ") - manifold of classM₄ characterized by identity

 $M(\alpha, \beta)\theta + M((\alpha, Q \beta)Q\theta + M(Q\alpha, \beta)Q\theta - M(Q\alpha, Q \beta)\theta + QM(\alpha, \beta)Q\theta - QM(\alpha, Q \beta)\theta - QM(Q\alpha, \beta)\theta - QM(Q\alpha, Q\beta)Q\theta = 0, \alpha, \beta, \theta \in \alpha(M).$ (9)

6) NK (" Nearly Kahler ")- manifold of classM5 characterized by identity

7) NK ("Nearly Kahler")- manifold of classM₆ characterized by identity

8) NK (" Nearly Kahler ")- manifold of classM7 characterized by identity

Proof:-

1) Let NK- manifold of classM₀, the manifold of classM₀ characterized by a condition

$$M_{0}^{a}_{bcd} = 0$$
, or $M_{bcd}^{a} = 0$.

i.e. $\left[M(\epsilon_{c}, \epsilon_{d})\epsilon_{b}\right]^{a}\epsilon_{a}$.

As σ - a projector on $D_Q^{\sqrt{-1}}$, that $\sigma \circ \{M(\sigma\alpha, \sigma\beta)\sigma\alpha\} = 0$;

i.e
$$(id-\sqrt{-1}Q)\{M(\alpha-\sqrt{-1}Q\alpha,\beta-\sqrt{-1}Q\beta)(\theta-\sqrt{-1}Q\theta)\}=0.$$

Eliminating the brackets could be received:

i.e.

 $\begin{array}{l} M(\alpha,\beta)\theta \ -M((\alpha,Q\ \beta)\ -M(Q\alpha,\beta)Q\theta \ -M(Q\alpha,Q\ \beta)\theta \ -QM(\alpha,\beta)Q\theta \ -QM(Q\alpha,\beta)\ +QM(Q\alpha,Q\ \beta)Q\theta -\sqrt{-1\{0,\alpha,\beta\}Q\theta} \ +M(Q\alpha,Q\ \beta)\theta \ -M(Q\alpha,Q\ \beta)Q\theta \ -QM(\alpha,\beta)\theta \ -QM(\alpha,Q\ \beta)Q\theta \ -QM(Q\alpha,\beta)Q\theta \ -QM(Q\alpha,\beta)Q\theta \ -QM(Q\alpha,Q\beta)\theta \} = 0. \end{array}$

i.e

1) $M(\alpha, \beta)\theta - M(\alpha, Q \beta)Q\theta - M(Q\alpha, \beta)Q\theta - M(Q\alpha, Q \beta)\theta - QM(\alpha, \beta)Q\theta - QM(\alpha, Q \beta)\theta - QM(Q\alpha, \beta)\theta + QM(Q\alpha, Q\beta)Q\theta = 0;$ (13)

 $2)M(\alpha, \beta)Q\theta + M(\alpha, Q \beta)\theta + M(Q\alpha, \beta)\theta - M(Q\alpha, Q \beta)Q\theta + QM(\alpha, \beta)\theta - QM(\alpha, Q \beta)Q\theta - OM(Q\alpha, Q \beta)Q\theta - OM(Q\alpha, Q \beta)Q\theta = 0;$ (14)

These equations (13) and (14) are interchangeable The first replacement yields the second equality. θ on $Q\theta$.

Thus NK ("Nearly Kahler") -identity characterizes a class M₀ manifold

$$M(\alpha, \beta)\theta - M(\alpha, Q \beta)Q\theta - M(Q\alpha, \beta)Q\theta - M(Q\alpha, Q \beta)\theta - QM(\alpha, \beta)Q\theta - QM(\alpha, Q \beta)\theta - QM(Q\alpha, \beta)\theta + QM(Q\alpha, Q\beta)Q\theta = 0, \ \alpha, \beta, \theta \ \alpha (M).$$
 (15)

Similarly considering NK (" Nearly Kahler ") -manifold of classes M_1 - M_7 can be received the 2,3,4,5,6,7 and 8.

Theorem8

We have the following inclusion relations

- 1) $M_0 = M_3 = M_4 = M_5 = M_6 = M_7$.
- 2) $M_1 = -M_2$.

Proof:

1)We shall prove $M_5 = M_6$ and similarly, the other will be proven.

For an example, proving equality

Let (M, Q, g) be NK- manifold of class M_5 , i.e $M_{\widehat{b}\widehat{c}\widehat{d}}^a$.

Then according to (4)we have $M_{\widehat{b}\widehat{c}d}^a = 0$, i.e. TheNK- manifold is manifold of class M_6 Back, let $M_{\widehat{b}\widehat{c}d}^a$, so, according to (4) and $M_{\widehat{b}\widehat{c}d}^a = 0$.

Thus, classes M₅ and M₆ of NK-manifold are coincide.

