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A sun-synchronous orbit, sometimes called an helio-synchronous orbit, is 

when the Earth orbits the sun at a constant angle relative to the Earth-sun 

direction. In this work, the analytical technique for third body 

perturbation on sun-synchronous orbit satellites for different values of 

Node is considered computed for long period of time At a time interval of 

180 day, the dynamic development of sun-synchronous orbits is 

considered. It was accomplished by utilizing the numerical output results 

from the celestial mechanics' version 1 software program package. 

Numerical motion simulations were performed and The integration was 

carried out by using the Celestial Mechanics software program SATORB 

module (Beutler, 2005) created at the University of Bern's Institute of 

Astronomy. With input data given by the Two-Line Elements (TLE). 

Represented by six orbital elements and three Coordinates axes and 

acceleration components which were used to solve the variation of 

parameters equations (VOP) using a technique known as collocation 

method. It is reasonable to assume that the change in orbital elements with 

the greatest Mean effect on. With the addition of the Geocentric equatorial 

coordinate system and acceleration combinations. The results show that 

the third body perturbation has the greatest influence on orbital elements 

for perigee and Mean anomaly sections and acceleration components with 

a small influence caused by third body for Geocentric equatorial 

coordinates sections with increasing and decreasing rate of change as 

secular and periodic effects and that the perturbation is amplified by 

satellite heights and mean altitude. 
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1. Introduction 
          In astrodynamics, studying and 
modeling perturbations are important 
fields. Even though the majority of the 
solution approaches have been around 
for a long time, Perturbations are 
motions that deviate from a normal, 
idealized, or unaltered state. We tend to 
think of the cosmos as being quite 
regular and predictable. However, good 
observational data frequently exposes 
inexplicable anomalies of motion 
overlaid on the celestial bodies' more 
regular or mean movements [1]. 
Although the exact location of a low 
Earth orbit is unclear, it is generally 
thought to be between 100 and 1000 
kilometers above the Earth's surface. 
This is the most cost-effective and 
straightforward orbit for a spacecraft to 
enter. Getting a spacecraft into a low-
earth orbit (LEO) uses less energy than 
getting it into a higher-altitude orbit [2]. 
Due to the impact of numerous 
"disturbing" factors, a satellite's real 
orbit deviates from the Keplerian orbit. 
This includes, among other things, the 
Earth's non-spherical gravity, the 
gravitational influences of the moon and 
sun, atmospheric air drag, and solar 
radiation pressure. These disrupting 
forces produce temporal changes in the 
orbital elements of secular, long- and 
short-periodic nature (orbital 
perturbations). The real orbit can be 
thought of as the envelope of Keplerian 
ellipses provided by the actual orbital 
components at any given time 
(osculating ellipses). Artificial Earth 
satellites have been used for geodetic 
applications such as locating and 
determining the Earth's gravitational 
field and rotation characteristics since 
the launch of Sputnik I in 1957. Only a 
few satellite missions have been 
specifically intended for geodetic 
purposes. However, geodesy makes 
considerable use of a vast number of 
satellites produced for navigation, 
remote sensing, and geophysics [3]. 

Satellites are attracted not just by the 
Earth's central force, but also by its non-
central force, the sun and moon's 
attractive forces, and the drag force of 
the atmosphere. Solar radiation 
pressure, Earth and ocean tides, general 
relativity effects, and coordinate 
perturbations all have an impact on 
them. Satellite motion equations must 
be expressed using perturbed equations 
[4].  Third body perturbation has a long 
time of study and investigations with 
many research and papers concluding 
different subjects working with this 
topic these as an example for this study 
is Kozai Yoshihide (1959), the current 
article deduces as a function of mean 
orbital elements and time perturbations 
of six orbital elements of a near-earth 
satellite passing through the earth's 
gravitational field without meeting air 
resistance. No assumptions are made 
about the degree of eccentricity or 
inclination [5]. According to Kozai 
Yoshihide (1973) this paper pioneered 
an entirely new approach for computing 
lunisolar perturbations. The disturbing 
function is defined as the satellite's 
orbital components and the sun and 
moon's polar coordinates [6]. Lara M. 
(2012) used perturbation theory based 
on Lie transformations and higher-
order averaging to investigate the long-
term evolution of GNSS-type orbits[7]. 
Roscoe W.T.C. (2015) studied the 
impact of lunisolar perturbation on a 
satellite by utilizing differential orbital 
elements to express the relative velocity 
of the satellite in absolute and 
differential terms [8]. B. Saedeleer 
(2006) The analytical theory of the 
Moon's third body, was studied using 
the Lie transform method for averaging 
Hamiltonians in cases of synchronous 
rotation, the Lunar oblateness, the 
Lunar triaxiality, and the significant 
influence of the Earth's lunisolar 
rotation (ELP 2000) [9]. According to 
Beutler (2006), the paper discusses the 
development of effective methods for 
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predicting the orbits of low-earth-
orbiting objects (LEOs) in the presence 
of imprecisely characterized force 
fields. Pseudo-stochastic pulses, 
piecewise constant accelerations, or 
piecewise linear and continuous 
accelerations are used to compensate 
for the force field's deficiencies [10]. Xua 
Guangyan, Luo Jianfu and others (2014) 
Using the Reference Satellite Variable, 
this paper derives equations for low 
earth satellites and their relative motion 
under lunar perturbation (RSV). The 
derivation incorporates some plausible 
assumptions to simplify the results and 
emphasize the third body's influence 
[11].  Chihabi Yazan and Ulrich Steve 
(2021) Using conventional orbital 
components, this article presents an 
analytical solution for the relative 
velocity of two spacecraft. The 
analytical solution is obtained by 
forward propagating the orbital 
elements in time and accounting for 
gravitational field perturbations up to 
the fifth harmonic, third-body, and drag 
secular and periodic perturbations and 
calculating the relative motion in the 
local-vertical–local-horizontal 
reference frame at each time step. 
Compared to a numerical simulator, the 
analytical solution accurately 
characterized the relative motion, with 
errors on the order of meters at 
separation distances of hundreds of 
meters [12]. Elisa Maria Alessi, Alberto 
Buzzoni and others (2021).  The 
purpose of this study is to evaluate the 
orbital development of the mean 
eccentricity as defined by the Molniya 
satellites constellation's Two-Line 
Elements (TLE) set. The bottom-up 
technique is used to achieve synergy 
between observable dynamics and 
mathematical simulation. With the long-
term development of eccentricity as the 
primary emphasis, the dynamical model 
used is a doubly-averaged formulation 
of the third-body disturbance caused by 
the Sun and Moon and the oblateness 

influence on the satellite's orientation. 
The findings demonstrate that the 
second-order expansion captures the 
behavior remarkably well despite the 
very elliptical orbits. Additionally, the 
lunisolar influence is not negligible for 
the behavior of the ascending node's 
longitude and the pericenter's 
argument. Finally, a frequency series 
analysis is suggested in order to 
demonstrate [13]. Due Yujun and Zhang 
Fang Zhao (2021): Theoretically and 
numerically, we explore these effects 
using Gaussian equations of motion. 
According to the study, PNPM's effect 
may be classified into two groups. The 
first component is a rotational error in 
the perturbing force vector caused by 
the force vector being converted to a 
coordinate system without accounting 
for PNPM effects; the second component 
is an error in the satellite coordinates 
computed in the Earth-Centered Earth-
Fixed (ECEF) or True-of-Date (TOD) 
coordinate system without accounting 
for PNPM effects. Additionally, a 
straightforward semi-analytical 
correction strategy is shown. Keplerian 
elements can be employed instantly 
without requiring a recalculation of the 
solutions. This method effectively 
corrects the error produced when the 
PNPM was disregarded [14].  
Using the celestial mechanics software 
program version one with assistance of 
program MATLAB (2018) The aim of 
this work is to analyze the orbital 
evolution of the mean orbital elements 
given by the Two-Line Elements (TLE) 
set of the (Sun-synchronous) satellite 
constellation and examine the third 
body perturbation of the orbit of 
satellite for various objectives and 
missions. Demonstrating to how it 
affects orbital elements as well as 
coordinates components, and 
acceleration components at different 
values of Nodes. 
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2. Sun-synchronous orbit 
          Sun-synchronous orbits in which 
the ascending node's secular rate of 
right ascension is equal to the mean 
sun's right ascension rate. To be sun-
synchronous, the inclination, semi-
major axis, and eccentricity of the 
satellite orbit. A typical sun-
synchronous orbit has an inclination of 
98.7 degrees and a mean orbit height of 
833 kilometers. Circular orbits at low 
height  [15]. 