2)Prove inclusion $M_1 = -M_2$.

Let (M,Q,g)-NK-manifold of a class M_2 ,i.e. take place equality $M^a_{bc\widehat{d}}=M^a_{b\widehat{d}c}=o$. According to property (4)we have:

 $M^a_{\widehat{b}cd}+M^a_{cd\widehat{b}}+M^a_{d\widehat{b}c}=0$, i.e $M^a_{\widehat{b}cd}=0$. This the NK-manifold of a class $M_1=-M_2$ is NK-manifold.

Putting equality (6) and (7) we shall receive identity describing AH- manifold of class $M_1 = -M_2$

 $M(\alpha, \beta)\theta + M(Q\alpha, Q\beta)\theta + QM(\alpha, \beta)Q\theta - QM(Q\alpha, Q\beta)Q\theta = 0$; $\alpha, \beta, \theta \in \alpha(M)$ (16)

From equality (5), (8), (10), (11)we shall receive the identity describing NK- manifold of classes $M_0 = M_3 = M_5 = M_6$

$$M(\alpha, \beta)\theta + QM(Q\alpha, Q\beta)Q\theta = 0; \alpha, \beta, \theta \in \alpha(M).$$
 (17)

Theorem 9

The following equations describes the components of the projective tensor of NK-manifold in the adjoined G-structure: $-1)M_{\hat{a}b\hat{c}d} = B^{adc}B_{bdh} - A^{ac}_{bd} - \frac{1}{2n-1}[(3B_{dbh}B^{dch} - A^{dc}_{bd})\delta^a_d + 3B_{bah}B^{bdh} - A^{bd}_{ah})\delta^b_d]$

$$2) M_{\hat{a}bc\hat{d}} = B^{adh} B_{hbc} + A^{ad}_{bc} - \frac{1}{2n-1} \left(-3B^{bah} B_{hbc} + A^{ab}_{bc} \right) \delta^{d}_{b} - (3B_{abh} B^{adh} - A^{ad}_{bd}) \delta^{a}_{c}.$$

And the others are either conjugate of the above components., or equal to zero

Proof

By using Theorems (1) we compute the components of projective tensor as the following:

1) Put
$$i = a, j = b, k = c, l = d$$

$$M_{abcd} = R_{abcd} - \frac{1}{2(n-1)} [S_{bc} g_{ad} - S_{ac} g_{bd} + g_{bc} S_{ad} - g_{ac} S_{bd}]$$

$$M_{abcd} = 0$$

2) Put
$$i = \hat{a}, j = b, k = c, l = d$$

$$M_{\hat{a}bcd} = R_{\hat{a}bcd} - \frac{1}{2(n-1)} \left[S_{bc} g_{\hat{a}d} - S_{\hat{a}c} g_{bd} + g_{bc} S_{\hat{a}d} - g_{\hat{a}c} S_{bd} \right]$$

$$M_{abcd} = 0$$

3) Put
$$i = a, j = \hat{b}, k = c$$
 and $l = d$

$$M_{a\widehat{b}cd} = R_{a\widehat{b}cd} - \frac{1}{2(n-1)} \left[S_{\widehat{b}c} g_{ad} - S_{ac} g_{\widehat{b}d} + g_{\widehat{b}c} S_{ad} - g_{ac} S_{\widehat{b}d} \right]$$

$$M_{a\widehat{b}cd} = 0$$

4) Put
$$i = a, j = b, k = \hat{c}$$
, and $l = \hat{c}$

4) Put
$$i = a, j = b, k = \hat{c}$$
, and $l = d$

$$M_{ab\hat{c}d} = R_{ab\hat{c}d} - \frac{1}{2(n-1)} [S_{b\hat{c}} g_{ad} - S_{a\hat{c}} g_{bd} + g_{b\hat{c}} S_{ad} - g_{a\hat{c}} S_{bd}]$$

$$M_{ab\hat{c}d} = 0$$

5) Put
$$i = a, j = b, k = c$$
 and $l = \hat{d}$

$$M_{abc\hat{d}} = R_{abc\hat{d}} - \frac{1}{2(n-1)} [S_{bc} g_{a\hat{d}} - S_{ac} g_{b\hat{d}} + g_{bc} S_{a\hat{d}} - g_{ac} S_{b\hat{d}}]$$

$$M_{abc\hat{d}} = 0$$

6) Put
$$i = \hat{a}, j = \hat{b}, k = c, l = d$$

$$M_{\widehat{a}\,\widehat{b}cd} = R_{\widehat{a}\,\widehat{b}cd} - \frac{1}{2(n-1)} \left[S_{\widehat{b}c} \ g_{\widehat{a}d} - \ S_{\widehat{a}\,c} \ g_{\widehat{b}d} + g_{\widehat{b}c} S_{\widehat{a}\,d} - g_{\widehat{a}\,c} S_{\widehat{b}d} \right]$$