(
𝑑Ω

𝑑𝑡
)

𝑠
= −

3

2
𝑛 𝐽2 (

𝑅

𝑃
)

2

cos 𝑖

= 0.9856 
𝑑𝑒𝑔

𝑑𝑎𝑦
 

Were 

𝑛 = √
𝜇

𝑎3
   orbit mean motion 

R = Earth equatorial radius 
𝑝 = 𝑎(1 − 𝑒2) 

 

3. Simulation of satellite motion 
in Sun-synchronous orbit via 
numerical models 

          The motion of Sun-synchronous 
near-circular orbit with input data given 
by the Two-Line Elements (TLE) set of  
mean altitude of  7569 𝑘𝑚 and 
inclination  of  𝑖 = 100.6°  so on 𝑒 = 0  
and Argument of perigee equal to 0  with 

values of Nodes (Ω =
0 , 80 , 120 , 280 , 360 ) and period of 
time 101.2 minutes [16][17]. local 
equatorial crossing time at 12:00 hours. 
Significant perturbing factors, such as 
the Moon's and Sun's pull, were 
considered. The perturbing bodies' 
coordinates were obtained using 
numerical ephemerides DE200/LE200) 
as constant variables. Using the Celestial 
Mechanics software system's SATORB 
module (Beutler, 2005) [18]. Since the 
integration is performed over a long 
period of time and no connection to 
individual data is required, the 
beginning epoch of January 1, 2000, was 
chosen for ease of use of the numerical 
model. The integration was done using 
the 12th order collocation approach 
with integration order of 12 and 
automatic step selection 6000 seconds 
in 180 days of age with tabular interval 
of 1 minutes. The model used in this 
process which is Joint Gravity model 
(JGM3) the JGM model was developed 
with NASA and the university of Texas in 
1994 [19][18]. 
 

4. Perturbation due to third body 
          The equations of motion of two-
point masses M and m when they 
interact are as follows 

𝑀𝑟̈𝑀 = 𝐺𝑀𝑚
𝑟𝑀𝑚

𝑟𝑀𝑚
3    𝑎𝑛𝑑   𝑚𝑟̈𝑚 = 𝐺𝑀𝑚

𝑟𝑚𝑀

𝑟𝑚𝑀
3  … … … … … … … … … … … … (1) 

Where r is the vector's length, index Mm 
indicates that the vector points from 
point-mass M to point-mass m and 
single index M or m indicates that the 
vector points to point-mass M or m. By 

introducing additional point masses 
m(j), j = 1, 2,..., the attraction of m(j) on 
M and m may be expressed, and 
summations can calculate the total 
attraction [20]. 

𝑀𝑟̈𝑀 = 𝐺𝑀𝑚

𝑟𝑀𝑚

𝑟𝑚𝑀
3 + ∑ 𝐺𝑀𝑚(𝑗)

𝑟𝑀𝑚(𝑗)

𝑟𝑀𝑚(𝑗)
3

𝑗

 

𝑚𝑟̈𝑚 = 𝐺𝑀𝑚
𝑟𝑚𝑀

𝑟𝑚𝑀
3 + ∑ 𝐺𝑚𝑚(𝑗)

𝑟𝑚𝑚(𝑗)

𝑟𝑚𝑚(𝑗)
3

𝑗

 

By dividing the two preceding equations 
by −𝑀 and 𝑚 and then adding them 
together, one obtains 
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𝑟̈𝑚 − 𝑟̈𝑀 = −𝐺(𝑀 + 𝑚)
𝑟𝑀𝑚

𝑟𝑚𝑀
3 + ∑ 𝐺𝑚(𝑗) {

𝑟𝑚𝑚(𝑗)

𝑟𝑚𝑀
3 −

𝑟𝑀𝑚(𝑗)

𝑟𝑀𝑚(𝑗)
3 } … … … …  (2)

𝑗

 

Letting 𝑟 = 𝑟𝑚 − 𝑟𝑀 using the point 
mass (M) as the origin substituting  
𝑟𝑚𝑚(𝑗) = −(𝑟𝑚 − 𝑟𝑚(𝑗)) in the right side 

of equation (2) and removing the mass 
m (mass of satellite) 

𝑟̈ = −𝐺𝑀
𝑟

𝑟3
− ∑ 𝐺𝑚(𝑗) {

𝑟 − 𝑟𝑚(𝑗)

|𝑟 − 𝑟𝑚(𝑗)|
3 +

𝑟𝑚(𝑗)

𝑟𝑚(𝑗)
3 } … … … … … … … … . . (3)

𝑗

 

It is self-evident that the first 
component on the right represents the 
earth's core force; hence, the 

disturbance forces of various point 
masses acting on the satellite are then 
calculated. 

𝑓𝑚 = −𝑚 ∑ 𝐺𝑚(𝑗) {
𝑟 − 𝑟𝑚(𝑗)

|𝑟 − 𝑟𝑚(𝑗)|
3 +

𝑟𝑚

𝑟𝑚(𝑗)
3 }

𝑗

… … … … … … … … … … … … … (4) 

Where Gm(j) denotes the sun, moon, 
and planets' gravitational constants 
[20]. 
 
5. Collocation method 
          The collocation approach is used to 
solve the problem of starting value. 
Collocation algorithms use a polynomial 
of degree q to estimate the initial value 

issue inside the subintervals 𝐼𝑘, which is 
(in general) greater than Euler's 
approach. (The collocation algorithm is 
simplified to the Euler algorithm for q = 
n.) The order of the technique is also 
known as the polynomial degree 𝑞 ≥ 𝑛. 
The problem with the interval as the 
starting value may be stated as: 

𝑦𝑘
(𝑛)

= 𝑓(𝑡, 𝑦𝑘, 𝑦̇𝑘 , … , 𝑦𝑘
(𝑛−1)

 ) 

𝑦𝑘
(𝑖)(𝑡𝑘) = 𝑦𝑘0

(𝑖)
     𝑖 = 0,1, … . , 𝑛 − 1 

Where  𝑦𝑘0
(𝑖)

 is initial value 

The collocation algorithm of order 𝑞 ≥
 𝑛 uses a polynomial of degree q to 

approximate the initial value issue or 
the boundary value problem in the 
interval 𝐼𝑘= [𝐼𝑘, 𝑡𝑘 + 1]. 

𝑦𝑘(𝑡) = ∑
1

𝑙!
(𝑡 − 𝑡𝑘)𝑙

𝑞

𝑙

 𝑦𝑘0
(𝑙)

 

 
Within the interval 𝐼𝑘 , the differential equation system was solved by numerical solution 
at exactly 𝑞 + 1 − 𝑛  distinct epochs 𝑡𝑘𝑗

 ,  𝑗 = 1,2, … , 𝑞 + 1 − 𝑛  

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4    𝑡𝑘        𝑡𝑘+1     𝑡𝑁−3       𝑡𝑁−2    𝑡𝑁−1     𝑡𝑁     

                                                                   ……                ……  

      𝐼0         𝐼1         𝐼2             𝐼3                                   𝐼𝑘                   𝐼𝑁−3      𝐼𝑁−2     𝐼𝑁−1 

 

  

               …................. 