$$M_{\hat{a}\hat{b}cd} = 0$$

7) Put
$$i = \hat{a}$$
, $j = b$, $k = \hat{c}$ and $l = d$

$$M_{\hat{a}\hat{b}\hat{c}\hat{d}} = R_{\hat{a}\hat{b}\hat{c}\hat{d}} - \frac{1}{2(n-1)} \left[S_{\hat{b}\hat{c}} g_{\hat{a}\hat{d}} - S_{\hat{a}\hat{c}} g_{\hat{b}\hat{d}} + g_{\hat{b}\hat{c}} S_{\hat{a}\hat{d}} - g_{\hat{a}\hat{c}} S_{\hat{b}\hat{d}} \right]$$

$$M_{\hat{a}b\hat{c}d} = B^{adc}B_{bdh} - A^{ac}_{bd} - \frac{1}{2n-1}[(3B_{dbh}B^{dch} - A^{dc}_{bd})\delta^{a}_{d} + (3B_{bah}B^{bdh} - A^{bd}_{ab})\delta^{b}_{d}]$$

8) Put
$$i = \hat{a}, j = b, k = c$$
 and $l = \hat{d}$

$$M_{\hat{a}bc\hat{a}} = R_{\hat{a}bc\hat{a}} - \frac{1}{2(n-1)} [S_{bc} g_{\hat{a}\hat{a}} - S_{\hat{a}c} g_{b\hat{d}} + g_{bc} S_{\hat{a}\hat{d}} - g_{\hat{a}c} S_{b\hat{d}}]$$

$$M_{\hat{a}bc\hat{d}} = B^{adh}B_{hbc} + A^{ad}_{bc} - \frac{1}{2n-1} \left(-3B^{bah}B_{hbc} + A^{ab}_{bc} \right) \delta^{d}_{b} - (3B_{abh}B^{adh} - A^{ad}_{bd}) \delta^{a}_{c}.$$

Properties 10

From the above theorem 9, it is clear that components tensor of M - Projective Curvature Tensor of nearly kahler manifold have the following properties:

1)
$$M_0 = M_3 = M_4 = M_5 = M_6 = M_7 = 0$$

2)
$$M_1 = -M_2$$

References:

- 1. Banaru M., "Hermitian Geometry of Six-Dimensional Submanifold of Cayley's Algebra", ph. D. thesis, Moscow state pedagogical university, Moscow, 1993.
- 2. kirichenko, V.F., Shihab, A. A. "On the geometry of conharmonic curvature tensor for nearly kahler manifolds ".

- Fundamental and Applled Mathematics, 2010, 16(2),pp.43-54
- 3. KirichenkoV.F.,"New results of K-space theory ", Ph.D. thesis, Moscow Stat University, 1975.
- 4. Kirichenko V. F. " The method of Generalization of Hermitian geometry in the almost Hermitian contact manifold " Problems of geometry VINITE ANSSR, V. 18, P. 25-71, 1986
- 5. Kirichenko V.F., "DifferentailGemoetrical Structure on smooth manifiolds" ,Moscow pedagogical University Moscow, 2003.
- 6. R.N.Singh and Shravan K.Pandey ., " On the M-Projective Curvature Tensor of N(k)-Contact Metric Mainfolds

Volume 8 | July 2022 ISSN: 2795-7667

Hindawi Puplishing Corporation .Vol.2013,Article ID 932564,6 pages.

تنسر الاسقاط من النوع M في منطوي كوهلر التقريبي

1 علي خلف علي, 2 الاستاذ الدكتور علي عبد المجيد شهاب 2 علي خلف علي خلف علي المجيد شهاب 1 علية التربية للعلوم الصرفة-قسم الرياضيات , العراق – صلاح الدين-تكريت 1 علية التربية للعلوم السريد الالكتروني ali.khalaf.ali@st.tu.edu.iq

2) الاستاذ الدكتور علي عبد المجيد شهاب

المستخلص

في هذه الرسالة ندرس التنزر الاسقاطي من نوع M لمنطوي كوهلر التقريبي بمعنى اخر الخصائص الهندسية لاحد تراكيب لمنطوي الهرميتي التقريبي ويرمز له بالرمز M_1 حيث M_1 تشير الى منطوي كوهلر التقريبي . اهم النتائج المستخلصة من هذه الدراسة هي :

البرهنة على ان هذا التنزر يمتلك خصائص التناظر الكلاسيكية لانحناء ريمان حساب مكونات التنزر الاسقاطي (M-P-tensor) في منطوي كوهلر التقريبي,الحصول على بعض النتائج وتوطيد العلاقة بين مكونات هذا التنزر في هذا المنطوي, الحصول على معادلة محايدة لكل M_0 , M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 محايدة لكل M_6 , M_7 , M_8 ,