             𝑡𝐾1
         𝑡𝐾2

      𝑡𝐾3
                    𝑡𝐾4

                         𝑡𝑘𝑞−1−𝑛
            𝑡𝑘𝑞−𝑛

        𝑡𝑘𝑞+1−𝑛
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Figure (1): For the collocation algorithm, the integration interval 𝑰𝒌 is divided [18]. 
 
6. Variation of parameters  
          The majority of analytical and 
numerical solutions are based on 
Euler's and Lagrange's variation of 
parameters (VOP) versions of the 
equations of motion. Because the orbital 
components (the constant parameters 
in the two-body equations) are 
changing, the whole process is called a 
variation of parameters (VOP). Both 
Lagrange and Gauss devised VOP 
techniques for analyzing 
perturbations—approach Lagrange's 
applies to conservative accelerations, 
but Gauss's method is also applicable to 
non-conservative accelerations. The 
shape will vary depending on the orbital 
components used; we can study the 
impact of perturbations using the VOP 
approach. This is extremely valuable for 
planning and analyzing missions. Any 
theory should be able to model as many 
perturbing forces as feasible. Most 
operational, analytical theories focus 
exclusively on the central body and 
drag. Third-body and solar-radiation 
forces have significantly fewer 
analytical formulas because their 
impacts are substantially less over 
many orbits. Additionally, while 
precision demands the utilization of 
third-body effects and solar radiation 
pressure, numerical integration is 
typically just as simple for all perturbing 
variables [21]. 
 

6.1 Conservative forces Lagrangian 
VOP 
          The VOP technique is well-suited 
for generating the equations of motion 
of perturbed dynamical systems. The 
concept is founded on the assumption 
that if the solution's constants are 
extended to be time-varying 
parameters, we may utilize the 
unperturbed system to represent the 
solution to the perturbed system. The 
unperturbed system is a two-body 
system that consists of a series of 
formulae for determining the position 
and velocity vectors at a given time. 
Bear in mind that these computations 
depend on the six orbital components 
and time. We may theoretically employ 
any set of unchanged motion constants, 
including the original position and 
velocity vectors. Time is related to 
motion equations via mean, eccentric, 
and actual anomaly conversions. The 
Lagrangian planetary equations of 
motion, or simply the Lagrangian VOP, 
are the essential theory for calculating 
the orbital components' rates of change. 
It is named after Lagrange since he is 
credited with formulating these 
equations for the first time for all six 
orbital elements. He was mesmerized by 
the minute perturbations of planets' 
orbits around the Sun caused by their 
gravitational attraction [21]. 
The planetary equation of Lagrange for 
the orbit of a celestial body in a two-
body situation is stated as [18]. 

𝑎̇ = ∓
2

𝑛2𝑎

𝜕𝑅

𝜕𝑇̇0

… … … … … … … … … … … … … … … … … … … … … … . (5) 

𝑒̇ = −
√|1 − 𝑒2|

𝑛 𝑎2𝑒
 
𝜕𝑅

𝜕𝜔
−

1 − 𝑒2

𝑛2𝑎2𝑒

𝜕𝑅

𝜕𝑇̇0

… … … … … … … … … … … … … … (6) 

𝑑𝑖

𝑑𝑡
= −

1

𝑛 𝑎2√|1 − 𝑒2| sin 𝑖
 
𝜕𝑅

𝜕Ω
+

cot 𝑖

𝑛 𝑎2√|1 − 𝑒2|
 

𝜕𝑅

𝜕𝑇0̇

… … … … … . . (7) 

Ω̇ =
1

𝑛𝑎2√|1 − 𝑒2| sin 𝑖
 
𝜕𝑅

𝜕𝑖
… … … … … … … … … … … … … … … … … (8) 
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𝜔̇ =
√|1 − 𝑒2|

𝑛 𝑎2𝑒

𝜕𝑅

𝜕𝑒
−

cot 𝑖

𝑛 𝑎2√|1 − 𝑒2|

𝜕𝑅

𝜕𝑖
… … … … … … … … … … … . (9) 

𝑇̇0 =
2 

𝑛2𝑎

𝜕𝑅

𝜕𝑎
+

1 − 𝑒2

𝑛2𝑎2𝑎

𝜕𝑅

𝜕𝑒

̇
… … … … … … … … … … … … … … … … … . (10) 

 
6.2 Non-conservative forces Gaussian 
form 
          It is sometimes more convenient to 
represent disturbing accelerations 
directly at the satellite in componential 
form rather than using partial 
derivatives of the disturbing potential in 
the elements. This is especially true for 
orbits with a large eccentricity, for 
which series expansions would need a 

large number of terms in e. Gauss 
proposed a feasible alternative form. 
Three mutually perpendicular 
components are used to resolve the 
perturbing forces operating on the 
satellite [21]. 
As an example, consider the following 
collection of Gaussian perturbation 
equations to reduce (RSW) [18]. 

𝑎̇ = √
𝑝

𝜇
 

2𝑎

1 − 𝑒2
{𝑒 sin 𝑣𝑅 +

𝑝

𝑟
𝑆} … … … … … … … … … … … … … … … … . . (11) 

𝑒̇ = √
𝑝

𝜇
  {sin 𝑣 𝑅 + (cos 𝑣 + cos 𝐸) 𝑆 } … … … … … … … … … … … … … . . (12) 

𝑑𝑖

𝑑𝑡
=

𝑟 cos 𝑢

𝑛 𝑎2
 𝑊 … … … … … … … … … … … … … … … … … … … … … … … … (13) 

Ω̇ =
𝑟 sin 𝑢

𝑛 𝑎2√1 − 𝑒2  sin 𝑖
 𝑊 … … … … … … … … … … … … … … … … … … … . (14) 

 

𝜔̇ =
1

𝑒
√

𝑝

𝜇
 {− cos 𝑣 𝑅 + (1 +

𝑟

𝑝
) sin 𝑣 𝑆} − cos 𝑖 Ω̇ … … … … … … … … . . (15) 

 

𝑇̇0 = −
1 − 𝑒2

𝑛2 𝑎𝑒
{(cos 𝑣 − 2𝑒

𝑟

𝑝
) 𝑅 − (1 +

𝑟

𝑝
) sin 𝑣 𝑆} −

3

2𝑎
(𝑡 − 𝑇𝑜̇) 𝑎̇ … (16) 

 
Where 𝑣 is true anomaly, 𝐸 is eccentric 
anomaly and 𝑢 = 𝜔 + 𝑣 is the argument 
of latitude of the celestial body. The 
perturbation equations above are 
divided into two groups, the first of 
which contains the equations for the 
semimajor axis a (which defines the 
size), the eccentricity e (which defines 
the shape), and the time T0 of pericenter 
passage (which defines the dynamics) of 
the orbital motion, and the second of 
which contains the three Eulerian 
angles I and, which define the orbital 
plane and the orientation of the conic 
section within it [22]. 
7. Application and results  

          The results demonstrate the 
influence of third body perturbation of 
Sun Synchronous orbit selected for long 
period of time the data obtained from 
software program celestial mechanics 
version one which solves the equations 
of motion analytically using collocation 
method based on numerical results 
from the program in terms of two 
output files one of orbital elements 
calculated after solving the equations of 
perturbation programmatically and 
other one contains the geocentric 
coordinates axis and acceleration 
components also MATLAB (2018) was 
used to analyze and plot the data were 
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the given by celestial mechanics 
program 
 

 

(a) 

 

 

 

 

 

(b) 
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Figure (2): Evolution of Third body perturbation on Orbital elements of Sun-synchronous satellite. 

Where (a) denotes the Semi Major axis, (b) denotes eccentricity, (c) denotes inclination, (d) denotes 

right ascension, (e) denotes perigee argument, and (f) denotes mean anomaly.  

The effect of the perturbation on the six 

orbital elements is illustrated in Figure 

(2), with the element of semi-major axis 

(a) given in units of  (m) has short 

periodic plus secular influence with 

greatest effect at Ω = 80°, the 

eccentricity element also exhibiting short 

and secular effect with increasing rate of 

change of perturbation, in the inclination 

secular change are considered for 

perturbation influence with increasing 

rate for perturbation effect with highest 

influence at Ω = 360° while decreasing 

rate for Ω = 180° , in right ascension  the 

rate of change is appears opposite as in 

inclination which have increasing secular 

effect in Sun perturbation while 

decreasing influence is in Moon 

attraction, as well as the Argument of 

perigee and Mean anomaly, exhibiting a 

noticeable lack of influence in terms of 

secular perturbation  The data indicate 

that the moon's influence is growing 

compared to the sun, where the third 

body has a negligible effect in low orbits.

(a)                                                                            (b) 

 

  

  

                                 

  

  (c) 

 

 

 

 

 

 



Volume 7| June 2022                                                                                                                 ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                   www.geniusjournals.org 
    P a g e  | 122 

 

Figure (3): Evolution of Third body perturbation on Geocentric equatorial coordinates system of 

Sun-synchronous satellite.  Where: (a) represent X-axis, (b) Y-axis, (c) Z-axis 

Figure (3) shows that the study includes 

a section of perturbation in geocentric 

equatorial coordinates (X, Y and Z) given 

in units of meters. The final results reveal 

that whereas perturbations of the third 

body have a similar effect on low–

altitude satellites but a bit different in 

some values of  Nodes with short 

periodic influence in the x-axis, which 

has units of meters with time given in 

(days), as shown in the figure, the rate of 

change is at highest effect at point of  ≈

8 × 106 𝑚 for x-axis and  for  y-axis and 

z-axis, they have a more significant 

influence on coordinates system as 

periodic effect and the net effect of the 

third body perturbation is on three-axis 

given. 
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Figure (4): Evolution of Third body perturbation on Acceleration components system of 

Sun-synchronous satellite Where: (a) represent radial, (b) along-track, (c) out of plane. 

The perturbation influence on 

acceleration components (radial, along-

track, and out-of-plane) directions, as 

seen in figure (4). The third body has a 

little influence significant on the radial 

term with secular plus short periodic 

effect at the point ≈ 6.95763 𝑚/𝑠2 with 

the non-stable rate of change. For out of 

plane direction, the effect has periodic 

influence with greatest effect at rate of 

 6 × 10−6 𝑚/𝑠2   and minimum rate effect 

at  − 6 × 10−6 𝑚/𝑠2 for  Ω = 120°. In the 

side of a long-track motions, the 

perturbation influence is shortly periodic 

plus secular and has the greatest rate of 

change with increasing rate at point of 

1 × 10−15 𝑚/𝑠2  for  Ω = 120°. 

8. Conclusion 
          The influence of the third body 

perturbation on satellites at Sun-

synchronous altitudes was researched in 

this work for many values of Right 

Ascension of node ( Ω = 0 , Ω = 80 , Ω =

120 , Ω = 280 , Ω = 360 ). It was 

discovered that the value of the 

perturbation of the third body increased 

and decreased with orbital elements as 

well as with geocentric axis or 

acceleration components each of force 

effect apply in a different type of 

perturbation as periodic and secular. The 

data obtained a slight influence of the 

third body on the acceleration 

components of satellite furthermore 

greatest effect was in Argument of 

perigee at (1 × 106) 𝑑𝑒𝑔  for Ω = 360°  

and at (11 × 104) 𝑑𝑒𝑔  for Ω = 0∘, 360° of 

Mean anomaly in orbital elements and 

have highest effect at ≈ (8 × 106) 𝑚, 

which owns due to orbits altitude 

compared with force type when the air 

drag should have more influence on this 

satellite the study aims to show the small 

data effects on the satellite for these 

orbits with different area . Finally, Due to 

perturbations force, the set of orbital 

elements and Geocentric coordinates 

axis are influenced mainly by the force of 

perturbation as appeared periodic and 

secular from numerical results obtained 

from the program 
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